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1. Link Prediction

node2vec



4.7 Link prediction
In link prediction, we are given a network with a certain frac-
tion of edges removed, and we would like to predict these missing
edges. We generate the labeled dataset of edges as follows: To ob-
. - - tain positive examples, we remove 50% of edges chosen randomly
1 L from the network while ensuring that the residual network obtained
. I n r e I C I O n after the edge removals is connected, and to generate negative ex-
amples, we randomly sample an equal number of node pairs from
the network which have no edge connecting them.

( node2vec: Scalable Feature Learning for Networks )

Predict whether there is is a connection(link) between two nodes!

Binary Classification Problem!

Take one edge, and classify either into “CON nected” or“‘un-connected”
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( node2vec: Scalable Feature Learning for Networks )

Predict whether there is is a connection(link) between two nodes!

Binary Classification Problem!

Take one edge, and classify either into “COnNNected” or “‘un-connected”

[Q] (in the case of weighted graph)
Can'’t it be a regression problem,

of predicting the “strength of the connection”( = weight ) ?



Link Prediction Algorithm

Network with edges & nodes

l Masking ( Remove x% of edges )

Node2vec paper : mask 50%

[ INPUT ] Network with (100-x)% of edges (removed) Network with x% of edges

l train test

Classification Model
( whether the edge is connected(1) or not(0) )




10 edges 5 edges left

( remove 5 edges (50%) )
MASKING

—> @

Remove x% of connected edges ( grey edge )

Train model only with the (100-x)% remaining edges ( black edge )



Train model only with the (100-x)% remaining edges ( black edge )




Black : remained
Grey : removed

Positive Sample

1 5 / (remaining 50% edges )
2
3
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Black : remained
Grey : removed

5
\ Negative Sample

( sampling UNCONNECTED nodes )



Black : remained
Grey : removed

Same number of pairs ( pos = neqg )

Positive Sample

(remaining 50% edges )

Negative Sample
( sampling UNCONNECTED nodes )



Black : remained
Grey : removed

Same number of pairs ( pos = neqg )

Positive Sample

(remaining 50% edges )

Negative Sample
( sampling UNCONNECTED nodes )



Black : remained
Grey : removed

Make a classification model

( with positive & negative sample)

* equal number of pairs




Black : remained
Grey : removed

test with Masked Edges!

( Predict these missing edges! )

[ACTUAL] 1
) [PREDICTION] 7
: test with Unconnected Edges!
r — ( Predict these unconnected edges! )

[AcTuAaL] O

[PREDICTION] ?



Metric for evaluating I

model performance in LINK Prediction




Before ROC & AUC...

POSITIVE (1) NEGATIVE (0) ( Real Positive, among Predicted Positive )
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https://miro.medium.com/max/1194/0*wKaznlJzZF54b878.jpg ( Predicted Negative, among Actual Negative )

[ Confusion matrix ]



Before ROC & AUC...

PREDICTIVE VALUES
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[ Confusion matrix ]

Precision = TP/ TP+FP

( Real Positive, among Predicted Positive )

Recall=TP/ TP+FN

( Predicted Positive, among Actual Positive )

Specificity = TN / TN+FP

( Predicted Negative, among Actual Negative )




1. ROC Curve

(= FP/FP+TN)
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1. ROC Curve

True Positive Rate
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The greater the gap,
the better the classification

(= FP/ FP+TN)
X axis : False Positive Rate
( = 1 — Specificity )
The bigger, the better
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False Positive Rate

(= TP/ TP+FN)
Y axis : True Positive Rate

( = Recall)
The bigger, the better



1. ROC Curve

ROC curve extremes
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The distributions The distributions
don't overlap at all overlap completely
(Tossing a coin)




2. AUC (Area Under Curve)
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Area below the ROC curve!
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https://media.springernature.com/original/springer-static/image/art%3A10.1007%2Fs10115-017-
1022-8/MediaObjects/10115_2017_1022_Figl HTML.gif



(optional) How to draw an ROC curve?
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SUMMARY

1. Link Prediction

- Remove some edges with masking, for testing in the future!
- Make binary classification model with “remained positive edges” & “sampled negative edges”

- Predict the removed edges ( for testing )

2. ROC & AUC

- Metric for evaluating binary classification model performance
- ROC : checking how well a classification is done visually ( by comparing FPR & TPR )
- AUC : checking how well a classification is done numerically, ( by finding the area under the ROC Curve )

- (both ROC & AUC) the BIGGER, the BETTER






