Link Prediction & ROC / AUC

Seunghan Lee 2020-02-03

Contents

1

Link Prediction

- node2vec

Metric for evaluating Link Prediction

2

- ROC
- AUC

1. Link Prediction

node2vec

1. Link Prediction

4.7 Link prediction

In link prediction, we are given a network with a certain fraction of edges removed, and we would like to predict these missing edges. We generate the labeled dataset of edges as follows: To obtain positive examples, we remove 50% of edges chosen randomly from the network while ensuring that the residual network obtained after the edge removals is connected, and to generate negative examples, we randomly sample an equal number of node pairs from the network which have no edge connecting them.

(node2vec: Scalable Feature Learning for Networks)

Predict whether there is a connection(link) between two nodes!

Binary Classification Problem!

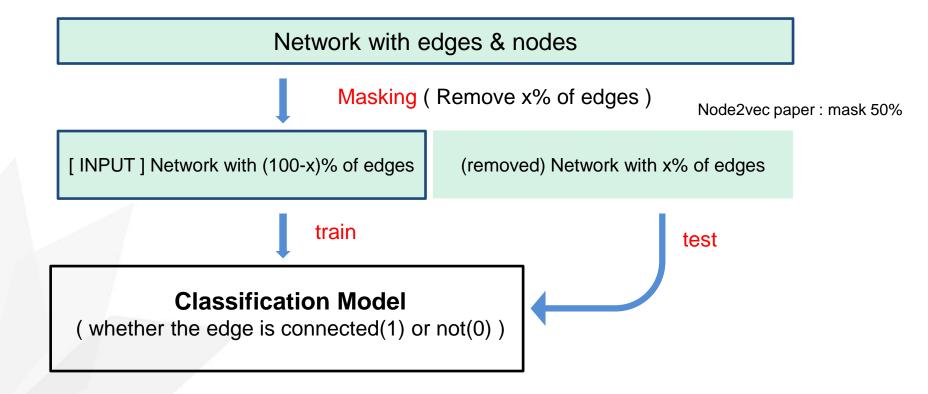
Take one edge, and classify either into "connected" or "un-connected"

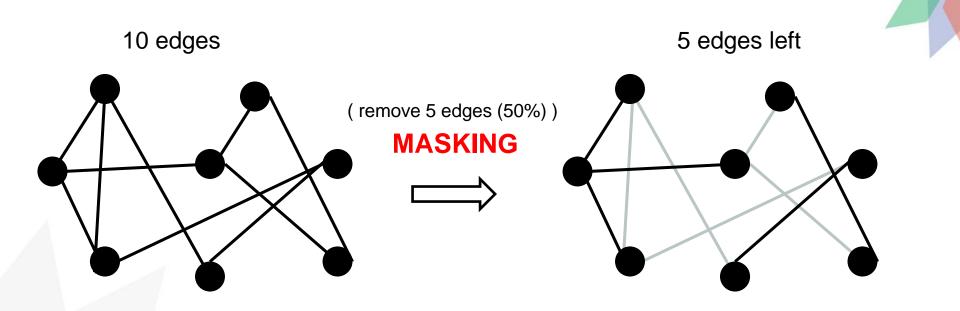
1. Link Prediction

4.7 Link prediction

In link prediction, we are given a network with a certain fraction of edges removed, and we would like to predict these missing edges. We generate the labeled dataset of edges as follows: To obtain positive examples, we remove 50% of edges chosen randomly from the network while ensuring that the residual network obtained after the edge removals is connected, and to generate negative examples, we randomly sample an equal number of node pairs from the network which have no edge connecting them.

(node2vec: Scalable Feature Learning for Networks)

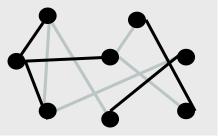

Predict whether there is a connection(link) between two nodes!


Binary Classification Problem!

Take one edge, and classify either into "connected" or "un-connected"

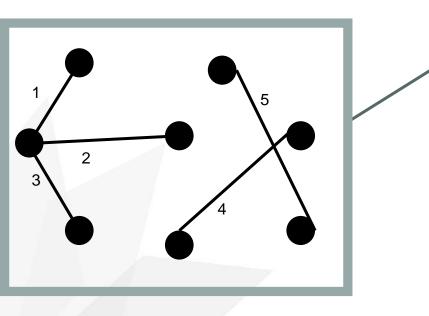
[Q] (in the case of weighted graph)
Can't it be a regression problem,
of predicting the "strength of the connection" (= weight)?

Link Prediction Algorithm

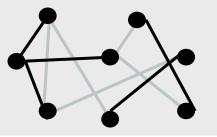


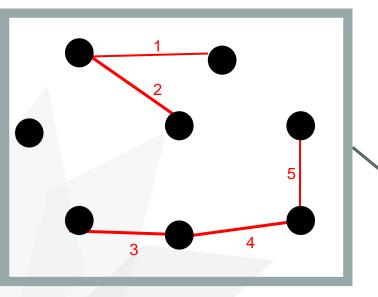
Remove x% of connected edges (grey edge)

Train model only with the (100-x)% remaining edges (black edge)

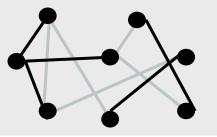

HOW?

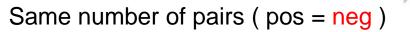
Train model only with the (100-x)% remaining edges (black edge)

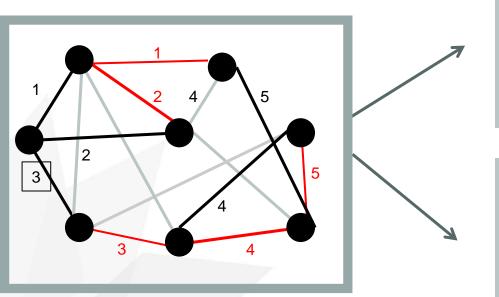

Black : remained Grey : removed


Positive Sample

(remaining 50% edges)

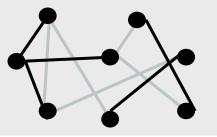

Black: remained Grey: removed



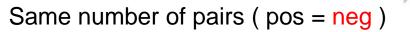

Negative Sample

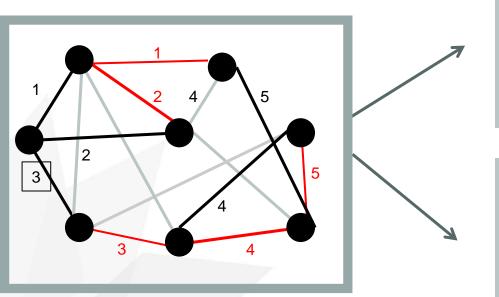
(sampling UNCONNECTED nodes)

Black : remained Grey : removed



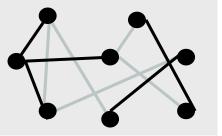
Positive Sample


(remaining 50% edges)


Negative Sample

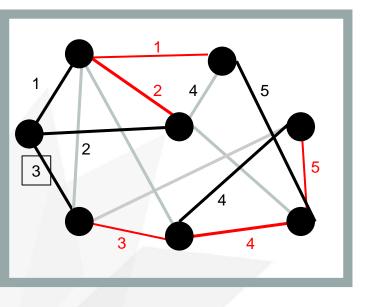
(sampling UNCONNECTED nodes)

Black : remained Grey : removed



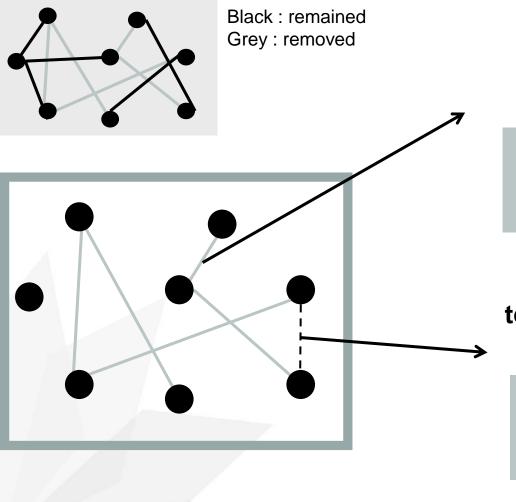
Positive Sample

(remaining 50% edges)


Negative Sample

(sampling UNCONNECTED nodes)

Black : remained Grey : removed



Make a classification model

(with positive & negative sample)

* equal number of pairs

test with Masked Edges!

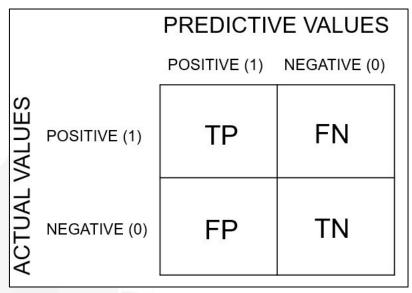
(Predict these missing edges!)

[ACTUAL] 1

[PREDICTION] ?

test with Unconnected Edges!

(Predict these unconnected edges!)


[ACTUAL] **0**

[PREDICTION] ?

Metric for evaluating model performance in Link Prediction

- 1. ROC curve
- 2. AUC (Area Under Curve)

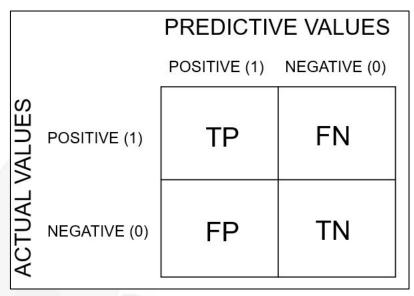
Before ROC & AUC...

https://miro.medium.com/max/1194/0*wKaznIJzZF54b87B.jpg

[Confusion matrix]

Precision = TP / TP+FP

(Real Positive, among Predicted Positive)


Recall = TP / TP+FN

(Predicted Positive, among Actual Positive)

Specificity = TN / TN+FP

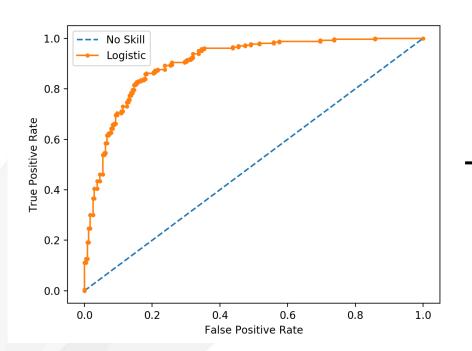
(Predicted Negative, among Actual Negative)

Before ROC & AUC...

https://miro.medium.com/max/1194/0*wKaznlJzZF54b87B.jpg

[Confusion matrix]

Precision = TP / TP+FP
(Real Positive, among Predicted Positive)


Recall = TP / TP+FN

(Predicted Positive, among Actual Positive)

Specificity = TN / TN+FP

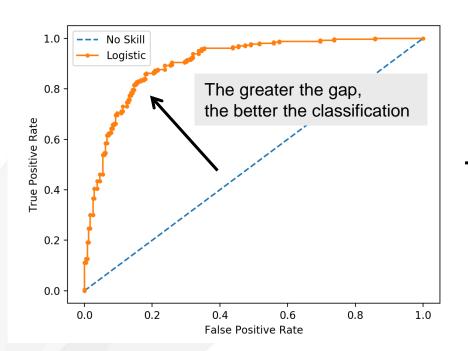
(Predicted Negative, among Actual Negative)

1. ROC Curve


```
(=FP/FP+TN)
```

X axis: False Positive Rate

(= 1 - Specificity)


The bigger, the better

$$(=TP/TP+FN)$$

Y axis: True Positive Rate

The bigger, the better

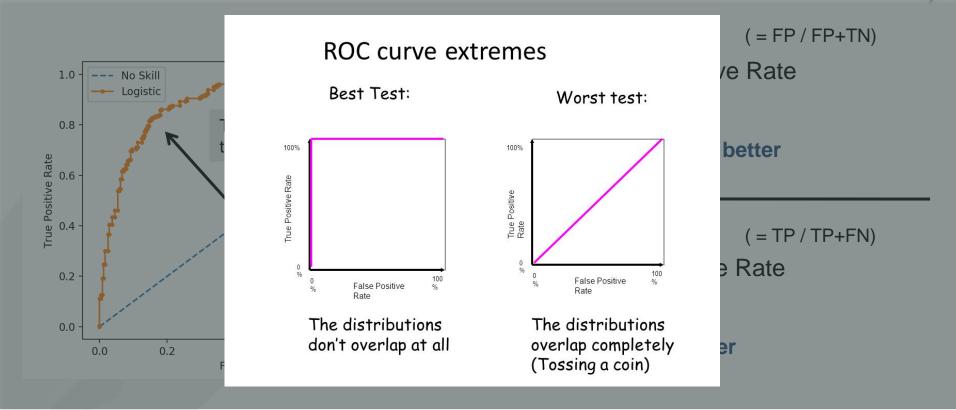
1. ROC Curve


```
(=FP/FP+TN)
```

X axis: False Positive Rate

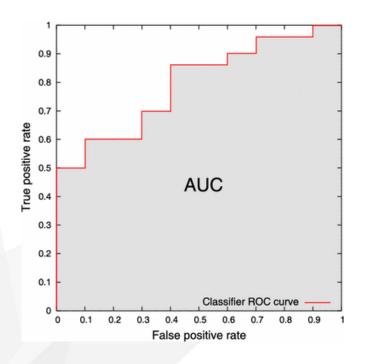
(=1-Specificity)

The bigger, the better


(= TP / TP + FN)

Y axis: True Positive Rate

(= Recall)


The bigger, the better

1. ROC Curve

2. AUC (Area Under Curve)

Area below the ROC curve!

(range: 0.5 ~ 1)

* 0.5 : tossing a coin

 $https://media.springernature.com/original/springer-static/image/art\%3A10.1007\%2Fs10115-017-1022-8/MediaObjects/10115_2017_1022_Fig1_HTML.gif$

(optional) How to draw an ROC curve?

Actual Class	Predicted Class	Confidence of "response"	Type?	Number of TP	Number of FP	Fraction of FP	Fraction of TP
response	response	0.902	TP	1	0	0	0.167
response	response	0.896	TP.	2	0	0	0.333
response	response	0.834	TP	3	0	0	0.500
response	response	0.741	TP.	4	0	0	0.667
no response	response	0.686	FP:	4	- 1	0.25	0.667
response	response	0.616	TP	5	1	0.25	0.833
response	response	0.609	TP	6	1	0.25	1
no response	response	0.576	FP.	6	2	0.5	1
no response	response	0.542	FP	6	3	0.75	1
no response	response	0.530	FP.	6	4	1	1
no response	no response	0,440	TN	6	4	1	1
no response	no response	0.428	TN	6	4	1	1
no response	no response	0.393	TN	6	4	1	-1
no response	no response	0.313	TN	6	4	1	1
no response	no response	0.298	TN	6	4	1	1
no response	no response	0.260	TN	6	4	1	.1
no response	no response	0.248	TN	6	- 4	1	-1
no response	no response	0.247	TN	6	4	1	1
no response	no response	0.241	TN	6	4	1	- 1
		8.440	799.7		- 4		1.0

SUMMARY

1. Link Prediction

- Remove some edges with masking, for testing in the future!
- Make binary classification model with "remained positive edges" & "sampled negative edges"
- Predict the removed edges (for testing)

2. ROC & AUC

- Metric for evaluating binary classification model performance
- ROC : checking how well a classification is done visually (by comparing FPR & TPR)
- AUC: checking how well a classification is done numerically, (by finding the area under the ROC Curve)
- (both ROC & AUC) the BIGGER, the BETTER

