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Abstract

Diffusion models, a family of generative models based on deep learning, have become
increasingly prominent in cutting-edge machine learning research. With a distinguished
performance in generating samples that resemble the observed data, diffusion models are
widely used in image, video, and text synthesis nowadays. In recent years, the concept
of diffusion has been extended to time series applications, and many powerful models
have been developed. Considering the deficiency of a methodical summary and discourse
on these models, we provide this survey as an elementary resource for new researchers in
this area and also an inspiration to motivate future research. For better understanding,
we include an introduction about the basics of diffusion models. Except for this, we
primarily focus on diffusion-based methods for time series forecasting, imputation, and
generation, and present them respectively in three individual sections. We also compare
different methods for the same application and highlight their connections if applicable.
Lastly, we conclude the common limitation of diffusion-based methods and highlight
potential future research directions.

1 Introduction
Diffusion models, a family of deep learning-based generative models, have risen to
prominence in the machine learning community in recent years (Croitoru et al., 2023;
Yang et al., 2022a). With exceptional performance in various real-world applications
such as image synthesis (Austin et al., 2021; Dhariwal and Nichol, 2021; Ho et al., 2022a),
video generation (Harvey et al., 2022; Ho et al., 2022b; Yang et al., 2022b), natural
language processing (Li et al., 2022; Nikolay et al., 2022; Yu et al., 2022), and time series
prediction (Rasul et al., 2021a; Li et al., 2022; Alcaraz and Strodthoff, 2023), diffusion
models have demonstrated their power over many existing generative techniques.

Given some observed data x from a target distribution q(x), the objective of a
generative model is to learn a generative process that produces new samples from q(x)
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(Luo, 2022). To learn such a generative process, most diffusion models begin with
progressively disturbing the observed data by injecting Gaussian noises, then applying a
reversed process with a learnable transition kernel to recover the data (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Luo, 2022). Typical diffusion models assume that after
a certain number of noise injection steps, the observed data will become standard
Gaussian noises. So, if we can find the probabilistic process that recovers the original
data from standard Gaussian noises, then we can generate similar samples using the
same probabilistic process with any random standard Gaussian noises as the starting
point.

The recent three years have witnessed the extension of diffusion models to time
series-related applications, including time series forecasting (Rasul et al., 2021a; Li
et al., 2022; Biloš et al., 2022), time series imputation(Tashiro et al., 2021; Alcaraz and
Strodthoff, 2023; Liu et al., 2023), and time series generation (Lim et al., 2023). Given
observed historical time series, we often try to predict future time series. This process is
known as time series forecasting. Since observed time series are sometimes incomplete
due to reasons such as data collection failures and human errors, time series imputation
is implemented to fill in the missing values. Different from time series forecasting and
imputation, time series generation or synthesis aims to produce more time series samples
with similar characteristics as the observed period.

Basically, diffusion-based methods for time series applications are developed from
three fundamental formulations, including denoising diffusion probabilistic models
(DDPMs), score-based generative models (SGMs), and stochastic differential equations
(SDEs). The target distributions learned by the diffusion components in different
methods often involve the condition on previous time steps. Nevertheless, the design of
the diffusion and denoising processes varies with different objectives of different tasks.
Hence, a comprehensive and self-contained summary of relevant literature will be an
inspiring beacon for new researchers who just enter this new-born area and experienced
researchers who seek for future directions. Accordingly, this survey aims to summarize
existing literature, compare different approaches, and identify potential limitations.

In this paper, we will review on diffusion-based models for time series applications
(please refer to Table 1 for a quick summary). For a better understanding, we will
include a brief introduction about three predominant formulations of diffusion models in
section 2. Next, we will categorize the existing models based on their major functions.
More specifically, we will discuss the models primarily for time series forecasting, time
series imputation, and time series generation in section 3, section 4, and section 5,
respectively. In each section, we will have a separate subsection for problem formulation,
which helps to clarify the objective, training and forecasting settings of each specific
application. We will highlight if a model can serve multiple purposes and articulate the
linkage when one model is related to or slightly different from another. Eventually, we
will conclude this survey in section 6.

2 Basics of Diffusion Models
The underlying principle of diffusion models is to progressively perturb the observed
data with a forward diffusion process, then recover the original data through a backward
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Table 1: A summary of diffusion-based methods for time series applications.

Application Data Type Method Source

Time Series Forecasting
Multivariate Time Series

TimeGrad Rasul et al. (2021a)
ScoreGrad Yan et al. (2021)
D3VAE Li et al. (2022)

DSPD/CSPD Biloš et al. (2022)

Spatio-temporal Graphs
DiffSTG Wen et al. (2023)
GCRDD Li et al. (2023)

Time Series Imputation
Multivariate Time Series

CSDI Tashiro et al. (2021)
DSPD/CSPD Biloš et al. (2022)

SSSD Alcaraz and Strodthoff (2023)
Spatio-temporal Graphs PriSTI Liu et al. (2023)

Time Series Generation Multivariate Time Series TSGM Lim et al. (2023)

reverse process. The forward process involves multiple steps of noise injection, where
the noise level changes at each step. The backward process, on the contrary, consists of
multiple denoising steps that aim to remove the injected noises gradually. Normally, the
backward process is parameterized by a neural network. Once the backward process
has been learned, it can generate new samples from almost arbitrary initial data.
Stemming from this basic idea, diffusion models are predominantly formulated in three
ways: denoising diffusion probabilistic models (DDPMs), score-based generative models
(SGMs), and stochastic differential equations (SDEs). In this section, we will briefly
review on these three formulations of diffusion models.

2.1 Denoising Diffusion Probabilistic Models
DDPMs implement the forward and backward processes through two Markov chains
(Sohl-Dickstein et al., 2015; Ho et al., 2020). Let the original observed data be x0, where
0 indicates that the data are free from the noises injected in the diffusion process.

The forward Markov chain transforms x0 to a sequence of disturbed data x1,x2, ...,xK

with a diffusion transition kernel:

q(xk|xk−1) = N
(
xk;
√
αkx

k−1, (1− αk)I
)
, (1)

where αk ∈ (0, 1) for k = 1, 2, ...,K are hyperparameters indicating the changing variance
of the noise level at each step, and N (x;µ,Σ) is the general notation for the Gaussian
distribution of x with the mean µ and the covariance Σ, respectively. A nice property
of this Gaussian transition kernel is that we may obtain xk directly from x0 by

q(xk|x0) = N
(
xk;
√
α̃kx

0, (1− α̃k)I
)
, (2)

where α̃k :=
∏k
i=1 αi. Therefore, x

k =
√
α̃kx

0 +
√
1− α̃kε with ε ∼ N (0, I). Normally,

we design α̃K ≈ 0 such that q(xK) :=
∫
q(xK |x0)q(x0)dx0 ≈ N (xK ; 0, I), which means

the starting point of the backward chain can be any standard Gaussian noises.
The reverse transition kernel is modelled by a parameterized neural network

pθ(x
k−1|xk) = N

(
xk−1;µθ(x

k, k),Σθ(x
k, k)

)
, (3)
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where θ denotes learnable parameters. Now, the remaining problem is how to estimate
θ. Basically, the objective is to maximize the likelihood objective function so that the
probability of observing the training sample x0 estimated by pθ(x0) is maximized.This
task is accomplished by minimizing the variational lower bound of the estimated negative
log-likelihood E[− log pθ(x

0)] , that is,

Eq(x0:K)

[
− log p(xK)−

K∑
k=1

log
pθ(x

k−1|xk)
q(xk|xk−1)

]
(4)

where x0:K denotes the sequence x0, ...,xK .
Ho et al. (2020) proposed that we could simplify the covariance matrix Σθ(x

k, k) in
Equation (3) as a constant-dependent matrix σ2kI, where σ

2
k controls the noise level and

may vary at different diffusion steps. Besides, they rewrote the mean as a function of a
learnable noise term as:

µθ(x
k, k) =

1
√
αk

(
xk − ζ(k)εθ(xk, k)

)
, (5)

where ζ(k) = 1−αk√
1−α̃k

, and εθ is a noise-matching network that predicts ε corresponding
to inputs xk and k. With the property in Equation (2), Ho et al. (2020) further simplifies
the objective function to

Ek,x0,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kx0 +
√

1− α̃kε, k
)∥∥∥2] , (6)

where δ(k) = (1−αk)
2

2σ2
kαk(1−α̃k)

is a positive-valued weight that can be discarded to produce
better performance in practice.

Eventually, samples are generated by eliminating the noises in xK ∼ N (xK ; 0, I).
More specifically, for k = K − 1,K − 2, ..., 0,

xk ←
(
xk+1 − ζ(k + 1)εθ(x

k+1, k + 1)
)

√
αk+1

+ σkz,

where z ∼ N (0, I) for k = K − 1, ..., 1, and z = 0 for k = 0.

2.2 Score-based Generative Models
Score-based generative models (SGMs) consist of two modules, including score matching
and annealed Langevin dynamics (ALD). ALD is a sampling algorithm that generates
samples with an iterative process by applying Langevin Monte Carlo at each update
step (Song and Ermon, 2019). Stein score is an essential component of ALD. The Stein
score of a density function q(x) is defined as ∇x log q(x). Since the true probabilistic
distribution q(x) is usually unknown, score matching (Hyvärinen and Dayan, 2005) is
implemented to approximate the Stein score with a score-matching network. Here we
primarily focus on denoising score matching (Vincent, 2011) as it is empirically more
efficient, but other methods such as sliced score matching (Song et al., 2020) are also
commonly mentioned in the relevant literature.
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The underlying principle of denoising score matching is to process the observed data
with the forward transition kernel q(xk|x0) = N (xk;x0, σ2kI), with σ

2
k being a set of

increasing noise levels for k = 1, ...,K, and then jointly estimate the Stein scores for the
noise density distributions qσ1(x), qσ2(x), ..., qσk(x) (Song and Ermon, 2019). The Stein
score for noise density function qσk(x) is defined as ∇x log qσk(x).

Then, the Stein score is approximated by a neural network sθ(x, σk), where θ
contains learnable parameters. Accordingly, the initial objective function is given as

Ek,x0,xk

[∥∥∥sθ(xk, k)−∇xk log qσk(x
k)
∥∥∥] . (7)

With the Gaussian assumption of the forward transition kernel, a tractable version of
the objective function can be found as

Ek,x0,xk

[
δ(k)

∥∥∥∥sθ(xk, σk) + xk − x0

σ2k

∥∥∥∥2
]
, (8)

where δ(k) is a positive-valued weight depending on the noise scale σk.
After the score-matching network sθ is learned, the ALD algorithm will be imple-

mented for sampling. The algorithm is initialized with a sequence of increasing noise
levels σ1, ..., σK and a starting point xK,0 ∼ N (0, I). For k = K,K − 1, ..., 0, xk will
be updated with N iterations that compute

z ← N (0, I)

xk,n ← xk,n−1 +
1

2
ηksθ

(
xk,n−1, σk

)
+
√
ηkz,

where n = 1, ..., N , z ∼ N (0, I), and ηk represents the step of update. Note that after
each N iterations, the last output xk,N will be assigned as the starting point of the
next N iterations, that is, xk−1,1. x0,N will be the final sample. The role of z in this
sampling process is to slightly add uncertainty such that the algorithm will not end up
with almost identical samples.

2.3 Stochastic Differential Equations
DDPMs and SGMs implement the forward pass as a discrete process, which means we
should carefully design the diffusion steps. To overcome this limitation, one may consider
the diffusion process as continuous such that it becomes the solution of a stochastic
differential equation (SDE)(Song et al., 2021). This formulation can be thought of as
a generalization of the previous two formulations since both DDPMs and SGMs are
discrete forms of SDEs. The backward process is modelled as a time-reverse SDE, and
samples can be generated by solving this time-reverse SDE. Let w and w̃ be a standard
Wiener process and its time-reverse version, respectively, and consider a continuous
diffusion time k ∈ [0,K]. A general expression of SDE is

dx = f(x, k)dk + g(k)dw, (9)

and the time-reverse SDE, as shown by Anderson (1982), is

dx =
[
f(x, k)− g(k)2∇x log qk(x)

]
dk + g(k)dw̃, (10)
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In addition, Song et al. (2021) has illustrated that sampling from the probability flow
ordinary differential equation (ODE) as following has the same distribution as the
time-reverse SDE:

dx =

[
f(x, k)− 1

2
g(k)2∇x log qk(x)

]
dk. (11)

Here f(x, k) and g(k) separately compute the drift coefficient and the diffusion coefficient
for the diffusion process. ∇x log qk(x) is the Stein score corresponding to the marginal
distribution of xk, which is unknown but can be learned with a similar method as in
SGMs with the objective function

Ek,x0,xk

[
δ(k)

∥∥∥sθ(xk, k)−∇xk log q0k(x
k|x0)

∥∥∥2] . (12)

Now, how to write the diffusion processes of DDPMs and SGMs as SDEs? Recall
that αk is a defined parameter in DDPMs and σ2k denotes the noise level in SGMs. The
SDE corresponding to DDPMs is known as variance preserving (VP) SDE, defined as

dx = −1

2
α(k)xdk +

√
α(k)dw, (13)

where α(·) is a continuous function, and α
(
k
K

)
= K(1−αk) as K →∞. For the forward

pass of SGMs, the associated SDE is known as variance exploding (VE) SDE, defined
as

dx =

√
d [σ(k)2]

dk
dw, (14)

where σ(·) is a continuous function, and σ( kK ) = σk as K → ∞ (Song et al., 2021).
Inspired by VP SDE, Song et al. (2021) designed another SDE called sub-VP SDE that
performs especially well on likelihoods, given by

dx = −1

2
α(k)xdk +

√
α(k)

(
1− e−2

∫ k
0 α(s)ds

)
dw. (15)

The objective function involves a perturbation distribution q0k(xk|x0) that varies for
different SDEs. For the three aforementioned SDEs, their corresponding perturbation
distributions are derived as

q0k(x
k|x0) =


N (xk;x0, [σ(k)2 − σ(0)2]I), (VP SDE)
N (xk;x0e−

1
2

∫ k
0 α(s)ds, [1− e−

∫ k
0 α(s)ds]I), (VE SDE)

N (xk;x0e−
1
2

∫ k
0 α(s)ds, [1− e−

∫ k
0 α(s)ds]2I), (sub-VP SDE)

(16)

After successfully learning sθ(x, k), samples are produced by deriving the solutions to
the time-reverse SDE or the probability flow ODE with techniques such as ALD.

3 Time Series Forecasting
Multivariate time series forecasting is a crucial area of study in machine learning research,
with wide-ranging applications across a variety of industries. Different from univariate
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time series, which only track one feature over time, multivariate time series involve the
historical observations of multiple features that interact with each other and evolve
with time. Consequently, they provide a more comprehensive understanding of complex
systems and realize more reliable predictions of future trends and behaviours.

In recent years, generative models have been implemented for multivariate time
series forecasting tasks. For example, WaveNet is a generative model with dilated causal
convolutions that encode long-term dependencies for sequence prediction (Oord et al.,
2016). As another example, Rasul et al. (2021b) model multivariate time series with
an autoregressive deep learning model, in which the data distribution is expressed by a
conditional normalizing flow. Nevertheless, the common shortcoming of these models
is that the functional structure of their target distributions are strictly constrained.
Diffusion-based methods, on the other hand, can provide a less restrictive solution.
In this section, we will discuss four diffusion-based approaches. We also include two
models designed specifically for spatio-temporal graphs (i.e., spatially related entities
with multivariate time series) to highlight the extension of diffusion theories to more
complicated problem settings. Since relevant literature mostly focuses on multivariate
time series forecasting, “forecasting” refers to multivariate time series forecasting in the
rest of this survey unless otherwise stated.

3.1 Problem Formulation
Consider a multivariate time series X0 = {x0

1,x
0
2, ...,x

0
T |x0

i ∈ RD}, where 0 indicates
that the data is free from the perturbation in the diffusion process. The forecasting
task is to predict X0

p = {x0
t0 ,x

0
t0+1, ...,x

0
T } given the historical information X0

c =
{x0

1,x
0
2, ...,x

0
t0−1}. X

0
c is known as the context window, while X0

p is known as the
prediction interval. In diffusion-based models, the problem is formulated as learning the
joint probabilistic distribution of data in the prediction interval:

q
(
x0
t0:T |x

0
1:t0−1

)
=

T∏
t=t0

q
(
x0
t |x0

1:t0−1
)
. (17)

Some literature also considers the role of covariates in forecasting, such as (Rasul et al.,
2021a) and (Yan et al., 2021). Covariates are additional information that may impact
the behaviour of variables over time, such as seasonal fluctuations and weather changes.
Incorporating covariates in forecasting often helps to strengthen the identification of
factors that drive temporal trends and patterns in data. The forecasting problem with
covariates is formulated as

q
(
x0
t0:T |x

0
1:t0−1, c1:T

)
=

T∏
t=t0

q
(
x0
t |x0

1:t0−1, c1:T
)
, (18)

where c1:T denotes the covariates for all time points and is assumed to be known for
the whole period.

For the purpose of training, one may randomly sample the context window followed
by the prediction window from the complete training data. This process can be seen as
applying a moving window with size T on the whole timeline. Then, the optimization of
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the objective function can be conducted with the samples. Forecasting future time series
is usually achieved by the generation process corresponding to the diffusion models.

3.2 TimeGrad
The first noticeable work on diffusion-based forecasting is TimeGrad proposed by Rasul
et al. (2021a). Developed from DDPM models, TimeGrad firstly injects noises to data
at each predictive time point, and then gradually denoise through a backward transition
kernel conditioned on historical time series. To encode historical information, TimeGrad
approximate the conditional distribution in Equation (18) by

T∏
t=t0

pθ(x
0
t |ht−1), (19)

where
ht = RNNθ(x

0
t , ct,ht−1) (20)

is the hidden state calculated with a RNN module such as LSTM (Hochreiter and
Schmidhuber, 1997) or GRU (Chung et al., 2014) that can preserve historical temporal
information, and θ contains learnable parameters for the overall conditional distribution
and its RNN component.

The objective function of TimeGrad is in the form of a negative log-likelihood, given
as

T∑
t=t0

− log pθ(x
0
t |ht−1), (21)

where for each t ∈ [t0, T ], − log pθ(x
0
t |ht−1) is upper bounded by

Ek,x0
t ,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kx0
t +

√
1− α̃kε,ht−1, k

)∥∥∥2] . (22)

The context window is used to generate the hidden state ht0−1 for the starting point of
the training process. It is not hard to see that Equation (22) is very similar to Equation
(6) except for the inclusion of hidden states to represent the historical information.

In the training process, the parameter θ is estimated by minimizing the negative
log-likelihood objective function with stochastic sampling. Then, future time series are
generated in a step-by-step manner. Suppose that the last time point of the complete
time series is T̃ . The first step is to derive the hidden state hT̃ based on the last available
context window. Next, the observation for the next time point T̃ + 1 is predicted in a
similar way as DDPM:

xk
T̃+1
←

(
xk+1
T̃+1
− ζ(k + 1)εθ(x

k+1
T̃+1

,hT̃ , k + 1)
)

√
αk+1

+ σk+1z,

The predicted xk
T̃+1

should be fed back to the RNN module to obtain hT̃+1 before the
prediction for the next time point. The sampling process will be repeated until the
desired length of the future time series is reached.
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3.3 ScoreGrad
ScoreGrad shares the same target distribution as TimeGrad, but it is alternatively built
upon SDEs, extending the diffusion process from discrete to continuous and replacing the
number of diffusion steps with an interval of integration (Yan et al., 2021). ScoreGrad is
composed of a feature extraction module and a conditional SDE-based score-matching
module. The feature extraction module is almost identical to the computation of ht in
TimeGrad. However, Yan et al. (2021) have discussed the potential of adopting other
network structures to encode historical information, such as temporal convolutional
networks (Oord et al., 2016) and attention-based networks (Vaswani et al., 2017). Here
we still focus on RNN as the default choice. In the conditional SDE-based score matching
module, the diffusion process is conducted through the same SDE as in Equation (9)
but its associated time-reverse SDE is refined as following:

dxt =
[
f(xt, k)− g(k)2∇xt log qk(xt|ht)

]
dk + g(k)dw, (23)

where k ∈ [0,K] represents the SDE integral time. As a common practice, the conditional
score function ∇xt log qk(xt|ht) is approximated with a parameterized neural network
sθ(x

k
t ,ht, k). Inspired by WaveNet (Oord et al., 2016) and DiffWave (Kong et al.,

2021), the neural network is designed to have 8 connected residual blocks, while each
block contains a bidirectional dilated convolution module, a gated activation unit, a
skip-connection process, and an 1D convolutional neural network for output.

The objective function of ScoreGrad is a conditional modification of Equation (12),
computed as

T∑
t=t0

Lt(θ) (24)

with Lt(θ) being

Ek,x0
t ,x

k
t

[
δ(k)

∥∥∥sθ(xkt ,ht, k)−∇xt log q0k(xt|x0
t )
∥∥∥2] . (25)

Up to this point, we only use the general expression of SDE for simple illustration. In
the training process, one shall decide the specific type of SDE to use. Potential options
include VE SDE, VP SDE, and sub-VP SDE (Song et al., 2021). The optimization varies
depending on the chosen SDE because different SDEs lead to different forward transition
kernel q(xkt |xk−1t ) and also different perturbation distribution q0k(xt|x0

t ). Finally, for
forecasting, ScoreGrad utilizes the predictor-corrector sampler as in (Song et al., 2021)
to sample from the time-reverse SDE.

3.4 D3VAE
In practice, we may encounter the challenge of insufficient observations. If the historical
multivariate time series were recorded based on a short period, they are prone to
significant level of noises due to measurement errors, sampling variability, and randomness
from other sources. To address the problem of limited and noisy time series, D3VAE,
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proposed by Li et al. (2022), employs a coupled diffusion process for data augmentation,
and then uses a bidirectional auto-encoder (BVAE) together with denoising score
matching to clear the noise. In addition, D3VAE also considers disentangling latent
variables by minimizing the overall correlation for better interpretability and stability of
predictions. Moreover, the mean square error (MSE) between the prediction and actual
observations in the prediction window is included in the objective function, further
emphasizing the role of supervision.

Assuming that the prediction window can be generated from a set of latent variables
Z that follows a Gaussian distribution q(Z|x0

1:t0−1). The conditional distribution of Z
is approximated with pφ(Z|x0

1:t0−1) where φ denotes learnable parameters. Then, the
forecasting time series x̂t0:T can be generated from the estimated target distribution,
given by pθ(x0

t0:T
|Z). It is not difficult to see that the prediction window is still predicted

based on the context window however with latent variables Z as an intermediate.
In the coupled diffusion process, we inject noises separately into the context window

and the prediction window. Different from TimeGrad which injects noises to the
observation at each time point individually, the coupled diffusion process is applied to
the whole period. For the context window, the same kernel as Equation (2) is applied
such that

xk1:t0−1 =
√
α̃kx

0
1:t0−1 +

√
1− α̃kε, (26)

where ε denotes the standard Gaussian noises but with a matrix rather than a vector
form.

The diffusion process is further applied to the prediction window with adjusted noise
levels α′k > αk. Let α̃′k :=

∏k
i=1 α

′
i, then

xkt0:T =
√
α̃′kx

0
t0:T +

√
1− α̃′kε. (27)

This diffusion process simultaneously augments the context window and the prediction
window, thus improving the generalization ability for short time series forecasting.
Besides, it is proven by Li et al. (2022) that the uncertainty caused by the generative
model and the inherent noises in the observed data can both be mitigated by the coupled
diffusion process.

The backward process is accomplished with two steps. The first step is to predict
xkt0:T with a BVAE as the one used in (Vahdat and Kautz, 2020), which is composed of
an encoder and a decoder with multiple residual blocks and takes the disturbed context
window xk1:t0−1 as input. The latent variables in Z are gradually generated and fed
into the model in a summation manner. The output of this process is the predicted
disturbed prediction window x̂kt0:T . The second step involves further cleaning of the
predicted data with a denoising score matching module. More specifically, the final
prediction is obtained via a single-step gradient jump (Saremi and Hyvarinen, 2019):

x̂0
t0:T ← x̂kt0:T − σ

2
0∇x̂k

t0:T
E(x̂kt0:T ; e),

where σ0 is prescribed and E(x̂kt0:T ; e) is the energy function.
Disentanglement of latent variables Z can efficiently enhance the model interpretabil-

ity and reliability for prediction (Li et al., 2021). It is measured by the total correlation
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of the random latent variables Z. Generally, a lower total correlation implies better
disentanglement which is a signal of useful information. The computation of total
correlation happens synchronously with the BVAE module.

The objective function of D3VAE consists of four components. It can be written as

w1DKL

(
q(xkt0:T )‖pθ(x̂

k
t0:T )

)
+ w2LDSM + w3LTC + LMSE , (28)

where w1, w2, w3 are trade-off parameters that assign significance levels to the com-
ponents. The first component DKL

(
q(xkt0:T )‖pθ(x̂

k
t0:T

)
)
matches the estimated target

distribution with the true distribution of the prediction window. The last three compo-
nents, LDSM ,LTC , and LMSE , are corresponding to the DSM module, disentanglement
of latent variables, and MSE between the prediction and the truth, respectively. The
parameters θ and φ are learned together in the training process. Eventually, forecasting
samples are generated from the learned distribution pφ(Z|x0

1:t0−1) and pθ(x
0
t0:T
|Z).

3.5 DSPD
Multivariate time series data can be considered as a record of value changes for multiple
features of an entity of interest. Data are collected from the same entity, and the
measuring tools normally stay unchanged during the whole observed time period. So,
assuming that the change of variables over time is smooth, the time series data can
be modelled as values from an underlying continuous function (Biloš et al., 2022). In
this case, the context window is expressed as X0

c = {x(1),x(2), ...,x(t0 − 1)} and the
prediction window becomes X0

p = {x(t0),x(t0+1), ...,x(T )}, where x(·) is a continuous
function of the time point t.

Different from traditional diffusion models, the diffusion and reverse processes are
no longer applied to vector observations at each time point. Alternatively, the target
of interest is the continuous function x(·), which means noises will be injected and
removed from a function rather than a vector. Therefore, a continuous noise function
ε(·) should take place of the noise vector ε ∼ N (0, I) This function should be both
continuous and tractable such that it accounts for the correlation between measurements
and enables training and sampling. These requirements are effectively satisfied by
designing a Gaussian stochastic process ε(·) ∼ GP(0,Σ) (Biloš et al., 2022).

Discrete stochastic process diffusion (DSPD) is built upon the DDPM formulation
but with the stochastic process ε(·) ∼ GP(0,Σ). It is a delight that DSPD is only
slightly different from DDPM in terms of implementation. More specifically, DSPD
simply replaces the commonly applied noise ε ∼ N (0, I) with the noise function ε(·)
whose discretized form is ε ∼ N (0,Σ). LetX0 be an observed multivariate time series in
a certain period of time T ′ = {t′1, t′2, ..., t′T }, which means X0 = {x(t′1),x(t′2), ...,x(t′T )}.
In the forward process, noises are injected through the transition kernel

q(Xk|X0) = N (
√
α̃kX

0, (1− α̃k)Σ) (29)

Then, the following backward transition kernel is applied to recover the original data:

pθ(X
k−1|Xk) = N (µθ(X

k, k), (1− αk)Σ). (30)
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Consequently, the objective function should be changed as

Ek,X0,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kX0 +
√
1− α̃kε, k

)∥∥∥2] , (31)

where ε ∼ N (0,Σ) with the covariance matrix from the Gaussian process GP(0,Σ).
Forecasting via DSPD is very similar to TimeGrad. As before, the aim is still to

learn the conditional probability q(X0
p |X0

c ). But there are two major improvements.
Firstly, the prediction is available for any future time point in the continuous time
interval. Secondly, instead of step-by-step forecasting, DSPD can generate samples for
multiple time points in one run. By adding the historical condition into the fundamental
objective function in Equation (31), the objective function for DSPD forecasting is then
given by

Ek,X0
p ,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kX0
p +

√
1− α̃kε,X0

c , k
)∥∥∥2] . (32)

Finally, supposing that the last context window is X̃c, the sampling process to forecast
for the prediction target X̃p in time interval T̃ is given by

X̃k
p ←

(
X̃k+1
p − ζ(k + 1)Lεθ(X̃

k+1
p , X̃c, k + 1)

)
√
αk+1

+ (1− αk+1)z,

where L is from the factorization of the covariance matrix Σ = LLᵀ, the last diffusion
output is generated as X̃K

p ∼ N (0,Σ), and z ∼ N (0,Σ).
Similar to the extension from TimeGrad to ScoreGrad, the continuous noise function

can also be adapted into the SDE framework, thus leading to the continuous stochastic
process diffusion (CSPD) model (Biloš et al., 2022). The diffusion process of CSPD
introduces the factorized covariance matrix Σ = LLᵀ to VP SDE (see section 2.3) as

dX = −1

2
α(k)Xdk +

√
α(k)Ldw, (33)

where w is a matrix that represents a standard Wiener process. The perturbation
distribution in the objective function is then modified as

q0k(X
k|X0) = N

(
Xk;X0e−

1
2

∫ k
0 α(s)ds, [1− e−

∫ k
0 α(s)ds]Σ

)
. (34)

3.6 DiffSTG
Spatio-temporal graphs (STGs) are a special type of multivariate time series that encodes
spatial and temporal relationships and interactions among different entities in a graph
structure (Wen et al., 2023). They are commonly observed in real-life applications such
as traffic flow prediction (Li et al., 2018), weather forecasting (Simeunović et al., 2021),
and finance prediction (Zhou et al., 2011). Suppose we have N entities of interest, such
as traffic sensors or companies in the stock market. We can model these entities and
their underlying relationships as a graph G = {V, E ,W }, where V is a set of N nodes
as representations for entities, E is a set of links that indicates the relationship between
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nodes, and W is a weighted adjacency matrix that describes the graph topological
structure. Multivariate time series observed at all entities are models as graph signals
X0
c = {x0

1,x
0
2, ...,x

0
t0−1|x

0
t ∈ RD×N}, which means we have D-dimensional observations

from N entities at each time point t. Identical to the previous problem formulation,
the aim of STG forecasting is also to predict X0

p = {x0
t0 ,x

0
t0+1, ...,x

0
T |x0

t ∈ RD×N}
based on the historical information Xc. Nevertheless, except for the time dependency
on historical observations, we also need to consider the spatial interactions between
different entities represented by the graph topology.

DiffSTG applies diffusion models on STG forecasting with a graph-based noise-
matching network called UGnet (Wen et al., 2023). The idea of DiffSTG can be regarded
as the extension of DDPM-based forecasting to STGs with an additional condition on the
graph structure, which means the target distribution in Equation (17) is approximated
alternatively by

pθ(x
0
t0:T |x

0
1:t0−1,W ). (35)

Accordingly, the objective function is changed as

Ek,x0
t0:T

,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kx0
t0:T +

√
1− α̃kε,x0

1:t0−1, k,W
)∥∥∥2] . (36)

The objective function in Equation (36) actually treats the context window and the
prediction window as samples from two separate sample spaces, namely, X0

c ∈ Xc and
X0
p ∈ Xp with Xc and Xp being two individual sample spaces. However, considering the

fact that the context and prediction intervals are consecutive, it may be more reasonable
to treat the two windows as a complete sample from the same sample space. To this
end, Wen et al. (2023) reformulate the forecasting problem and revise the approximation
in Equation (35) as

pθ(x
0
1:T |x0

1:t0−1,W ), (37)

in which the history condition is derived by masking the future time series from the
whole time period. The associated objective function is

Ek,x0
1:T ,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kx0
1:T +

√
1− α̃kε,x0

1:t0−1, k,W
)∥∥∥2] . (38)

The training process is quite straightforward following the common practice. But it
should be noted that the sample generated in the forecasting process includes both
historical and future values. So, we need to take out the forecasting target in the sample
as the prediction.

Now, there is only one remaining problem. How to encode the graph structural
information in the noise-matching network εθ? Wen et al. (2023) proposed UGnet, an
Unet-based network architecture (Ronneberger et al., 2015) combined with a graph neural
network (GNN) to process time dependency and spatial relationships simultaneously.
UGnet takes xk1:T ,x

0
1:t0−1, k and W as inputs and then outputs the prediction of the

associated error ε.
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3.7 GCRDD
Graph convolutional recurrent denoising diffusion model (GCRDD) is another diffusion-
based model for STG forecasting (Li et al., 2023). It differs from DiffSTG that it uses
hidden states from a recurrent component to store historical information as TimeGrad
and employs a different network structure for the noise-matching term εθ. Please note
that the notations related to STGs here follow subsection 3.6.

GCRDD approximates the target distribution with a probabilistic density function
conditional on the hidden states and graph structure as following:

T∏
t=t0

pθ(x
0
t |ht−1,W ), (39)

where the hidden state is computed with a graph-modified GRU, written as

ht = GraphGRUθ(x
0
t ,ht−1,W ). (40)

The graph-modified GRU replaces the weight matrix multiplication in traditional GRU
(Chung et al., 2014) with graph convolution such that both temporal and spatial
information is stored in the hidden state. The objective function of GCRDD adopts
a similar form of TimeGrad but with additional graph structural information in the
noise-matching network:

Ek,x0
t ,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kx0
t +

√
1− α̃kε,ht−1,W , k

)∥∥∥2] . (41)

For the noise-matching term, GCRDD adopts a variant of DiffWave (Kong et al., 2021)
that incorporates a graph convolution component to process spatial information in W .
STG forecasting via GCRDD is the same as TimeGrad except that the sample generated
at each time point is a matrix rather than a vector.

4 Time Series Imputation
In real-world problem settings, we usually encounter the challenge of missing values.
When collecting time series data, the collection conditions may change over time, which
makes it difficult to ensure the completeness of observation. In addition, accidents such
as sensor failures and human errors may also result in the missing of historical records.
Missing values in time series data normally have a negative impact on the accuracy of
analysis and forecasting since the lack of partial observations makes the inference and
conclusions vulnerable in future generalization.

Time series imputation aims to fill in the missing values in incomplete time series
data. Many previous studies have focused on designing deep learning-based algorithms
for time series imputation (Osman et al., 2018). Most existing approaches involve the
RNN architecture to encode time-dependency in the imputation task (Che et al., 2018;
Cao et al., 2018; Luo et al., 2018; Yoon et al., 2018). Except for these deterministic
methods, probabilistic imputation models such as GP-VAE (Fortuin et al., 2020) and
V-RIN (Mulyadi et al., 2021) have also shown their practical value in recent years. As
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a rising star in probabilistic models, diffusion models have also been applied to time
series imputation tasks (Tashiro et al., 2021; Alcaraz and Strodthoff, 2023). Compared
with other probabilistic approaches, diffusion-based imputation enjoys high flexibility
in the assumption of the true data distribution. In this section, we will cover four
diffusion-based methods, including three for multivariate time series imputation and
one for STG imputation.

4.1 Problem Formulation
We still consider the multivariate time series X0 = {x0

1,x
0
2, ...,x

0
T |x0

i ∈ RD}. It is
not difficult to see that X0 ∈ RD×T , where D is the number of features, and T is the
number of time points in the period [1, T ]. Different from time series forecasting in
which we assume that all elements in X0 are known, here we have an incomplete matrix
of observations. In the imputation task, we try to predict the values of missing data by
exploring the information from some observed data. We denote the observed data as
X0
ob and the missing data as X0

ms. Then, the imputation task is to find the conditional
probability distribution q(X0

ms|X0
ob).

For practical purposes, zero padding is applied to the incomplete matrix X0 such
that all missing entries are assigned to 0. In addition, a zero-one matrix M ∈ RD×T is
constructed as a mask to denote the position of missing values. More specifically, the
elements in M is 0 when the corresponding value in X0 is missing, and 1 otherwise.

Both X0
ob and X0

ms have the same dimension as X0. In the training process, a
fraction of the actually observed data in X0 is randomly selected to be the true values
of missing data, and the rest of the observed data will be the condition for prediction. A
training mask M ′ ∈ RD×T is introduced to obtain X0

ob and X
0
ms. It is constructed by

assigning 1 to entries that are corresponding to the remaining observed data inX0. Then,
X0
ob is computed as X0

ob =M
′�X0, and X0

ms is computed as X0
ms = (M −M ′)�X0,

where � denotes the element-wise matrix multiplication. In the forecasting process,
on the other hand, all actually observed data are used as the condition, which means
X0
ob =M �X0.
It is worth mentioning that the problem formulation here is only a typical case. We

will introduce later in subsection 4.4 about another formulation that takes the whole
time series matrix X0 as the target for generation.

4.2 CSDI
Conditional Score-based Diffusion model for Imputation (CSDI) is the pioneering work
on diffusion-based time series imputation (Tashiro et al., 2021). Identical to TimeGrad,
the basic diffusion formulation of CSDI is also DDPM. However, as we have discussed in
section 3.2, the historical information is encoded by an RNN module in TimeGrad, which
hampers the direct extension of TimeGrad to imputation tasks because the computation
of hidden states may be interrupted by missing values in the context window.

CSDI applies the diffusion and reverse processes to the matrix of missing data, X0
ms.

Correspondingly, the reverse transition kernel is refined as a probabilistic distribution
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conditional on X0
ob:

pθ(X
k−1
ms |Xk

ms,X
0
ob)

= N (Xk−1
ms ;µθ(X

k
ms, k|X0

ob), σθ(X
k
ms, k|X0

ob)I),
(42)

where

µθ(X
k
ms, k|X0

ob) =
1
√
αk

(
Xk
ms − ζ(k)εθ(Xk

ms, k|X0
ob)
)

(43)

with Xk
ms =

√
α̃kX

0
ms +

√
1− α̃kε. One may notice that the variance term here is

different from the version in DDPM (Ho et al., 2020). Previously, the variance term
is defined with some pre-specified constant σk with k = 1, 2, ...,K, implying that the
variance is treated as a hyperparameter. CSDI, however, defines a learnable version σθ
with parameter θ. Both ways are acceptable and have their respective practical value.

The objective function of CSDI is given by

Ek,X0
ms,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kX0
ms +

√
1− α̃kε,X0

ob, k
)∥∥∥2] . (44)

The noise-matching network εθ adopts the DiffWave (Kong et al., 2021) architecture by
default. After training, the imputation is accomplished by generating the target matrix
of missing values in the same way as DDPM. X0

ob in the sampling process is identical to
the zero padding version of the original time series matrix X0, where all missing values
are assigned to 0. The starting point of the sampling process is a random Gaussian
imputation target XK

ms ∼ N (0, I). Then, for k = K − 1, ..., 1, the algorithm computes:

Xk
ms ←

(
Xk+1
ms − ζ(k + 1)εθ(X

k+1
ms ,X

0
ob, k + 1)

)
√
αk+1

+ σθZ,

where Z ∼ N (0, I) for k = K − 1, ..., 1, and Z = 0 for k = 0.

4.3 DSPD
Here we discuss the simple extension of DSPD and CSPD in section 3.5 to time series
imputation tasks. Since the rationale behind the extension of these two models is almost
identical, we only focus on DSPD for illustration. The assumption of DSPD states that
the observed time series is formed by values of a continuous function x(·) of time t.
Therefore, the missing values can be obtained by computing the values of this continuous
function at the corresponding time points. Recall that DSPD utilizes the covariance
matrix Σ instead of the DDPM variance σkI or σθ in the backward process. Therefore,
one may apply DSPD to imputation tasks in a similar way as CSDI by replacing the
variance term in Equation (42) with the covariance matrix Σ. According to Biloš et al.
(2022), the continuous noise process is a more natural choice than the discrete noise
vector because it takes account of the irregularity in the measurement when collecting
the time series data.
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4.4 SSSD
Structured state space diffusion (SSSD) differs from the aforementioned two methods
by having the whole time series matrix X0 as the generative target in its diffusion
module (Alcaraz and Strodthoff, 2023). The name, “structured state space diffusion”,
comes from the design of the noise-matching network εθ, which adopts the state space
model (Gu et al., 2022) as the internal architecture. As a matter of fact, εθ can also
take other architectures such as the DiffWave-based network in CSDI (Tashiro et al.,
2021) and SaShiMi, a generative model for sequential data (Goel et al., 2022). However,
the authors of SSSD have shown empirically that the structured state space model
generally generates the best imputation outcome compared with other architectures
(Alcaraz and Strodthoff, 2023). To emphasize the difference between this method with
other diffusion-based approaches, here we will primarily focus on the unique problem
formulation used by SSSD.

As we have mentioned, the generative target of SSSD is the whole time series matrix,
X0 ∈ RD×T , rather than a matrix that particularly represents the missing values.
For the purpose of training, X0 is also processed with zero padding. The conditional
information, in this case, is from a concatenated matrix X0

c = Concat(X0 �Mc,Mc),
whereMc is a zero-one matrix indicating the position of observed values as the condition.
The element in Mc can only be 1 if its corresponding value in X0 is known.

There are two options for the objective function used in the training process. Similar
to other approaches, the objective function can be a simple conditional variant of the
DDPM objective function:

Ek,X0,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kX0 +
√
1− α̃kε,X0

c , k
)∥∥∥2] , (45)

where εθ is by default built upon the structured state space model. The other choice
of the objective function is computed with only known data, which is mathematically
expressed as

Ek,X0,ε

[
δ(k)

∥∥∥ε�Mc − εθ
(√

α̃kX
0 +

√
1− α̃kε,X0

c , k
)
�Mc

∥∥∥2] . (46)

According to Alcaraz and Strodthoff (2023), the second objective function is typically a
better choice in practice. For forecasting, SSSD employs the usual sampling algorithm
and applies to the unknown entries in X0, namely, (1−Mc)�X0.

An interesting point proposed along with SSSD is that imputation models can also
be applied to forecasting tasks. This is because future time series can be viewed as a
long block of missing values on the right of X0. Nevertheless, experiments of SSSD
have shown that the diffusion-based approaches underperform other methods such as
the Autoformer (Wu et al., 2021) in forecasting tasks.

4.5 PriSTI
PriSTI is a diffusion-based model for STG imputation (Liu et al., 2023). However,
different from DiffSTG, the existing framework of PriSTI is designed for STGs with only
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one feature, which means the graph signal has the form X0 = {x0
1,x

0
2, ...,x

0
T } ∈ RN×T .

Each vector x0
t ∈ RN represents the observed values of N nodes at time point t. This

kind of data is often observed in traffic prediction (Li et al., 2018) and weather forecasting
(Yi et al., 2016). METR-LA, for example, is an STG dataset that contains traffic
speed collected by 207 sensors on a Los Angeles highway in a 4-month time period (Li
et al., 2018). There is only one node attribute, that is, traffic speed. However, unlike
the multivariate time series matrix, where features (sensors in this case) are usually
assumed to be uncorrelated, the geographic relationship between different sensors is
stored in the weighted adjacency matrix W , allowing a more pertinent representation
of real-world traffic data.

The number of nodes N can be considered as the number of features D in CSDI.
The only difference is that PriSTI incorporates the underlying relationship between each
pair of nodes in the conditional information for imputation. So, the problem formulation
adopted by PriSTI is the same as our discussion in subsection 4.1, thus the goal is still
to find q(X0

ms|X0
ob).

To encode graph structural information, the mean in Equation (43) is modified as

µθ(X
k
ms, k|X0

ob,W ) =
1
√
αk

(
Xk
ms − ζ(k)εθ(Xk

ms,X
0
ob, k,W )

)
, (47)

where W is the weighted adjacency matrix. Consequently, the objective function is
changed as

Ek,X0
ms,ε

[
δ(k)

∥∥∥ε− εθ (√α̃kX0
ms +

√
1− α̃kε,X0

ob, k,W
)∥∥∥2] . (48)

The conditional information, X0
ob, is processed with linear interpolation before it is

fed into the algorithm to incorporate extra noises, which will enhance the denoising
capability of the model and eventually lead to better consistency in prediction (Choi
et al., 2022). The noise-matching network εθ is composed of two modules, including a
conditional feature extraction module and a noise estimation module. The conditional
feature extraction module takes the interpolated information X0

ob and adjacency matrix
W as inputs and generates a global context with both spatial and temporal information
as the condition for diffusion. Then, the noise estimation module utilizes this global
context to estimate the injected noises with a specialized attention mechanism to capture
temporal dependencies and geographic information. Ultimately, the STG imputation
is fulfilled with the usual sampling process of DDPM, but with the specially designed
noise-matching network here to incorporate the additional spatial relationship.

Since PriSTI only works for the imputation of STGs with a single feature, which
is simply a special case of STGs, this model’s practical value is somehow limited. So,
the extension of the idea here to more generalized STGs is a notable topic for future
researchers.

5 Time Series Generation
The rapid development of the machine learning paradigm requires high-quality data for
different learning tasks in finance, economics, physics, and other fields. The performance
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of machine learning model and algorithm may highly subject to the underlying data
quality. Time series generation refers to the process of creating synthetic data that
resembles the real-world time series. Since the time series data is characterized by its
temporal dependencies, the generation process usually requires the learning of underlying
patterns and trends, from the past information.

Time series generation is a developing topic in the literature with the existence of
several methods (Yoon et al., 2018; Desai et al., 2021). Time series data can be seen
as a case of sequential data, whose generation usually involves the GAN architecture
(Xu et al., 2020; Donahue et al., 2018; Esteban et al., 2017; Mogren, 2016). Accordingly,
TimeGAN is proposed to generate time series data based on an integration of RNN
and GAN for the purpose of processing time dependency and generation (Yoon et al.,
2018). However, the GAN-based generative methods have been criticized as they are
unstable (Chu et al., 2020) and subject to the model collapse issue (Xiao et al., 2021).
Another way to generate time series data is stemmed from the variational autoencoder,
leading to the so-called TimeVAE model (Desai et al., 2021). As a common shortcoming
of VAE-based models, TimeVAE requires a user-defined distribution for its probabilistic
process. Here we will present a different probabilistic time series generator originated
from diffusion models, which is more flexible with the form of the target distribution.
We will particularly focus on (Lim et al., 2023) because it is the first and only work
on this novel design. This section aims to enlighten researchers about this new-born
research direction, and we expect to see more derivative works in the future.

5.1 Problem Formulation
With the multivariate time series X0 = {x0

1,x
0
2, ...,x

0
T |x0

i ∈ RD}, the time series
generation problem aims to synthesize time series x0

1:T by generating observation x0
t

at time point t ∈ [2, T ] with the consideration of its previous historical data x0
1:t−1.

Correspondingly, the target distribution is the conditional density q(x0
t |x0

1:t−1) for
t ∈ [2, T ], and the associated generative process involves the recursive sampling of xt
for all time points in the observed period. Details about the training and generation
processes will be discussed in the next subsection.

5.2 TSGM
To our best knowledge, (Lim et al., 2023) is the only work to study the time series
generation problem based on the diffusion method. The conditional score-based time
series generative model (TSGM) was proposed, to conditionally generate each time
series observation based on the past generated observations. The TSGM architecture
includes three components: an encoder, a decoder and a conditional score-matching
network. The pre-trained encoder is used to embed the underlying time series into a
latent space. The conditional score-matching network is used to sample the hidden
states, which are then converted to the time series samples via the decoder.

Given the multivariate time series X0 = {x0
1,x

0
2, ...,x

0
T |x0

i ∈ RD}, the encoder En
and decoder De enable the mapping between the time series data and hidden states in
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a latent space. The mapping process can be defined as:

ht = En(h0
t−1,x

0
t ), x̂0

t = De(h0
t ), (49)

where x̂0
t refers to the reconstructed time series data at time t, after the mapping process.

This is a recursive process as both the encoder En and decoder De are constructed
with the RNN structure. The training objective function LED for both encoder and
decoder is defined as:

LED = Ex0
1:T

[
‖x̂0

1:T − x0
1:T ‖22

]
. (50)

Given the auto-dependency characteristic of the time series data, learning the
conditional log-likelihood function is essential. To address this, the conditional score-
matching network is designed based on the SDE formulation of diffusion models. It
is worth noting that TSGM focuses on the generation of hidden states rather than
producing the time series directly with the sampling process. At time step t, instead
of applying the diffusion process to x0

t , the hidden states h0
t is diffused to a Gaussian

distribution by the following forward SDE:

dht = f(k,ht)dk + g(k)dω (51)

where k ∈ [0,K] refers to the integral time. With the diffused sample hk1:t, the conditional
score-matching network sθ learns the gradient of the conditional log-likelihood function
with the following objective function:

LScore = Eh0
1:T,k

T∑
t=1

[L(t, k)] , (52)

with

L(t, k) = Ehk
t

[
δ(k)‖sθ(hkt ,ht−1, k)−∇ht log q0k(ht|h0

t )‖2
]
. (53)

The network architecture of sθ is designed based on U-net (Ronneberger et al., 2015),
which was adopted by the classic SDE model (Song et al., 2021).

In the training process, the encoder and decoder are pre-trained using the objective
LED. They can also be trained simultaneously with the network sθ, but Lim et al.
(2023) showed that the pre-training generally led to better performance. Then, to learn
the score-matching network, hidden states are firstly obtained through inputting the
entire time series x0

1:T into the encoder, and then fed into the training algorithm with
the objective function LScore. The time series generation is achieved by sampling hidden
states and then applying the decoder, where the sampling process is analogous to solving
the solutions to the time-reverse SDE.

The TSGM method can achieve state-of-the-art sampling quality and diversity,
compared to a range of well-developed time series generation methods. However, it is
still subject to the fundamental limitation that all diffusion models may have: they are
generally more computationally expensive than GANs.
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6 Conclusion
Diffusion models, a rising star in advanced generative techniques, have shown their
exceptional power in various real-world applications. In recent years, many successful
attempts have been made to incorporate diffusion in time series applications to boost
model performance. As a compensation for the deficiency of a methodical summary
and discourse on the diffusion-based approaches for time series, we have furnished a
self-contained survey of these approaches while discussing the interactions and differences
among them. More specifically, we have presented six models for time series forecasting,
four models for time series imputation, and one model for time series generation.
Although these models have shown good performance with empirical evidence, we feel
obligated to emphasize that they are usually associated with very high computational
costs. In addition, since most models are constructed with a high level of theoretical
background, there is still a lack of deeper discussion and exploration of the rationale
behind these models. This survey is expected to serve as a starting point for new
researchers in this area and also an inspiration for future directions.
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