[Network Embedding]

node2vec

Scalable Feature Learning for Networks

Seunghan Lee (CSE-URP)
20.02.17(Mon)

Goal

Summary of node2vec

1. node2vec algorithm
- about DFS & BFS

2. node2vec implementation

- with numpy

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University
adityag@cs.stanford .edu

ABSTRACT

2 uire carcful
used by leaming algorithms. Recent
research in the broader field of representation leaming has led to
significant progress in automating prediction by learning the fe
tures themselves. However, present feature leaming approache

Jure Leskovec
Stanford University
jure@cs.stanford.edu

predict whether a pair of nodes in a network should have an edge
connecting them [18]. Link prediction is useful in a wide variety
of domains; for instance, in genomics, it helps us discover novel
interactions between genes, and in social ne tworks, it can identify
real-world friends [2. 34].

Any supervised machine leaming algorithm requires & sl of in-
formativ and features. In pre

are not expressive enough to capture the diversity of
patterns observed in networl

Here we propose node2vec, an algorithmic framework for learn-
ing continuous feature representations for nodes in networks. In
node2vec, we kam a mapping of nodes to a low-dimensional space
of features that maximizes the likelihood of preserving network
neighborhoods of nodes. We define a flexible notion of a node’s
network neighborhood and design a biased random walk procedure
which efficiently explores diverse neighborhoods. Our algorithm
generalizes prior work which is based on rigid notions of network
neighborhoods, and we argue that the added flexibility in exploring
neighborhoods i the key to kearning richer representations

We demonstrate the cfficacy of node2ver over existing state-of-
tion and link prediction
several real-world networks from diverse domains. Taken to-

of-the-art task-independent representations in complex networks,
Categorics and Subject Descriptors: H.28 [Database Manage-
ment]: Database applications—Data mining: 1.2.6 [Artificial In-
telligence]: Learning

General Terms: Algorithms: Experimentation.

Keywords: Information networks, Feature leaming, Node embed-
dings. Graph representations

1. INTRODUCTION

Many important tasks in network analysis involve predictions
over nodes and edges. In a typical node classification task, we
are inferested in predicting the most probable labels of nodes in
a network [33]. For example, in a social network, we might be
interested in predicting inferests of users, or in a protein-protein in-

problems on networks i s ht ome hs 10 Consruesa feature
vector representation for the nodes and edges. A typical solution in-
volves hand-engineering domain-specific features based on expert
knowkdge. Even if one discounts the tedious effort required for
feature engincering, such features are usually designed for specific
tasks and do not gencralize across different prediction tasks.

An altemative approach is to learn feature representations by
solving an optimization problem [4]. The challenge in feature lear-
ing is defining an objective function, which involves a trade-off
in balancing computational efficiency and predictive accuracy. On
one side of the spectrum, one could directly aim to find a feature

that optimizes ofa predic-
tion task. While this supervised procedure results in good accu-
racy. it comes at the cost of high training time complexity due to a
blowup in the number of parameters that need to be estimated. At
the other extreme, the objective function can be defined to be inde-
pendent of the downstream prediction task and the representations
can be leamed in a purely unsupervised way. This makes the op-
timization computationally efficient and with a carefully designed
objective. it results in task-independent features that closely match
task-specific approaches in predictive aceuracy [21, 23]

However, current tex
mize a reasonable objec
ture learning in networks. Classi approaches based on linear and
non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-
sions [3, 27, 30, 35] optimize an objective that transforms a repre-
sentaive data marix of the netw ork such that it mas mnzes the vari-
ance of the dats [these in-
variably involve igendecomposition of the appropriate data matrix

ues fail to satisfactorily de

Contents

Introduction
Contribution of node2vec

node2vec algorithm
1) Classic Search Algorithm : BFS & DFS

2) Random Walk in node2vec

node2vec implementation

Embedding & Classification

*

1. Introduction

Contribution of node2vec

*

»*

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)
2. Provides flexibility in discovering representations
3. Extend node2vec from ‘nodes’ to ‘edges’

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)

(SGD with “negative sampling” -> efficient in huge network)

2. Provides flexibility in discovering representations

3. Extend node2vec from ‘nodes’ to ‘edges’

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)

(SGD with “negative sampling” -> efficient in huge network)

2. Provides flexibility in discovering representations

(provides parameter to tune the explored search space -> BFS, DFS))

3. Extend node2vec from ‘nodes’ to ‘edges’

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)

(SGD with “negative sampling” -> efficient in huge network)

2. Provides flexibility in discovering representations

(provides parameter to tune the explored search space -> BFS, DFS))

3. Extend node2vec from ‘nodes’ to ‘edges’

(classic : node embedding -> node2vec : node embedding & edge embedding)

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)

(SGD with “negative sampling” -> efficient in huge network)

2. Provides flexibility in discovering representations

(provides parameter to tune the explored search space -> BFS, DFS))

3. Extend node2vec from ‘nodes’ to ‘edges’

(classic : node embedding -> node2vec : node embedding & edge embedding)

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

((1) multi-label classification : classify which class the node belongs to)

((2) link prediction : predict if there is a link between to nodes)

1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks (using SGD)

(SGD with “negative sampling” -> efficient in huge network)

2. Provides flexibility in discovering representations

(provides parameter to tune the explored search space -> BFS, DFS)

3. Extend node2vec from ‘nodes’ to ‘edges’

(classic : node embedding -> node2vec : node embedding & edge embedding)

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction

((1) multi-label classification : classify which class the node belongs to)

((2) link prediction : predict if there is a link between to nodes)

*

2. node2vec algorith*h

1) Classic Search Algorithm : BFS & DFS

2) Random Walk in node2vec

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

“An algorithm for traversing or searching tree or graph data structures” (wikipedia)

https://t1.daumcdn.net/cfile/tistory/997183445C7625B921

Depth

Breadth
First First
Search Search

r
i

(2)
® © ©

BFS (Breadth-First Search) DFS (Depth-First Search))

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS
BFS (Breadth-First Search)

Search the node with the same level (breadth)!

After finishing searching the certain level (breadth),
O get down to the below level (depth)!

https://seing.tistory.com/29

https://seing.tistory.com/29

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

DFS (Depth-First Search)

Search the child node first!

After finishing searching the last child node,
O “Backtracking” (returning back to the parent node)

https://seing.tistory.com/29

https://seing.tistory.com/29

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

BFS & DFS in graph

2. node2vec algorithm

How can these BES/DFS algorithms

be applied in-graph search of node2vec?

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

before moving on...
In the phrase “Nodes with high similarity should be also

embedded closely in the representative space’,

how can we define the word “similarity” ?

10

2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

before moving on...
In the phrase “Nodes with high similarity should be also

embedded closely in the representative space’,

how can we define the word “similarity” ?

“how to sample the random walk” is affected by “how we define ‘similarity’ ”

10

2. node2vec algorithm
1. Classic Search Algorithm : BFS & DFS

1. Homophily

Two kinds of Similarity

2. Structural Equivalence

nodes that are “highly interconnected” nodes that have “similar structural
and belong to similar network clusters roles” in networks should be embedded
should be embedded closely together closely together

Node2vec_Scalable Feature Learning for Networks Node2vec_Scalable Feature Learning for Networks

11

2. node2vec algorithm
1. Classic Search Algorithm : BFS & DFS

1. Homophily

Two kinds of Similarity

2. Structural Equivalence

WISl that are “highly interconnected” nodes that have “similar structural

and belong to similar network clusters roles” in networks should be embedded

in the similar space inside its own network

should be embedded closely together

Node2vec_Scalable Feature Learning for Networks Node2vec_Scalable Feature Learning for Networks

11

JAPAN

(Network) Homophily :
- similar networks -> embedded closely
- ex) Korea,Japan <-> U.S

Structural Equivalence :

- nodes with similar role (ex.hub) -> should be embedded in the similar space
- ex) ‘capital’ of each country should be located “UP-LEFT” in its own cluster

2. hode2vec algorithm
1. Classic Search Algorithm : BFS & DFS BES & DES in node2vec

DFS (Depth-first Sampling)
- neighborhood : nodes sequentially sampled at increasing distance
from the source node

- macro view

- to capture “homophily”

BFS (Breadth-first Sampling)
- neighborhood : only immediate neighbors of the source node

- Micro view

- to capture “structural equivalence”

2. node2vec algorithm

2. Random Walk in node2vec

Considers both “homophily” and “structural equivalence”

(with DFS) (with BFS)

- These two similarities are not exclusive!

Oupq (¢, T)

- Introduce a “search bias’” term

Q= R

ifdiy =0
ifdyy =1
ifdiy =2

(Define a “second order random walk” with two parameters p & q)

2. node2vec algorithm

2. Random Walk in node2vec

Transition probability

Tox = Oépql(ta T) - Wyz

v v
Search bias (¥ Weight of edge

Ples=a]ei=v) = 0 otherwise

{W?’ if (v,x) € B

normalize

14

2. node2vec algorithm

2. Random Walk in node2vec

Search bias ¥

’% ifd,, =0

apq(t,z) =<1 ifdy, =1
1 oifd,, =2
\ g

Tos = Qpq(t,) - Wy

Tz if (v,2) € E

P(cix|ci_1v){ Z

0 otherwise

t : previous node / v : current node / X : node to choose as the next step

Consider the previous node(t) to sample the next node!

15

2. node2vec algorithm

2. Random Walk in node2vec

/

_—
% ifd;, =0
Qpg(t,z) =<1 ifdy =1
1 . _
L =2

return parameter, P
If p > max(q,1) :
getting further from the previous node! DFS

If p <min(q,1) :

getting closer to the previous node (Local search) BFS

return parameter, ¢
If q > 1:
getting closer to the previous node! BFS

If g < 1:

getting further from the previous node! DFS 16

2. hode2vec algorithm

2. Random Walk in node2vec

http://nocotan.github.io/images/20170701/fig2.png

® :" ,3; : o.:..
e % % . o,
'.. "“‘. . Coe ‘.‘. o . .
‘e @ ® . 4.0
® .00. L ... ool .oo... ...
BFS-based: DFS-based:
Structural equivalence Homophily
(structural roles) (network communities)

Tune p & g to choose the similarity to focus on!

17

2. node2vec algorithm

2. Random Walk in node2vec

Benefits of Random Walk A7 Node2vec(M% &)
Space complexity O (a”|V|) Time complexity O(m)

Space complexity to store immediate neighbors :O (| E|)

20E| =) deg(v)

veV

random walk = {u, s4, S5, S5, 57, 88,89} =7 k=25

Ng(u) = {s4, 55, S¢, 57, S8 }

_ Z;sev d(?g('())

V]
Vi

Ns(s4) = {55, 56,57, 58,89}

= a|lV| where a is the average degree of V

18

L
3. node2vec implementation

1) Embedding

2) Classification with MLP & Logistic Regression

19

3. node2vec implementation

1. Embedding

1) sigmoid

def sigmoid{x):
return 1/{1+np.exp(—x))

Sigmoid function

2) pos_list & neg_list : getting the positive & negative nodes

def pos_|ist{node):
return np.nonzeraol&lnode]) [1]

def neg_list{node):
return np.where(4lnode]==0)[1]

Getting the positive & negative nodes

3) next_choice

« (1) previous : 't'
« (2)now : V'
o (3)next:'x'

def next_choicelv,t,p,qg):
positive = pos_listiv)
li = np.array([]}
for pos in positive:
if pos==t:
li = np.append{1i,1/p)
elif pos in pos_list{t):
li = np.append(li,1)
else :
li = np.append(1i,1/q)

prob = /1. sum(}

return np.random.choice(positive,1,p=prob) (0]

Choosing the next step, based on transition probability
(considering search bias)

20

3. node2vec implementation

1. Embedding

4) random_step : getting the random step, using next_choice

def random_step(v,num_walk,p.q):
t = np.random.choice(pos_list(v)) # (7) previous

walk_list = [v]
for _ in range(num_walk):
x = next_choice(v,t,p,q)
walk_list.append(x)
Vo= X
t=v
return walk_list

Random Step :
make the random step of length ‘num_walk’,

based on ‘next_choice’ (considering BFS &DFS)

21

3. node2vec implementation

1. Embedding

4) random_step : getting the random step, using next_choice

def random_step(v,num_walk.p.q):
t = np.random.choice(pos_list(v)) # (7) previous

walk_list = [v]
for _ in range(num_walk):
x = next_choice(v,t,p,q)
walk_list.append(x)
vV =X
t=v
return walk_list

Random Step :
make the random step of length ‘num_walk’,

based on ‘next_choice’ (considering BFS &DFS)

sigmoid
pos_list & neg_list
next_choice

random_step

2

node2vec

21

3. node2vec implementation

1. Embedding

3. node2vec

def node2vec(dim,num_epoch,length,lr.k.p.q.num_neg):
embed = np.random.random{(A.shape[0].dim))
for epoch in range(num_epoch): Z 1. Take random step (with length ‘length’)
for v in np.arange(A.shape[0]):
walk = random_step(v,length-1.p.qa) # (/) random walk
2. Negative sampling (with size ‘num_neg’)

for idx in range(length-k):

not neg list = np.append(walk[max(0,idx-k):idx+k].pos list(walk[idx]))
neg_list = list(set(np.arange(A.shape[0])) - set(not_neg_list))
random_neg = np.random.choice(neg_list.num_neg.replace=False)

for pos in range(idx+1,idx+k+1):
it walk[idx]!=walk[pos]: 2 3. Update with “positive” samples

pos_embed = embed[walk[pos]]
embed[walk[idx]] -= Ir = (sigmoid(np.dot(embed[walk[idx]].pos_embed))-1) * pos_embed

for neg in random_neg: 2 4. Update with “negative” samples |

neg embed = embed[neg]
embed[walk[idx]] —= Ir * (sigmoid(np.dot(embed[walk[idx]].neg embed))) * neg embed

return embed

input

- dim (dimension to reduce)

- num_epoch (number of epoch)
- length (walk length)

- Ir (learning rate)

- k (context size a)
- p & g (parameter for search bias)
- num_neg (number of negative samples)

output

Embedded Vector

22

3. node2vec implementation

1. Embedding

Result : Embedded into 2-dimension

1 7 10 -
0.5 1 5 @7

13
4 @ 05 - .
0.0 - 22 18 g

a8 ﬁ %
8 ;Y °
3 914 20 ’94 C 00{ o @ 4 .
05 - 2 ¥ s e® @
. il . * .. “)
-05 ° @ & ... ”
) ° °® - v
-1.0 P e L]
°**®
@: -10 e
T T T T T T X y ' v
20 -15 -10 —0.5 0.0 05 -1.0 -0.5 0.0 05 10

embed = node2vec(dim=2,num_epoch=10, length=8, |r=0.02, embed = node2vec(dim=2,num_epoch=50, length=8, Ir=0.02,

k=2,p=2,0=2,num_neg=>5)

1. Karate

k=2,p=2,0=2, num_neg=5)

2. Football

23

3. node2vec implementation

2. Classification

1) Karate (Logistic Regression & MLP)

2) Football (OVR & MLP)

(+ comparison with other methods)

(&1 : Node2vec_project(ZF#))

24

3. node2vec implementation

2. Classification

1) Karate (Logistic Regression & MLP)

10% 30% 50% 70% 10% 30% 50% 70%

DeepWalk(p=1,q=1) 78.95% 96.0% 100.0% | 100.0% DeepWalk(p=1, q=1) 70.58% 82.76% | 93.33% | 88.89%
p=1,q=05 50.0% 100.0% 94.12% | 100.0% p=1,q=0.5 68.09% 76.92% | 100.0% |100.0%
p=1,g9=2 93.75% 92.31% 100.0% | 100.0% p=1,g=2 90.81% 96.0% | 100.0% | 100.0%

Logistic Regression Multi Layer Perceptron
(epoch =800, Ir =0.05) (epoch = 1000, Ir =0.001)

25

3. node2vec implementation

2. Classification

2) Football (OVR & MLP)

10%

30% 50%

70%

Macro F1-score 66.63%

Micro Fi-score 72.82%

10%

65.43% 77.35%

69.14% 82.46%

30% 50%

82.13%

88.57%

70%

DeepWalk

(1) OVR

Macro Fi-score 45.62%

Micro Fi-score 50.49%

10%

77.98% 81.3%

83.95% 87.72%

30% 50%

78.28%

88.57%

70%

Line with First Order Proximity

Macro F1-score 23.85%

Micro Fi-score 29.13%

53.79% 50.7%

56.79% 49.12%

58.21%

62.86%

Line with Second Order Proximity

10%

30% 50%

70%

Macro Fi-score 48.57%

Micro Fi-score 58.25%

64.01% 80.12%
66.67% 85.96%

93.17%
94.29%

Node2Vec

26

3. node2vec implementation

2. Classification

2) Football (OVR & MLP)

10%

30%

50%

70%

Macro Fi-score 12.72%

Micro F1-score 19.42%
10%

7.59%
17.28%

30%

3.69%
12.28%

50%

65.32%
74.29%

70%

Macro Fi-score 4.61%

Micro F1-score 12.62%

10%

48.83%

54.32%

30%

6.36%

14.04%

50%

18.67%

26.32%

70%

Macro Fi-score 1.34%

Micro F1-score 8.74%

1.36%

8.64%

0.6%

3.51%

1.32%

8.57%

(2) MLP

DeepWalk

Line with First Order Proximity

Line with Second Order Proximity

10%

30%

50%

70%

Macro Fi-score 7.02%

Micro Fi-score 16.5%

17.67%

33.33%

55.0%

57.89%

80.32%

88.57%

Node2Vec

27

Reference

[1] Aditya Grover : node2vec : Scalable Feature Learning for Networks
[2] A& & : node2vec

[3] 2% : node2vec project

28

Thank You!!

