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Goal
Summary of node2vec

1. node2vec algorithm 

- about DFS & BFS

2. node2vec implementation

- with numpy
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1. Introduction

contribution of node2vec

1. Efficient scalable algorithm for feature learning in networks ( using SGD )

2. Provides flexibility in discovering representations

3. Extend node2vec from ‘nodes’ to ‘edges’

4. Evaluate node2vec for (1) multi-label classification & (2) link prediction
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2. node2vec algorithm

1) Classic Search Algorithm : BFS & DFS

2) Random Walk in node2vec
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2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

BFS ( Breadth-First Search )

https://t1.daumcdn.net/cfile/tistory/997183445C7625B921

DFS ( Depth-First Search )

“An algorithm for traversing or searching tree or graph data structures” (wikipedia)
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2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

BFS ( Breadth-First Search )

https://seing.tistory.com/29

Search the node with the same level (breadth)!

After finishing searching the certain level (breadth), 

get down to the below level (depth)!
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2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

DFS ( Depth-First Search )

Search the child node first!

After finishing searching the last child node, 

“Backtracking” ( returning back to the parent node )

https://seing.tistory.com/29
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2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

BFS & DFS in graph
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2. node2vec algorithm

1. Classic Search Algorithm : BFS & DFS

BFS & DFS in graph

How can these BFS/DFS algorithms 

be applied in graph search of node2vec?
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2. node2vec algorithm

before moving on…

In the phrase “Nodes with high similarity should be also 

embedded closely in the representative space”, 

how can we define the word “similarity” ?

1. Classic Search Algorithm : BFS & DFS
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2. node2vec algorithm

before moving on…

In the phrase “Nodes with high similarity should be also 

embedded closely in the representative space”, 

how can we define the word “similarity” ?

1. Classic Search Algorithm : BFS & DFS

“how to sample the random walk” is affected by “how we define ‘similarity’ ”
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Two kinds of Similarity

2. node2vec algorithm

1. Homophily 2. Structural Equivalence

nodes that have “similar structural 

roles” in networks should be embedded 

closely together

nodes that are “highly interconnected” 

and belong to similar network clusters 

should be embedded closely together

Node2vec_Scalable Feature Learning for Networks

1. Classic Search Algorithm : BFS & DFS

Node2vec_Scalable Feature Learning for Networks
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Node2vec_Scalable Feature Learning for Networks

Networks

in the similar space inside its own network
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2. node2vec algorithm

1. Homophily 2. Structural Equivalence

nodes that have “similar structural 

roles” in networks should be embedded 

closely together

nodes that are “highly interconnected” 

and belong to similar network clusters 

should be embedded closely together
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1. Classic Search Algorithm : BFS & DFS

Node2vec_Scalable Feature Learning for Networks

Networks Networks

KOREA

JAPAN

U.S

(Network) Homophily : 

- similar networks -> embedded closely 

- ex) Korea,Japan <-> U.S 

Structural Equivalence : 
- nodes with similar role (ex.hub) -> should be embedded in the similar space

- ex) ‘capital’ of each country should be located “UP-LEFT” in its own cluster
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BFS & DFS in node2vec

2. node2vec algorithm

BFS (Breadth-first Sampling)

- neighborhood : only immediate neighbors of the source node 

- micro view

- to capture “structural equivalence”

DFS (Depth-first Sampling)

- neighborhood : nodes sequentially sampled at increasing distance

from the source node

- macro view

- to capture “homophily”

1. Classic Search Algorithm : BFS & DFS
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2. node2vec algorithm

2. Random Walk in node2vec

Considers both “homophily” and “structural equivalence”

( with DFS ) ( with BFS )

- These two similarities are not exclusive!

- Introduce a “search bias” term

( Define a “second order random walk”  with two parameters p & q  )
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2. node2vec algorithm

2. Random Walk in node2vec

Search bias

Transition probability

Weight of edge
normalize
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2. node2vec algorithm

2. Random Walk in node2vec

Search bias 

t : previous node / v : current node / x : node to choose as the next step

Consider the previous node(t) to sample the next node! 
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2. node2vec algorithm

2. Random Walk in node2vec

return parameter, p

If p > max(q,1) : 

getting further from the previous node! DFS

If p < min(q,1) :

getting closer to the previous node ( Local search ) BFS

return parameter, q

If q > 1:

getting closer to the previous node! BFS

If q < 1:

getting further from the previous node! DFS
16



2. node2vec algorithm

2. Random Walk in node2vec

Tune p & q to choose the similarity to focus on!

http://nocotan.github.io/images/20170701/fig2.png
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2. node2vec algorithm

2. Random Walk in node2vec

Benefits of Random Walk

Space complexity Time complexity

Space complexity to store immediate neighbors : 

참고 : Node2vec(서창원)
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3. node2vec implementation

1) Embedding

2) Classification with MLP & Logistic Regression
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3. node2vec implementation

1. Embedding

Sigmoid function

Getting the positive & negative nodes
Choosing the next step, based on transition probability 

(considering search bias)

1

2

3
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3. node2vec implementation

1. Embedding

Random Step : 

make the random step of length ‘num_walk’,

based on ‘next_choice’ (considering BFS &DFS)

4
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3. node2vec implementation

1. Embedding

Random Step : 

make the random step of length ‘num_walk’,

based on ‘next_choice’ (considering BFS &DFS)

4 sigmoid1

pos_list & neg_list2

next_choice3

random_step4

node2vec
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3. node2vec implementation

- dim ( dimension to reduce )

- num_epoch ( number of epoch )

- length ( walk length )

- lr ( learning rate )

- k ( context size a)

- p & q ( parameter for search bias )

- num_neg ( number of negative samples )

Embedded Vector

input

output

1. Take random step ( with length ‘length’ ).

2. Negative sampling ( with size ‘num_neg’ )

3. Update with “positive” samples

4. Update with “negative” samples

1. Embedding
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3. node2vec implementation

1. Embedding Result : Embedded into 2-dimension

1. Karate 2. Football
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3. node2vec implementation

2. Classification

1) Karate ( Logistic Regression & MLP )

2) Football ( OVR & MLP )

( + comparison with other methods )

( 참고 : Node2vec_project(김주현) )
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3. node2vec implementation

2. Classification

1) Karate ( Logistic Regression & MLP )

Logistic Regression

( epoch = 800, lr = 0.05 )

Multi Layer Perceptron

(epoch = 1000, lr = 0.001 )
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3. node2vec implementation

2. Classification

2) Football ( OVR & MLP )

DeepWalk

(1) OVR

Line with First Order Proximity

Line with Second Order Proximity

Node2Vec
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3. node2vec implementation

2. Classification

2) Football ( OVR & MLP )

DeepWalk

(2) MLP

Line with First Order Proximity

Line with Second Order Proximity

Node2Vec
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Thank You!!


