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1. Introduction of Contrastive Learning

What is Self-Supervised Learning?

- Supervised Learning : label O
- Unsupervised Learning : label X
- Semi-supervised Learning : label O & X

- Self-supervised Learning : get label from data itself !
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1. Introduction of Contrastive Learning

Self-Supervised Learning in NLP

MLM (Masked Language Model)
NSP (Next Sentence Prediction)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV

-  Pretext Tasks

- learn representation that could help downstream task
- ex) Exemplar (2014), Context Prediction (2015), Jigsaw puzzle (2016), ...

- Contrastive Learning

- make similar/dissimilar data close/far
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Pretext Tasks

Exemplar (2014)

- crop 32x32 patch, where gradient is significant & data augmentation with this patch

- 1 instance = 1 class

- g 2 ‘war

- cons) unsuitable for large dataset .rh\

oy l _x_. 4 7‘
?i~ g
: 1T X r\ eal §
— E g l(@ Tx) Fig. 1. Exemplary patches sampled from the STL unlabeled Fig. 2. Several random transformations applied to one of the
? % dataset which are later augmented by various transformations to patches extracted from the STL unlabeled dataset. The original
X TET; obtain surrogate data for the CNN training. ('seed’) patch is in the top left corner.

Discriminative Unsupervised Feature Learning with Exemplar Convolutional Neural Networks (Dosoviskiy, NIPS 2014)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Pretext Tasks

Context Prediction (2015) Example:

- guess the relative location (1~8)

- cons) cheating with texture/boundary

-
[_fo(e) |
fc8 (4096] ;
= .

[ fc7 (4096) . . 3 .
— Figure 1. Our task for learning patch representations involves ran-
:;"34292555_1_ """"" :;G?ggzss)s 3 domly sampling a patch (blue) and then one of eight possible
[ pool5 (3:3,256,2 poolS (3:3,256, . ) e e fourati : ) . ; A ’
convs (3x3,25 convs (33256 L | neighbors (red). Can you guess the spatial configuration for the Figure 2. The algorithm receives two patches in one of these eight
conva (3x3,384,1) | conva (33,3501 two pairs of patches? Note that the task is much easier once you ossible spatial arrangements, without any context, and must then
P! P & y
conv3 L::?Z:”‘: """"" conv3 3 ’ 84,1) | have recognized the object! classify which configuration was sampled.
pool2 (3x3,384,2) (3x3,384,2)
conv2§5x5,384,2) ————————— onv2 5x5,384,2l
LRN1 LRN1
pooll (3x3,96,2 pooll (3x3,96,2
convl (11x11,96,4) | - -~~~ convl (11x11,96, 4‘
==

=

Unsupervised Visual Representation Learning by Context Prediction (Doersch et al., ICCV 2015)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Pretext Tasks

Jigsaw Puzzle (2016)

- solve jigsaw puzzle

- number of class :

original ) 9! = 362,880
- proposed ) 100

(b) (c)

Fig. 1: Learning image representations by solving Jigsaw puzzles. (a) The image
from which the tiles (marked with green lines) are extracted. (b) A puzzle ob-
tained by shuffling the tiles. Some tiles might be directly identifiable as object

( remove similar permutation ) parts, but others are ambiguous (e.g., have similar patterns) and their identi-

fication is much more reliable when all tiles are jointly evaluated. In contrast,
with reference to (c), determining the relative position between the central tile
and the top two tiles from the left can be very challenging [10].

Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles (Noroozi and Favaro, ECCV 2016)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Pretext Tasks

Rotation Prediction (2016)

- rotate image & guess the rotation angle

AIOILE

Rotate 0 degrees

Rotate 90 degrees

|
» L
Image X Rotate 180 degrees

Rotate 270 degrees

s,
—» g(X,y=0) —» 4 >

Rotated image: X°

—»ngl—»ﬁii —»

Rotated image: X"

J g(X,y=2) —» % —>

Rotated image: X 2

—»ngS—»%——»

Rotated image: X°

ConvNet

model F(.)

ConvNet
model F( )

ConvNet
model F(.)

ConvNet

| Objectives:

| » Maximize prob.

F'(x°)
‘ Predict 0 degrees rotation (y=0)

‘ Maxi.mize prob. ‘
| FxY)

Predict 90 degrees rotation (y=1)
Maximize prob.
L P

‘ Predict 180 degrees rotation (y=2)

) p» Maximize prob.
G

model F(.) :

‘ Predict 270 degrees rotation (y=3) |

Unsupervised Representation Learning by Predicting Image Rotations (Gidaris et al., ICLR 2018)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Contrastive Learning

- make similar data close to each other

make dissimilar data far from each other

Positive Pairs

- various loss functions

Negative

Anchor LEARNING
Negative
Anchor

Positive Positive

09/42



= HAY =8

Ol LE
1. Introduction of Contrastive Learning
Self-Supervised Learning in CV - Contrastive Learning
(1) Contrastive Loss
Leont (X, X5, 0) = 1[yi = y5] [l fo(xi) — fo(x) |13 + 1[ys # ;] max(0, e — || fo(x:) — fo(x;)|2)°
(2) Triplet Loss
Lospier(%,x7,x7) = Y max (0, [ £(x) — F(x)II3 — 1£(x) = F(x )5 +¢)
xeX
(3) Noise Contrastive Estimation
L& ] _ 1 . pe target sample ~ P(x|C = 1;6) = py(x)
Lnce =~ ; [log o(£o(x:)) +log(1 — o(ts(x:)))] | Whereo(£) = — (<D pota roise sample. ~ P(Z|C = 0) = qf5)
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1. Introduction of Contrastive Learning

Self-Supervised Learning in CV - Contrastive Learning

(1) Contrastive Loss

L 4

1
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Econt(xia Xj, 0) = ﬂ[yl = y]]

|[fo(x:) — fo(x)||3 + 1[yi # y;] max(0, € —

1o (i) — Fo(x5)llp

=
~—
(V]

(2) Triplet Loss

4

1

xeX

['triplet(xa x+,x—) = Zma‘x (O’ ||f(x) - f(x+)||§

1£Ge) — £(x7)lI3}+€)

(3) Noise Contrastive Esti

mation

L&
Lxce = N ; [log o(€s(x:)

+ log(1 —|o(4e(%:)))]

T

where o(£) =

1

[ ] : positive ( = similar pair )
|:| : negative ( = dissimilar pair )

Do target sample ~ P(x|C = 1;6) = py(x)

1 + exp(—¥) Bl Po+4q noise sample ~ P(%|C = 0) = ¢(X)
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1. Introduction of Contrastive Learning
Self-Supervised Learning in CV - Contrastive Learning
(4) InfoNCE
LinfoNCE = —E[log Zx/:ix}(c’)‘" C)]
P(Xpos|C)
p(wpos |C) H’i:l,. ; .,N;i;ﬁpos p(xz) p(xpos) f(xpos? C)

p(C =pos|X,c) = 5 T N pxle) N

Zj:l [p(xj|c) Hizl,. . Niij P(xi)] ijl W Zj:l f(xj,c¢)
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1. Introduction of Contrastive Learning
Self-Supervised Learning in CV - Contrastive Learning
(4) InfoNCE
f(x,c)
Linfo =—-E|lo
oNeE [ ) 2xex f(xl’c)] 1 positive 1 positive + (N-1) negatives
P(Xpos|C)
p(xpos |C) H?::l,. ; .,N;i;épos p(xz) p(xpos) f(xpos? c)
p(C = poslX,e) = —x Y =
Sy [POG1) Tics, gy p(x0)] " SN, 200 [ f(xj0)
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SimCLR (2020)

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen'! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

Abstract

“This paper presents SimCLR: u simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the Icamed representations,
and (3) contrastive leaming benefits from larger
batch sizes and more training steps compared to
supervised leamning. By combining these findings,
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Figure 1. TmageNet Top-1 accuracy of linear classifiers trained
on representations leamed with different self-supervised meth-
ods (pretrained on ImageNel). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

MoCo v1 (2019)

https://aniv.org » cs

A Simple Framework for Contrastive Learning of Visual ... - arXiv
by T Chen - 2020 - Cited by 5112 — Abstract: This paper presents SimCLR: a simple framework
for contrastive learning of visual representations. We simplify recently proposed ..

Cite as: arXiv:2002.05709

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan  Yuxin Wu  Saining Xie =~ Ross Girshick

Code: htttps://github

Abstract

We present Momentum Contrast (MoCo) for unsuper-
vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well 1o downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.

1. Introduction

Unsupervised representation leaming is highly success-
ful in natural Linguage processing, e.g., as shown by GPT
150, 51] and BERT [ 12]. But supervised pre-training is still

Facebook Al Research (FAIR)
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Figure 1. Momentum Contrast (MoCo) trains a visual represen
tation encoder by matching an encoded query g 1o @ dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko. k1. Kz, ..} are defined on-the-fly by a set of data samples
“The dictionary is buill s a queue, with the current mini-batch cn-
atch dequeued, decoupling it from
are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for leaming
visual representations

J= 3 =
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MoCo v2 (2020)

HO

https://arxiv.org > cs

Momentum Contrast for Unsupervised Visual Representation ...
by K He - 2019 - Cited by 3735 — Abstract: We present Momentum Contrast (MoCo) for

unsupervised visual

Cite as: arXiv:1911.06722

learning. From a on ive leamning as ...

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen  Haoqi Fan  Ross Girshick  Kaiming He
Facebook Al Research (FAIR)

Abstract -
Contrastive unsupervised learning has recently shown oy ’ Y
encouraging progress, e.g.. in Momentum Contrast (MoCo) ey (TR 6

and SimCLR. In this note, we verify the effectiveness of two

of SimCLR's design improvements by implementing them in - ® - -

the MoCo framework. With simple modifications 1o MoCo— ]
namely, using an MLP projection head and more data H H H H H‘ U ‘
augmentation—we establish stronger baselines that outper- + + + T e
form SimCLR and do not require large training baiches. We — o e R
hope this will make state-of-the-art unsupervised learning o
research more accessible. Code will be made publi t t ] | t

1. Introduction (@) end-to-end (b) Momentum Contrast

Figure 1. A batching perspective of two optimization me
for contrastive learning. Images are encoded into a representation
space, inw

Recent studies on unsupervised representation learnis
from images [16, 13,8, 17, 1,9, 15, 6, 12, 2] are converging
on a central concept known as contrastive learning [5
results are promising: e.g.. Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre

“This note establishes stronger and more feasible base-

ich pairwise affinities are computed.

he

ImageNiec sinervited comning fective contrastive loss function, called InfoNCE [13], is:

explakt /7)

explgkt /) + Y explak/7)

Lot umy = —lo m

ining representations.

http://arxiv.org> cs  }

Improved Baselines with Momentum Contrastive Learning
by X Chen - 2020 - Cited by 1088 — Abstract: Contrastive unsupervised leaming has recently
shown encouraging progress, e.g., in Momentum Contrast (MoCo) and SimCLR.

Cite as: arXiv:2003.04297
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SimCLR (2020)

MoCo v1 (2019)

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith !

Abstract

“This paper presents SimCLR: u simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the Icamed representations,
and (3) contrastive leaming benefits from larger
batch sizes and more training steps compared to
supervised leamning. By combining these findings,

Mohammad Norouzi' Geoffrey Hinton '
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Figure 1. TmageNet Top-1 accuracy of linear classifiers trained
on representations leamed with different self-supervised meth-
ods (pretrained on ImageNel). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan  Yuxin Wu  Saining Xie =~ Ross Girshick

Code: htttps://github

Abstract

We present Momentum Contrast (MoCo) for unsuper-
vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well 1o downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.

1. Introduction

Unsupervised representation leaming is highly success-
ful in natural linguage processing, e.g.. as shown by GPT
150. 51] and BERT [12]. But supervised pre-training is still

Facebook Al Research (FAIR)
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g 1o @ dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko. k1. Kz, ..} are defined on-the-fly by a set of data samples
“The dictionary is buill s a queue, with the current mini-batch cn-
atch dequeued, decoupling it from
-ys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for leaming
visual representations

MoCo
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v2 (2020)
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https://aniv.org » cs

A Simple Framework for Contrastive Learning of Visual ... - arXiv
by T Chen - 2020 - Cited by 5112 — Abstract: This paper presents SimCLR: a simple framework
for contrastive learning of visual representations. We simplify recently proposed ..

Cite as: arXiv:2002.05709

https://arxiv.org > cs

Momentum Contrast for Unsupervised Visual Representation ...
by K He - 2019 - Cited by 3735 — Abstract: We present Momentum Contrast (MoCo) for

unsupervised visual

Cite as: arXiv:1911.06722

learning. From a on

leaming as ...

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen  Haoqi Fan
Facebook Al

Abstract

Contrastive unsupervised learning has recently shown
encouraging progress, e.g., in Momentum Contrast (MoCo)
and SimCLR. In this note, we verify the effectiveness of two
of SimCLR's design improvements by implementing them in
the MoCo framework. With simple modifications 1o MoCo—
namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outper-
form SimCLR and do not require large training baiches. We
hope this will make state-of-the-art unsupervised learning
research more accessible. Code will be made public

1. Introduction

Recent studies on unsupervised representation learni
from images [16, 13,8, 17, 1,9, 15,6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.¢.. Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre

‘This note establishes stronger and more

ining representations.

sible base-

Ross Girshick  Kaiming He
Research (FAIR)
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Figure 1. A batching perspective of two optimization me
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is

explg-k*t /1)
Lk log LN R
i oxplakt/7) + 3 explak—/7)
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Improved Baselines with Momentum Contrastive Learning
by X Chen - 2020 - Cited by 1088 — Abstract: Contrastive unsupervised leaming has recently

shown encouraging progress, e.g., in Momei
Cite as: arXiv:2003.04297

ntum Contrast (MoCo) and SimCLR.
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2. SIMCLR

SImCLR = Simple Framework for Contrastive Learning of Visual Representation

- contrastive SELF-SUPERVISED learning algorithm

Three Findings

- (1) composition of data augmentations
- (2) learnable non-linear transformation between representation & contrastive loss
- (3) contrastive learning benefits from ..

- larger batch sizes

- more training steps
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exp(sim(z;,2,)/T)
ei]':_log N B — .
. ’ D ko1 Ve exp(sim(z;,2¢) /7)
2. SIMCLR | )
e where sim(u,v) =u'v/ || u ||| v |
Maximize agreement
|2, - > Zj
o0 a()
h; <— Representation —» h;
0 50 learns representation by .....
3 . maximizing agreement between
T; J
2R T differently augmented versions of same data,
r

with contrastive loss
Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

4 Major Components

1
2
3.
4

Stochastic Data Augmentation
Base Encoder
Projection head

Contrastive Loss Function

Jl= A4
AIOILE
4 Maximize agreement
Z; - > Zj
3 | 90) 9(-)
h; +— Representation —» h;
4 A
o | F0) f()

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

[
==
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2. SIMCLR

4 Major Components

1.

Stochastic Data Augmentation
® positive pair £; & Z;

e apply 3 simple augmentations

o (1) random cropping
o (2) random color distortions

o (3) random Gaussian blur

— (1) +(2) : good performance!

= HAY =8

AIOILE
Maximize agreement
Zi Zj
o] fa0)
h; +— Representation — h;

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.

16 /42




2. SIMCLR

4 Major Components

2. Base Encoder f()

b hz = f(iz) = ResNet (iz)
o where h; € R% is the output after the GAP

o extract representations from augmented data samples

® yse ResNet

= HAY =8

AIOILE

Maximize agreement

zi Zj
o] fa0)
hi +— Representation —» h;

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

4 Major Components

3. Projection head g(-)

Maximize agreement
2 Zj

A N

o z;=g(h;) = w@g (W(l)hi). 3 [0 ESH|

hi +— Representation —» h;

© maps representations to the space where contrastive loss is applied £0)

e use MLP with 1 hidden layer

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

4 Major Components
4. Contrastive Loss Function
e Data: set {&} including a positive pair ( &; and &; )

e Task: aims to identify &; in {&}, for a given &;.

Sample mini batches of size NV
— 2 augmentations — 2N data points
( no negative samples ...only positive pairs )

e Just treat 2(IN — 1) augmented samples within a mini-batch as negative examples.

= HAY =8

MIOILt
4 I . Maximize agreement % I
0| fa0)
h; +— Representation — h;

f0)

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

4 Major Components

4. Contrastive Loss Function

Loss Function for a positive pair of examples ( NT-Xent )

(=Normalized Temperature scaled CE loss )

exp(sim(z;,2;)/7)

oo Uy exp(sim(z;,2x) /7)

Ki,j — log

e wheresim(u,v) =u'v/ |[u ||| v ||

— final loss : computed across all positive pairs

= HAY =8

MIOILt
4 I - Maximize agreement % I
0| fa0)
h; +— Representation — h;

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

Example

x o]
=374 =2
MIOILt
SimCLR Framework
X
h; z
L L a__ L Encoder | }— Dense Relu Dense »{ ] —
Data Maximize
Augmentation similarity
Original ‘_‘ ~—+ Encoder —{ T3 pense Relu Dense »>TT] —
Image hj 2
Xj
T Transformed | Base Encoder l Projection Head
_ Images f() a()
—————————— Downstream
--0" tasks

Preparing similar pairs in a batch

Batch Size
N=2

Random
Augmentation
(M

=

Pair 1

Pair 2

"
Bl —
b
Raw Images Training Data

Augmented Images
=2N=2*2=4

Step 1) Data Augmentation
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AIOILE

SimCLR Framework
Representation

M - )
2. SIMCLR -
L1 a‘_.Encoder_._l -1 Dense Relu Dense »[TT] —
‘ Data Maximize
Augmentation similarity

Exa m p I e Original T —+Encoder — T pense Reiu Dense >[TT] —
Image hj zj

T — ]
_____________ Trans!ormed Base Encodgy_ -+4-"  Projection Head
______________ Images — - =~ T.J a()

Downstream
tasks

Paper's Choice of Encoder
X;
h;
(224, 224, 3) [ Re;:\)let- —>»[ 1] 2048-dim

(224, 224, 3) ‘ R°$N9t- —TT7] 2048-dim

hj
] Step 2) Embedding with Base Encoder ( = ResNet )

Xj
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2. SIMCLR

Example

Batch
Augmented
Images

= HAY =8

AIOILE

SimCLR Framework

Representation

-
h; zZ
]| &Encoder—ﬂ]ﬂ--benu Relu Dense »[TT] 1

Data Maximize
Augmentation similarity

original 2 ——Encoder — T} pense Reiu Dense >[I {—
Image hj

2
i
Xj

Transformed -Base Encoder | _Pre
Images () -

--- a()

Downstream
tasks

Step 3) Embedding with Projection Head
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2. SIMCLR

Example

= HAY =8

MIOILt
SimCLR Framework
Representation
Xj
h; z
L L a__._ Encoder | }— Dense Relu Dense T 1] —
Data Maximize
Augmentation similarity
Original ‘_‘ ~+——Encoder —L 11— pense Relu Dense PLTT] —
Image hj 2
Xj
T T ==
Transformed Base Encoder_ _ _[- — - — Projection Head ’
_______ Images— — = ~ () l g() I/
——————————— ,
’
Downstream /
tasks 4

Similarity Calculation of Augmented Images

Xi B : Z
e — cosine i
similarity( | =% EI ) similarity \"

Y
2; Zj

= A
R CeTPATITEA)

4]
oEE

)
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2. SIMCLR

AIOILE

SimCLR Framework

Representation

Xj

h; z;
i a__ Encoder [T} pense Relu Dense [T —

Data Maximize
Augmentation similarity
Exa m p I e Original 1 -+ Encoder — 1T Dense Relu Dense [ —
Image hj zj
X
)
Augmented Images in Batch B I I
Trans!ormed Base Encgd_e[_ ______ Projection Head ’
- ’
mEl e @~ Images 0 a() ,
Take Each Pair IE _____________ ,’
________________ Downstream ’
Pair1 Parz_ _ _ _ === — 777 tasks /I
______ ’
_____________ /
ezp(si;)

13, j) = —log—oZP\%0a)
S lp—gezp(sik)

S|m|Iarlty( . @)
(S =-lo
(. @) g( 5|m|Iar|ty( . E‘) . smllanty( . E) + sumllarlty( . .) )
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slmllamy( E’ . )
smulamy(@ -) & smllanty( E‘E) + smllanty(@ E) )

(8 A= =-log(

1 N
L=5x ;[l(zk — 1,2k) + 1(2k, 2k — 1)]

Pair 1 Loss (k=1) Pair 2 Loss (k=2)

[ )
_ [ ) 1] (3] + [ ) + ()]

2*2
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AIOILE

2. SIMCLR

Usage on downstream tasks

Representation

hj
Encoder [T ‘ ’ ‘ }

< Encoder EDH‘ ’ ‘ ‘

hj

Base Encoder

Finetuning

classification, detection, ...

Representation obtained from base encoder ( not projection head ) can be used for other tasks!
( will be discussed in the Experiment Section )
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2. SIMCLR

= HAY =8

PseudoCode

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, T.
for sampled minibatch {zy}Y_; do
forallk e {1,...,N} do

draw two augmentation functions t~7T, ¢’ ~T

# the first augmentation

Top—1 = t(xp)

hok—1 = f(Tak—1) # representation

2zok—1 = g(hok—1) # projection

# the second augmentation

Top = t'(ack)

hoy, = f(Zar) # representation

2o = g(hak) # projection
end for
forall: e {1,...,2N}and j € {1,...,2N} do

sig = 25 zi/(|zillllZ]) # pairwise similarity
end for

exp(si ;/T)
1 ]l[k;éi] eXP(Si,k/T)
L= TN [8(2k—1,2k) + €(2Kk, 2k—1)]
update networks f and g to minimize £
end for
return encoder network f(-), and throw away g(-)

define ((7, j) as £(i,7)=—log SN
k=

AIOILE
4 Maximize agreement
Z; - > Zj
3 | 90) 9(-)
h; +— Representation —» h;
4 A
o | F0) fC)

Figure 2. A simple framework for contrastive learning of visual
representations. Two separate data augmentation operators are
sampled from the same family of augmentations (¢ ~ 7 and
t' ~ T) and applied to each data example to obtain two correlated
views. A base encoder network f(-) and a projection head g(-)
are trained to maximize agreement using a contrastive loss. After
training is completed, we throw away the projection head g(-) and
use encoder f(-) and representation h for downstream tasks.
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2. SIMCLR

Experiments

JIE el

AIOILE

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure 4. Tlustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal
parameters (e.g. rotation degree, noise level). Note that we only test these operators in ablation, the augmentation policy used to train our
models only includes random crop (with flip and resize), color distortion, and Gaussian blur. (Original image cc-by: Von.grzanka)

Data Augmentations

Crop

Cutout

Color

Sobel

Noise

1st transformation

Blur

Rotate

«®

O)‘_oo‘ o 50“6\ “d\ae o

e e
X2 Pse(a‘)

2nd transformation

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

-50

40

Data Augmentations Pairs Results
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2. SIMCLR

Experiments

contrastive learning benefits from ..

- larger batch sizes
- more training steps

than supervised learning

100 300 400 500 600 700 800 900 1000
Training epochs

JIE R =8
MOl Lt
70.0
67.5
65.0
62.5
-
260.0
- Batch size
57.5 256
- 512
55.0 - 1024
mm 2048
52.5 4096
8192
50.0 [ CTT DU T T
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2. SIMCLR

Experiments

(a) h

J= 34
Mol

[
==

Usage on downstream tasks

..............

Encoder W11

<

Encoder fif 1T

cod
(. |/

Finetuning

classification, dete n, ...

What to predict?

Random guess

Color vs grayscale
Rotation

Orig. vs corrupted
Orig. vs Sobel filtered

80
25
50
50

Ren(senlalior/
h g(h)

993 974

67.6 25.6

99.5 59.6

96.6 56.3

Representation obtained from base encoder ( not projection head ) can be used for other tasks!
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SimCLR (2020)

MoCo v1 (2019)

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith !

Abstract

“This paper presents SimCLR: u simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the Icamed representations,
and (3) contrastive leaming benefits from larger
batch sizes and more training steps compared to
supervised leamning. By combining these findings,

Mohammad Norouzi' Geoffrey Hinton '

#Supervised *SimCLR (4x)
8 *SimCLR (2x)
«CPOV2-L
7O xsimCLR womo dMoco @)
oPIRL-c2¥ AMDIV

Mo
wroe oiRL-engoC0 @X
PIRL oBigBIGAN

eof qece

ImageNet Top-1 Accuracy (%)
2

oRotation
- einstDisc

25

700 200 400
Number of Parameters (Millons)

Figure 1. TmageNet Top-1 accuracy of linear classifiers trained
on representations leamed with different self-supervised meth-
ods (pretrained on ImageNel). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan  Yuxin Wu  Saining Xie =~ Ross Girshick

Code: htttps://github

Abstract

We present Momentum Contrast (MoCo) for unsuper-
vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well 1o downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.

1. Introduction

Unsupervised representation leaming is highly success-
ful in natural linguage processing, e.g.. as shown by GPT
150. 51] and BERT [12]. But supervised pre-training is still

Facebook Al Research (FAIR)

m/ facebookres:

contrastive loss

sy
(
q ko ki ke
t queve *
, momantn
pay
) X
pauery ke gl ey

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g 1o @ dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko. k1. Kz, ..} are defined on-the-fly by a set of data samples
“The dictionary is buill s a queue, with the current mini-batch cn-
atch dequeued, decoupling it from
-ys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for leaming
visual representations

MoCo

J= 3 =
Mol

v2 (2020)

HO

https://aniv.org » cs

A Simple Framework for Contrastive Learning of Visual ... - arXiv
by T Chen - 2020 - Cited by 5112 — Abstract: This paper presents SimCLR: a simple framework
for contrastive learning of visual representations. We simplify recently proposed ..

Cite as: arXiv:2002.05709

https://arxiv.org > cs

Momentum Contrast for Unsupervised Visual Representation ...
by K He - 2019 - Cited by 3735 — Abstract: We present Momentum Contrast (MoCo) for

unsupervised visual

Cite as: arXiv:1911.06722

learning. From a on

leaming as ...

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen  Haoqi Fan
Facebook Al

Abstract

Contrastive unsupervised learning has recently shown
encouraging progress, e.g., in Momentum Contrast (MoCo)
and SimCLR. In this note, we verify the effectiveness of two
of SimCLR's design improvements by implementing them in
the MoCo framework. With simple modifications 1o MoCo—
namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outper-
form SimCLR and do not require large training baiches. We
hope this will make state-of-the-art unsupervised learning
research more accessible. Code will be made public

1. Introduction

Recent studies on unsupervised representation learni
from images [16, 13,8, 17, 1,9, 15,6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.¢.. Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre

‘This note establishes stronger and more

ining representations.

sible base-

Ross Girshick  Kaiming He
Research (FAIR)

-E P
M M0 0 (¥mo
[ 1 0 o

Figure 1. A batching perspective of two optimization me
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is

explg-k*t /1)
Lk log LN R
i oxplakt/7) + 3 explak—/7)

m

http://arxiv.org> cs  }

Improved Baselines with Momentum Contrastive Learning
by X Chen - 2020 - Cited by 1088 — Abstract: Contrastive unsupervised leaming has recently

shown encouraging progress, e.g., in Momei
Cite as: arXiv:2003.04297

ntum Contrast (MoCo) and SimCLR.
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3. MoCo v1

MoCo = Momentum Contrast

UN-SUPERVISED visual representation learning algorithm
(1) Dictionary look-up perspective
- build a Dynamic dictionary ( with a queue (FIFO) )

(2) Moving Average Encoder

= HAY =8

MOl Lt
contrastive loss
A
—> similarity <ﬁ\‘
q foi dei, Ko
A queue T
momentum
encoder o hEaeT
A {
ke ke ke
query ¥ Y y
T r 0 H 1 €T 9 St
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3. MoCo v1

(1) Dynamic Dictionary

- (SimCLR) positive pair & negative pair in ONE BATCH

- (MoCo) define a Dictionary
- match O with query -> positive key

- match X with query -> negative key

Use “Dynamic” Dictionary, by using queue ( FIFO )

Deletion Addition

front Queue rear

Jl= A4
MloIL
contrastive loss
A
( > similarity < \‘
q ko k1 ko ...
T queue T
momentum
Rcode encoder
A r ‘ )
ke ke ke
query y Y Y
.'L’ :I:O .',171 $'2 s

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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3. MoCo v1

(1) Dynamic Dictionary

Notation
e encoded query: g
e keys of a dictionary :
o set of encoded samples : {ko, k1, k2,- - -}
o positive key : k.

o negative key : k_

Contrastive Loss : low, when...
e gis similar to its positive key k.
e dissimilar to other key ( = negative keys)

( similarity : measured by dot product )

Iz @l
Mol

encoder

A

contrastive loss

similarity 41

ko k1 ko ...
queue T

momentum
encoder

A
pauery

A

e

key _key _key
-1:0 -I‘l -’EQ e

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-

queued and the oldest mini-batch dequeued, decoupling it from

the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning

visual representations.

34 /42



3. MoCo v1

(2) Loss Function : InfoNCE

L,=—log Z«;{xp(q-h/f)

i—0€xp(q-ki/T) ’

e 7 :temperature

— sum over one positive & K negatives

(= log loss of (K + 1) way softmax classifier , that tries to classify gas k., )

Iz @l
Mol

contrastive loss
A

F* similarity <~W

q ko k1 ko ...

T queue T

momentum

Rcode encoder

A f

ke ke ke
query y Y Y

:.U -1:0 .',13 1 .’172 see

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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3. MoCo v1

(3) Moving Average Encoder

- slowly progressing key encoder
= momentum-based MA of query encoder

- to maintain “consistency”

momentum

n r
encoder encode

0 — ﬂ%@k-+-(1 —-Tn)eq.
e m € [0,1) : momentum coefficient

e Only the parameters 6, are updated!!

plER= RPN

MOl LE

[
==

Model Notation

e query:gq= fq(z?)

o fq:encoder network

o f1:encoder network

contrastive loss o z9:query
A
(— > similarity <»——\‘ ® key: k= fx (Ik)
q ko ky Ky ... :
o z":key
T queue T
momentum
encoder encoder
A . \
ke ke ke,
query y Y ¥
1: -I‘O -I‘l 272 e

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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3. MoCo v1

(3) Moving Average Encoder

- slowly progressing key encoder

= momentum-based MA of query encoder

- to maintain “consistency”

momentum

n r
encoder encode

plER= RPN

MOl LE

[
==

Model Notation

use LARGE values (m =0.999)

0y < mby + (1 — m)Oq.

e m € [0,1) : momentum coefficient

e Only the parameters 6, are updated!!

e query:gq= fq(z?)

o fq:encoder network

o f1:encoder network

contrastive loss o z9:query
A
F> similarity «——\‘ ® key: k= fx (Ik)
q ko ky Ky ... :
o z":key
T queue T
momentum
encoder encoder
) . ;
ke ke ke,
query y Y ¥
:I: -I‘O -I‘l -’EQ e

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko, k1, k2, ...} are defined on-the-fly by a set of data samples.
The dictionary is built as a queue, with the current mini-batch en-
queued and the oldest mini-batch dequeued, decoupling it from
the mini-batch size. The keys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for learning
visual representations.
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3. MoCo v1

(3) Moving Average Encoder

- slowly progressing key encoder

= momentum-based MA of query encoder

- to maintain “consistency”

momentum

n r
encoder encode

= HAY =8

MOl LE

0 +— mby + (1 — m)Oq.
e m € [0,1) : momentum coefficient

e Only the parameters 6, are updated!!

gradient

contrastive loss

T STOP GRADIENT

f}+ ¢k <X

k
A

momentum
encoder

Notation

lery 1 ¢ = fq (z9)

b f,: encoder network
b 7 query

y: k= fi(z*)

b f1 - encoder network

b 2k : key

presen-
tionary
ry keys
amples.
htch en-
it from
yressing
ncoder.
earning
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ANlOlLt
3. MoCo v1

Relations to Previous Mechanisms ( end-to-end & memory bank )

contrastive loss contrastive loss contrastive loss
A 2 A A
gradient \ jradient gradie | jradient
L,» qk <‘; *‘> qk “« L\» qk’ <‘
|
q k q k q k
A A A A A A
encoder q encoder k encoder sampiing encoder T
A encoder
A A A memory A A
bank
z? z* 7 o 7 z*
(a) end-to-end (b) memory bank (c) MoCo
Figure 2. Conceptual comparison of three contrastive loss mechanisms (empirical comparisons are in Figure 3 and Table 3). Here we
illustrate one pair of query and key. The three mechanisms differ in how the keys are maintained and how the key encoder is updated.
(a): The encoders for computing the query and key representations are updated end-to-end by back-propagation (the two encoders can
be different). (b): The key representations are sampled from a memory bank [61]. (c): MoCo encodes the new keys on-the-fly by a
momentum-updated encoder, and maintains a queue (not illustrated in this figure) of keys.
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3. MoCo v1

[
ARAN =2

AIOILE

Pre-text Task : Instance Discrimination

' «—> Aggregate positive samples
Various data augmentations

Disperse negative samples
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DLt

3. MoCo v1

contrastive loss

Pseudo-code A

| similarity 41

q ko k1 ks ...

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

A
# £_q, f_k: encoder networks for query and key queue
# queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature momentum
encoder
f_k.params = f_g.params # initialize encoder
for x in loader: # load a minibatch x with N samples
X_q = aug(x) # a randomly augmented version A A
X_k = aug(x) # another randomly augmented version (4

~~Q
[

k.detach() # no gradient to keys
¥ positive logits: Nx1

1 _pos = bmm(qg.view(N,1,C), k.view(N,C,1))

Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query ¢ to a dictionary

# negative logits: NxK
1_neg = mm(q.view(N,C), queue.view(C,K))

Somu mrn | | gauery ZeY gy pkey

# logits: Nx(1+K) of encoded keys using a contrastive loss. The dictionary keys
logits = cat([l_pos, l_neg], dim=1)

, {ko, k1, ke, ...} are defined on-the-fly by a set of data samples.
# contrastive loss, Egn. (1) B 5 . 5 S
labels = # s res he 0 i -
jebele = zeros(i 4 ipes tiven azs Bo 0t The dictionary is built as a queue, with the current mini-batch en
% SGD update: query network queued and the oldest mini-batch dequeued, decoupling it from
loss.backward () o A 4 N
update (£_q.parans) the mini-batch size. The keys are encoded by a slowly progressing
# tum update: key network 1 1
¥ poosum, pdipes T merwgk, Oy — mby + (1 — m)f, encoder, driven by a momentum update with the query encoder.
—_— This method enables a large and consistent dictionary for learning
enqueue (queue, k) # enqueue the current minibatch . .
dequeue (queue) # dequeue the earliest minibatch » Dynamic Dictionary visual representatlons.

bmm: batch matrix mm: matrix iplication; cat:
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SimCLR (2020)

MoCo v1 (2019)

J= 3 =
Mol

HO

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith !

Abstract

“This paper presents SimCLR: u simple framework
for contrastive learning of visual representations.
We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations,
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a learn-
able nonlinear transformation between the repre-
sentation and the contrastive loss substantially im-
proves the quality of the Icamed representations,
and (3) contrastive leaming benefits from larger
batch sizes and more training steps compared to
supervised leamning. By combining these findings,

Mohammad Norouzi' Geoffrey Hinton '

#Supervised *SimCLR (4x)
8 *SimCLR (2x)
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Figure 1. TmageNet Top-1 accuracy of linear classifiers trained
on representations leamed with different self-supervised meth-
ods (pretrained on ImageNel). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold

Momentum Contrast for Unsupervised Visual Representation Learning

Kaiming He Haoqi Fan  Yuxin Wu  Saining Xie =~ Ross Girshick

Code: htttps://github

Abstract

We present Momentum Contrast (MoCo) for unsuper-
vised visual representation learning. From a perspective on
contrastive learning [29] as dictionary look-up, we build
a dynamic dictionary with a queue and a moving-averaged
encoder. This enables building a large and consistent dic-
tionary on-the-fly that facilitates contrastive unsupervised
learning. MoCo provides competitive results under the
common linear protocol on ImageNet classification. More
importantly, the representations learned by MoCo transfer
well 1o downstream tasks. MoCo can outperform its super-
vised pre-training counterpart in 7 detection/segmentation
tasks on PASCAL VOC, COCO, and other datasets, some-
times surpassing it by large margins. This suggests that
the gap between unsupervised and supervised representa-
tion learning has been largely closed in many vision tasks.

1. Introduction

Unsupervised representation leaming is highly success-
ful in natural linguage processing, e.g.. as shown by GPT
150. 51] and BERT [12]. But supervised pre-training is still

Facebook Al Research (FAIR)
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Figure 1. Momentum Contrast (MoCo) trains a visual represen-
tation encoder by matching an encoded query g 1o @ dictionary
of encoded keys using a contrastive loss. The dictionary keys
{ko. k1. Kz, ..} are defined on-the-fly by a set of data samples
“The dictionary is buill s a queue, with the current mini-batch cn-
atch dequeued, decoupling it from
-ys are encoded by a slowly progressing
encoder, driven by a momentum update with the query encoder.
This method enables a large and consistent dictionary for leaming
visual representations

MoCo

v2 (2020)

https://aniv.org » cs

A Simple Framework for Contrastive Learning of Visual ... - arXiv
by T Chen - 2020 - Cited by 5112 — Abstract: This paper presents SimCLR: a simple framework
for contrastive learning of visual representations. We simplify recently proposed ..

Cite as: arXiv:2002.05709

https://arxiv.org > cs
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Improved Baselines with Momentum Contrastive Learning

Xinlei Chen  Haoqi Fan
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Abstract

Contrastive unsupervised learning has recently shown
encouraging progress, e.g., in Momentum Contrast (MoCo)
and SimCLR. In this note, we verify the effectiveness of two
of SimCLR's design improvements by implementing them in
the MoCo framework. With simple modifications 1o MoCo—
namely, using an MLP projection head and more data
augmentation—we establish stronger baselines that outper-
form SimCLR and do not require large training baiches. We
hope this will make state-of-the-art unsupervised learning
research more accessible. Code will be made public

1. Introduction

Recent studies on unsupervised representation learni
from images [16, 13,8, 17, 1,9, 15,6, 12, 2] are converging
on a central concept known as contrastive learning [5]. The
results are promising: e.¢.. Momentum Contrast (MoCo)
[6] shows that unsupervised pre-training can surpass its
ImageNet-supervised counterpart in multiple detection and
segmentation tasks, and SimCLR [2] further reduces the gap
in linear classifier performance between unsupervised and
supervised pre

‘This note establishes stronger and more

ining representations.

sible base-
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Figure 1. A batching perspective of two optimization me
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.

fective contrastive loss function, called InfoNCE [13], is
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ntum Contrast (MoCo) and SimCLR.
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4. MoCo v2

(1)

(2)

MoCo v1:

(@) Dynamic Dictionary

(b) Moving-Averaged Encoder
SimCLR

(@) larger batch size for lots of negative samples
(b) stronger augmentation
(c) MLP Projection head

MoCo v2 = MoCo v1 + SImCLR ( (b) + (c) )
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Figure 1. A batching perspective of two optimization mechanisms
for contrastive learning. Images are encoded into a representation
space, in which pairwise affinities are computed.
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