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Abstract

Unsupervised image representations have significantly reduced the gap with su-
pervised pretraining, notably with the recent achievements of contrastive learning
methods. These contrastive methods typically work online and rely on a large num-
ber of explicit pairwise feature comparisons, which is computationally challenging.
In this paper, we propose an online algorithm, SwAV, that takes advantage of con-
trastive methods without requiring to compute pairwise comparisons. Specifically,
our method simultaneously clusters the data while enforcing consistency between
cluster assi produced for di ions (or “views”) of the same
i i i i i implv put
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Abstract

Deep Learning (DL) has shown great promise in the un-
supervised task of clustering. That said, while in classical
(i.e., non-deep) clustering the benefits of the nonparamet-
ric approach are well known, most deep-clustering meth-
ods are parametric: namely, they require a predefined and
fixed number of clusters, denoted by K. When K is un-
known, h ;, using model-selection criteria to choose
its optimal value might become computationally expensive,
especially in DL as the training process would have to be
repeated numerous times. In this work, we bridge this gap
by introducing an effective deep-clustering method that does
not require knowing the value of K as it infers it during
the learning. Using a split/merge framework, a dynamic
architecture that adapts to the changing K, and a novel
loss, our proposed method outperforms existing nonpara-
metric methods (both cl [ and deep ones). While the
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SWAV (2021)

1. Instance Discrimination & Contrastive Loss
2. SwAV

a. Architecture
b.  Online Clustering

c. Multi-crop

3. Experiment
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1. Instance Discrimination & Contrastive Loss

Unsupervised Image Representation, using Contrastive Learning

- Instance Discrimination task
- data augmentations of image A = different views of image A
- each image = each class
- mostly rely on large number of explicit PAIRWISE feature comparison
— computationally challenging !

* previous works : use random subsets of images / approximate the task ( ex. clustering )

03 /50



Paper Review Seminar

1. Instance Discrimination & Contrastive Loss

Instance Discrimination rely on combination of 2 elements

- (1) contrastive loss

- (2) set of image transformations

04 /50
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1. Instance Discrimination & Contrastive Loss

Instance Discrimination rely on combination of 2 elements

- (1) contrastive loss

- (2) set of image transformations
— this paper improves both (1) & (2)
improves (1) by ... online clustering with “swap prediction”

improves (2) by ... “multi-crop”
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2. SWAV

- do not require “pairwise comparison”
- simultaneously clusters the data, while enforcing consistency between
cluster assignments produced for different augmentations of same image
- swapped prediction
- predict the “code of a view” from the “representation of another view”
- memory efficient
- does not require a large memory bank

- propose new data augmentation strategy, “multi-crop”
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2. SWAV

(1) Architecture

1 Features Codes
v X ﬁ z, Q

‘141

C i Swapped

s

!\}
X> ﬁ V43
Features * Codes
Contrastive instance learning Swapping Assignments between Views (Ours)

Figure 1: Contrastive instance learning (left) vs. SWAV (right). In contrastive learning methods
applied to instance classification, the features from different transformations of the same images are
compared directly to each other. In SWAV, we first obtain “codes” by assigning features to prototype
vectors. We then solve a “swapped” prediction problem wherein the codes obtained from one data
augmented view are predicted using the other view. Thus, SWAV does not directly compare image
features. Prototype vectors are learned along with the ConvNet parameters by backpropragation.
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Figure 1: Contrastive instance learning (left) vs. SWAV (right). In contrastive learning methods
applied to instance classification, the features from different transformations of the same images are
compared directly to each other. In SWAV, we first obtain f‘codes”lby assigning features to I;;rototypa
vectors. We then solve a|“swapped” prediction|problem wherein the codes obtained from one data
augmented view are predicted using the other view. Thus, SWAV does not directly compare image
features. Prototype vectors are learned along with the ConvNet parameters by backpropragation.
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2. SWAV

(1) Architecture

Compute a code (Q) from an augmented version of image (Z2)

Paper Review Seminar

& predict this code (Q) from augmented versions of the same image (2)

Step 1) 2 image features input : Z; and Zg

e from different augmentation ( but same image)

Step 2) compute their codes : q; and g

e by matching these features to a set of K prototypes {€1,...,Cx}
Step 3) "swapped" prediction problem

L L(Ztazs) = f(Zt7qs) +£(stqt)-

o /(z,q) : fit between features z and a code q

Codes

=N\

Swapped
Prediction

Codes

Swapping Assignments between Views (Ours)
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2. SWAV

(2) Online Clustering

Typical clustering-based methods : OFFLINE

— alternate between (1) cluster assignment & (2) training step

08 /50
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2. SWAV

(2) Online Clustering

Typical clustering-based methods : OFFLINE

— alternate between (1) cluster assignment & (2) training step

SwAV ( Swapping Assignments between multiple Views of the same image )
: learn visual features in an ONLINE fashion ( w.o supervision )

— propose an ONLINE clustering-based SELF-SUPERVISED method

08 /50
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2. SWAV

(2) Online Clustering

(1) image :| X,

(2) augmented image :[Xn¢|... applying a transformation ¢

(3) mapped to a vector representation |2z,: = fo (Xnt) / || fo (Xnt) ||2

(4) compute code :|q,,;

e by mapping Znt to a set of K trainable prototype vectors, {€1,...,Ck }
e C: matrix whose columns are the €y, ..., Cg
— how to compute these q,;; & update {c1,...,¢x}??  via Swapped Prediction problem !!
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2. SWAV

(2) Online Clustering

Loss Function

L (zta zs) =3 (zt7 qs) + £ (Zs7 qt)
o/ (zt, qs) : predicting thelcode q,|from the|feature z;

o £(zs,q,): predicting the|code q, [from thelfeature z,

(each term: CE loss)

exp( =z, ck
o/ (Zt7 qs) - = Zk qgk) log ng), where pgk) — ( )
Zk’ exp( zt ck,>
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2. SWAV

(2) Online Clustering

Total Loss ( over all image & pairs of data augmentation )

N ;Lrt ns
% 2o Dot [ 21 Cllns + 720 Celyy — log Y 1exp( ) log 7 1exp(z )]

— optimize w.r.t 0 & C

l \ Prototype Vectors

parameter of Feature Extractor
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2. SWAV

(2) Online Clustering

Computing Codes ONLINE !

— compute the codes using only the image features within a batch , using prototypes C

(common prototypes C are used across different batch )

Induce that all the examples in a batch are equally partitioned by the prototypes

— preventing the trivial solution where every image has the same code

— use Sinkhorn Algorithm !!

12 /50



2. SWAV

(2) Online Clustering

Sinkhorn Algorithm

Factory (Consumer)

Iron Ore

[—

P(i.j) = Amount of transportation from (i) to (j)
C(i,j) = Cost of ~

Pi,j >0
ZPLJ T
d= mll’lz Pi,jCi,j 7
Lj
zPi’j = C]
i

Fig. 2. Optimal transportation problem.

Paper Review Seminar

https://amsword.medium.com/a-simple-introduction-on-sinkhorn-distances-d01a4ef4f085

Normalize r & ¢

Yr(d)=1&3c(j) =1

— Interpret () & ¢(j) as distribution
Total Cost = function of 2 distribution

Use total cost to measure the distance between 2 distribution

13 /50



2. SWAV

(2) Online Clustering

Sinkhorn Algorithm

Paper Review Seminar

https://amsword.medium.com/a-simple-introduction-on-sinkhorn-distances-d01a4ef4f085

Sinkhorn distances
d = mlnz Pi,jCi,j
i

>0 | EEp
Zpi,j =n
j

Z Pij =
i

Fig. 3. Sinkhorn distances d*

% o s
dr = mlnz Pi,jCL',j
ij

P=0

Zpi,j =n
j
ZPLJ' =¢
7
KL(P|rc") < «a

Mlne (Producer) Factory (Consumer)

Fig. 4. Transportation plan with rc.

KL(P|rcT) = Z log Z P;jlogP;; — Z jlogr; — Z P; jlogc;
i,j i,J

r & ¢ distribution — reT : distribution
KL(P|rch) < a:
= distance between P & rc should be small

= optimal solution of P(i,j) should be around rc
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https://amsword.medium.com/a-simple-introduction-on-sinkhorn-distances-d01a4ef4f085

2. SWAV

(2) Online Clustering

Sinkhorn Algorithm Dual Sinkhorn distance
= 1
KL(P|rcT) = ZP” log Z jlogP;j — ZPM logr; — ZP“ log¢; d = min Z Pi,jCi,j — Z h(P)
L] LJ
h(r) + h(c) — h(P) < a .

Interpretation of Constraint : Z J2a——
- entropy of P should be large as possible! o b

- non-convex problem J
. . :E:[ij==(y

Solve using Lagranginan Method :
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https://amsword.medium.com/a-simple-introduction-on-sinkhorn-distances-d01a4ef4f085

2. SWAV

(2) Online Clustering

Sinkhorn Algorithm

dL 1 1

————'==C&J + =+

L= Zpi,jci.j _%h(P) + Zmi (Z P —ri> +Z"i <Z Pij— Cj) aPi’j A A

ij i

logP;j+m;+n; =0

Fig. 8. Langrage form of the dual Sinkhorn distance problem. Pl ] —_— e _Aml_os e _ACL] e _Am]_os

— a5 —ACL
P;j = uje”""ty;

P = diag(u)e™*“diag(v)

Fig. 9. The derivative over P should be 0. We introduce another parameter of u and v to represent a function of m
andn.
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2. SWAV

(2) Online Clustering

Paper Review Seminar

https://amsword.medium.com/a-simple-introduction-on-sinkhorn-distances-d01a4ef4f085

Q = code matrix, that connects Z & C

CT Z = (negative) cost matrix

Sinkhorn Algorithm
JdL 1 1
GTL-J- = Ci,j +Z+Zlogpi‘j +ml- +le =0

Pi,j — e—/‘lmi—O.Se—ACi,je—ﬂmj—O.S
Pi,j = ul-e_’wi'fvj
P = diag(u)e~*¢diag(v)

Fig. 9. The derivative over P should be 0. We introduce another parameter of u and v to represent a function of m
andn.

max Tr (Q' C'Z) + eH(Q)

QeQ

Q={QefoB|Q13=

1 1
—15,Q"1x = =1
K KaQ K B B}

C'Z

Q* = Diag(u) exp (

) Diag(v)

where u and v are renormalization vectors in RX and R? respectively
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Notation

2 . SWAV e Feature vectors: Z = [zy,...,2g|

e Codes: Q =qy,--.,q5]

e Prototype vectors : C = [cq,.. ., Ck]

(2) Online Clustering

— optimize Q to maximize similarity between features & prototypes

maxqeo Tr(Q' C'Z) + cH(Q).

e H :entropy function
o H(Q) = — Zij Qz’j log Qz‘j-
e ¢:parameter that controls the smoothness of the mapping
o high € :rivial solution where all samples collapse into an unique representation

o thus, keep it low

18 /50
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2. SWAV Ol
W : o1

Jo

Loss

E t5~Topa @_;7 fo
| Additional
| Small Views  ° '
E ty+ 2~ Tonau fo

- new data au g me ntati on Strategy Figure 5: Multi-crop: the image z,, is transformed into V' + 2 views: two global views and V' small

resolution zoomed views.

(3) Multi-crop

- mix of views with different resolutions
- sampling multi random crops with 2 different sizes ( standard & small)
- 2 standard resolution crops

-V additional low resolution crops

V42
L(Ztl ’ Zt27 L Ztv+2) — Z Z 1U75i£(ztv7 qtz)
i€{1,2} v=1
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3. Experiment

(1) Evaluating the unsupervised features on ImageNet

Method Arch. Param. Topl ® Supervised SWAV

[Supervised R50 24 765] %0

Colorization [65] R50 24 39.6 I S -°

Jigsaw [46] R50 24 457 g mmz =TI

NPID [58] R50 24 540

BigBiGAN [15] R50 24 56.6 3 76 ¢ Sl)l(ﬂ(‘,l‘R—‘vl

LA [68] R50 24 588 8

NPID++ [44] R50 24 590 T X SimCLR-x2

MoCo [24] R50 24 606 g4

SeLa [2] R50 24 615 3

PIRL [44] R50 24 636 T2 yigcow EPEv2

CPC v2 [28] R50 24 63.8 & % -

PCL [37] RS0 24 659  E 70 [xSimCLRx1

SimCLR [10] R50 24 700 -

MoCov2[11] RS0 24  TLI] ¢ xCMC AMDIM
24M 94M 375M 586M

SwaAv R50 2 75.3] number of parameters

Figure 2: Linear classification on ImageNet. Top-1 accuracy for linear models trained on frozen

features from different self-supervised methods. (left) Performance with a standard ResNet-50.

(right) Performance as we multiply the width of a ResNet-50 by a factor x2, x4, and x5.

Paper Review Seminar

Table 1: Semi-supervised learning on ImageNet with a ResNet-50. We finetune the model with
1% and 10% labels and report top-1 and top-5 accuracies. *: uses RandAugment [12].
1% labels 10% labels
Method Top-1 Top-5 Top-1  Top-5
Supervised 254 484 56.4 80.4
Methods using UDA [60] - - 68.8%  88.5%
label-propagation FixMatch [51] - - 71.5%  89.1%
PIRL [44] 307 572 60.4 83.8
Methods using PCL [37] - 75.6 - 86.2
self-supervision only  SimCLR [10] 48.3 75.5 65.6 87.8
[SwAV 539 1785 702  89.9 |
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3. Experiment

(2) Transferring unsupervised features to downstream tasks

[ Linear Classification | [ Object Detection |
Places205 VOCO07 iNat18 VOC07+12 COCO COCO
(Faster R-CNN R50-C4) (Mask R-CNN R50-FPN)  (DETR)
Supervised 53.2 87.5  46.7 81.3 39.7 40.8
RotNet [19] 45.0 64.6 - ~ -
NPID++ [44]  46.4 76.6 324 79.1 -
MoCo [24] 46.91 79.87  31.5T 81.5 -
PIRL [44] 49.8 81.1  34.1 80.7 =
PCL [37] 49.8 84.0 - - .
BoWNet [19]  51.1 79.3 - 81.3 -
SimCLR [10]  53.3F 86.47  36.2f - -
MoCov2 [24]  52.9% 87.1t  38.9f 82.5 39.8 42.0f
SWAV 56.7 889 48.6 82.6 41.6 421
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3. Experiment

(3) Training with small batches

Table 3: Training in small batch setting. Top-1 accuracy on ImageNet with a linear classifier

trained on top of frozen features from a ResNet-50. All methods are trained with a|batch size of 256]

We also report the number of stored features, the type of cropping used and the number of epochs.
Method  Mom. Encoder Stored Features  multi-crop  epoch batch Top-1
SimCLR 0 2x224 200 256 61.9
MoCov2 v 65,536 2x224 200 256 67.5
MoCov2 v 65,536 2x224 800 256 711
SwAV 3,840 2x160+4x96 200 256 72.0
SwAV 3,840 2x224+6x96 200 256 72.7
SwAV 3,840 2x224+6x96 400 256 74.3

Paper Review Seminar
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3. Experiment

(4) Applying the multi-crop strategy to different methods

Top-1 A 76
Method 2x224 [ 2x160+4x96 5
Supervised 76.5 76.0 -05 8
Q

Contrastive-instance approaches g
SimCLR 68.2 70.6 +2.4 T.:. 7t V-100 instance. For example, in the case of 2x160+4x96 crops, we have M = 6 crops per instance. We call

Clustering-based approaches i) 16Gb N = B x M the effective total number of crops in the batch. Overall, we minimize the following
SeLa-v2 67.2 1.8 446 S P — CT~afloss N _—
DeepCluster-v2  70.2 74.3 +4.1 100 400 300 [—_ 1 1 Z Z log expz vt /T . @
SWAV 70.1 74.1 +4.0 number of epochs NM-1%4 | oy O 2Tt T+ 2, comy P2 VT[T

=1 ote{v] i

Figure 3: Top-1 accuracy on ImageNet with a linear classifier trained on top of frozen features from a
ResNet-50. (left) Comparison between clustering-based and contrastive instance methods and

[ impact of multi-crop] Self-supervised methods are trained for 400 epochs and supervised models
for 200 epochs. (right) Performance as a function of epochs. We compare SWAV models trained
with different number of epochs and report their running time based on our implementation.
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Deep Learning (DL) has shown great promise in the un- o6
supervised task of clustering. That said, while in classical 5 05 &
(i.e., non-deep) clustering the benefits of the nonparamet- Soa
ric approach are well known, most deep-clustering meth- gﬂ.i
ods are parametric: namely, they require a predefined and b3
fixed number of clusters, denoted by K. When K is un- : \
known, h ; using model-selection criteria to choose o
its optimal value might become computationally expensive, 0.0
especially in DL as the training process would have to be O e oT el é;"the ;‘;?_amezfr?c el
repeated numerous times. In this work, we bridge this gap (@) ImageNetS0: The original balanced dataset
by introducing an effective deep-clustering method that does
not require knowing the value of K as it infers it during 07 | = iﬁ::aﬂs
the learning. Using a split/merge framework, a dynamic 0.6 DCN++
architecture that adapts to the changing K, and a novel s \/. g’::p’ém N
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metric methods (both cl [ and deep ones), While the E] =
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DeepDPM (2022)

1. DL vs Classical Clustering
2. DPGMM-based Clustering
3. DeepDPM

a. Architecture
b. Split & Merge

c. Proposed Loss Function

4. Experiments

25/50
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1. DL vs Classical Clustering

Classical Clustering :
- benefits from “NON-parametric” approach
DL Clustering :

- mostly “parametric” approach
- require a “pre-defined # of clusters (= K)”

- cluster “large & high-dim” datasets better & more efficiently

26 /50
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1. DL vs Classical Clustering

Benefits of ability to infer K

- (1) without good estimate of K, parametric methods suffer in performance

- (2) finding K with model selection -> computationally expensive!

27150
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2. DPGMM-based C|USteI‘in9 DPGMM : Dirichlet Process GMM
(1) Notation

N : . :
o X = (:131-)1.:1 : N data points of d dimension
e clustering task : partition X into K disjoint groups
o z; :cluster label of ®;

e data of certain cluster: (@;), . _,

28 /50
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2. DPGMM-based Clustering

(2) DPGMM ( Dirichlet Process Gaussian Mixture Model )

e mixture with infinitely-many Gaussians

e often used, when K is unknown

¢ p(m ‘ (“k72k77rk)zozl) - 220:1 ﬂ-kN(m;lJ'kaEk)-

Component : 0 = (ptx, i)
o 0= (6k).
o = ()}

e assumed to be drawn from their own prior

29/50
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3. DeepDPM

DeepDPM = DL + DPM (Dirichlet Process Mixture)

Effective Deep-clustering method, that does not require knowing # of clusters

- (1) Architecture
- (2) Split & Merge

to dynamically change K
- (3) Novel loss function

for EM algorithms in mixture models

30/50



3. DeepDPM

(1) Architecture

Paper Review Seminar

N images_% extractor

features

DeepDPM Clustering

saft cluster assignmegls soft

clustering net R [K subclustering nets ]

subcluster assignments
~

)é ]RNxd = € RNxK = — R Nx2 W
update K, thI> clusterlng net and the K subclustering hets as needed :<----|(splitmerge decisions

.

Figure 2. DeepDPM’s pibeline: given features X', the clustering net outputs cluster assignm
subcluster assignments, J2. Upon the acceptance of split/merge proposals, all those nets are I:pdated during the learning.

nts, R, while the subclustering nety generate

v

Embedding
(use MoCo)

v v

Cluster A, B, .., K Cluster A-1, A-

Cluster K-1, K-

v

2 change K

2
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|DeepDPM Clustering|
3 D e e p D P M foatiires cluster assignments soft subcluitfar assignments

. Data: ___ o ——>1l clustering net | —> R ——— |K subclustering nets | —>
N images eRimctar Pé RNxd_| 0 _’RE,]RﬂL/? g\\ Re RV Y
gupdate K, the clustering net and the K subclustering nets as needed : < (Split/merge decisions
( 1 ) ArCh |te Ctu re Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

- a) Clustering Net
fa(X)=R= (ri)'f\il ri = (le)szl

e for each data point x;, generate K soft cluster assignments

e where ;1 € [0, 1] is the soft assignment ( Ziil P =1)

Hard assignment

e from (soft) (rz)f\il compute (hard) 2 = (Zz)fil

(2; = argmaxy Tik )

32/50



|DeepDPM Clusterlng|
3 D e e p D I M f 0 features soft cluster assignm t subcluster assignments
Nlmages extractor ?é ]RN ” clustering ee — R W K subclustering nets — R m
update K, the clustering net and the K subclustering nets as needed """ split/merge decisions
( 1 ) ArCh Ite Ctu re Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

- b) K Subclustering Net

fsub (Xk) = Ek - (fi)i;z,:k T = (T%J)2 1

o z= (%), isfedinto % (toits respective cluster)

— generates soft subcluster assignments

e where 7;; € [0, 1] is the soft assighwent of &; to subcluster j(j € {1,2})
o f;1+Fi2=1.

k

K 7 .
iy )k:1 are used in split proposals.

Subclusters learned by (
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( 1 ) ArCh Ite Ctu re Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

- a) Clustering Net & b) K Subclustering Net

K .
p=1)

Each of the K + 1 nets (fa and ( b )
e MLP with single hidden layer
e Neurons of last layer :
o fa : K neurons

o each ffub : 2 neurons
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3. DeepDPM

(2) Split & Merge

- Split : cluster + 1

- Merge : cluster -1

Paper Review Seminar

[ |
|DeepDPM CIustenngI ~
features soft cluster assignments soft subcluster assignments
Date: — (St > (Gusiorng el R
N images m Pé RWIuswnni hets —R ——

%update K, the clustering net and the K subclustering nets as needed i< {(split/merge decisions
Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

Split Merge

35/50




3. DeepDPM

(2) Split & Merge
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IDeepDPM Clusteringi

featur soft cluster assignments soft subcluster assignments
g racto eaxues—>—>R —> (Ksubclustering nets ) — > R
s clustering ne
N images extractor v 9 \ RN subclus enng'r.1es By

gupdate K, the clustering net and the K subclustering nets as needed : < {(plit/merge decisions
Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

augments latent variables with auxilairy variables

e latent variables: (0x)req, ™, (2i);;

e auxiliary variables :

N

o to each z;, an additional subcluster label, Z; € {1,2}, is added.

o to each 0y, two subcomponents are added, 9k,1 . 9k,2, with nonnegative weights 7 = (ﬁ—kaj)je{l 2)

= where g1 + g2 =1

— 2-component GMM
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- p D Jﬁ?;‘éﬁgr == clustermg net] — R — Ksubclusterlng B — R —

Paper Review Seminar

Ni |mages

update K the clusterlng net and the K subclustering nets as needed i<+ JCsplit/merge decisions

(2) S pl it & M e rg e Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate

MH-framework

subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

e allow changing K during training

e split of cluster k into its subclusters is proposed

e split acceptance ratio :

o}

interpretation : comparing the marginal

H; =

al' (N1 ) fo (XA (N 2) o (X 25A) likelihood of the data, under 2 subclusters

L'(Ni) fz (X3 A) ' with its marginal likelihood under the cluster

= X = (@i);.,,_y, : pointsin cluster k

s Nj =| Xk|: number of points in cluster k

» fo(-; A) : marginal likelihood

Every few epochs, propose either SPLITS or MERGES
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3. DeepDPM

(2) Split & Merge

a) Split

Paper Review Seminar

IDeepDPM Clusteringi

soft cluster assignments soft subcluster assignments
~

c RNxd

features
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N images m X wmswnng@ets ——R By

gupdate K, the clustering net and the K subclustering nets as needed : < {(plit/merge decisions

Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate

subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

propose to split each of the clusters into 2 subclusters

e | split probability = min(1, Hy)

IF ACCEPTED ( = SPLIT) for cluster k...

e (Clustering Net) k-th unit of last layer is duplicated

o initialize the parameters of 2 new clusters, with parametes of SUBcluster nets

MK, (——ﬁk’l, Ekl «— zk,l, Tk

I‘LkQ — ﬁk,Z) 2/112 — 2k,2) Tk

L S T X T

5 — T X T2

o ki1 and k2 :indices of the new clusters
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gupdate K, the clustering net and the K subclustering nets as needed < split/merge decisions
(2) S pl It & M e rg e Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

a) Split

1<
2

By g1, T

By X2, Tr2
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3. DeepDPM

(2) Split & Merge

a) Split

1<
%K
<3
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| .
|DeepDPM Clustering| ™~
features soft cluster assignments soft subcluster assignments
Dot (it R

gupdate K, the clustering net and the K subclustering nets as needed i< {(split/merge decisions
Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

By g1, T

Broy B2, T2

—

Pri, 2k1, Tk X g1

[0, Xga, T X T2
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3. DeepDPM

(2) Split & Merge

b) Merge
Splits vs Merge

e Splits : can be done in parallel

e Merge : cannot ~

Paper Review Seminar

| .
|DeepDPM Clustering| ™~
features soft cluster assignments soft subcluster assignments
s> (Exiiacl —>R——
—> | clustering net | —— —
Nimages extractor ?é R 9 Re RNR Ksubclustenngv r.1ets R e

gupdate K, the clustering net and the K subclustering nets as needed i< {(split/merge decisions

Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

To avoid sequentially considering all possible merges...

-

— merges of each cluster with only its 3 nearest neighbors
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|DeepDPM Clusterlng|
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. e i — _
Ni Images m °'“3te”"9 net | —— R —> K subclustering nets | —— R e
update K the clustermg net and the K subclustering nets as needed """ split/merge decisions

(2) S pl it & M e rg e Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

b) Merge

Splits vs Merge

e Splits : can be done in parallel ‘

e Merge : cannot ~

To avoid sequentially considering all possible merges...

— merges of each cluster with only its 3 nearest neighbors

Merge probability : Hy, = 1/ Hg

IF ACCEPTED (= MERGE) ...

e 2 clusters are merged
e new subcluster network of the merged clusters is made

e one of the 2 clusters’ weight (connected to the last layer) is removed from £
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3. DeepDPM

(2) Split & Merge

b) Merge

1
;2
+1

Paper Review Seminar

| .
|DeepDPM Clustering| ™~
features soft cluster assignments soft subcluster assignments
Dot (it R

update K, the clustering net and the K subclustering nets as needed ;" [(Splitmerge decisions
Figure 2. DeepDPM’s pipeline: given features X, the clustering net outputs cluster assignments, R, while the subclustering nets generate
subcluster assignments, R. Upon the acceptance of split/merge proposals, all those nets are updated during the learning.

1
2
ﬁk,lagk,lawk X 1 weighted MAP

Boy B2, Tk X T2
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3. DeepDPM

(3) Novel loss function

motivated by EM algorithm in Bayesian GMM
( iterative procedure )

- [ E step ] assign cluster

- [ M step ] update cluster parameter

Paper Review Seminar
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3. DeepDPM

(3) Novel loss function

[ E step ] assign cluster

K
e Foreach ®; andeach k € {1, B B K} , compute E-step probabilities TP = rEk -
o is 172‘ .
o| 75, = B (e ke{l,...,K}. soft cluster assignment
! Zklzl ﬂklN(:L‘i;p,k/,Ek/)

e computed using (7, Kk, Ek)kK:l from previous epochs

encourage fo to generate similar soft assignments using the following new loss:

o L= Zfil KL (ri I r;E)
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3. DeepDPM

(3) Novel loss function

[ M step ] update cluster parameter

e uses the weighted versions of the MAP estimates of (7rk, i Ek)szl ,

where the weights are...
o T (X)

o 7;k (0) — output of f

K
for (ffub )kzl ... calculate Isotropic Loss :

K Ny 2 - -
Lgip = Zk:1 ZZ:I] Zj:l Ti,j || L — MK j ”?2
o where Ni, =| X%|

o fi ; : mean of subcluster j of cluster k

Paper Review Seminar
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4.

Experiments

(1) 3 Common Metrics ( Higher = Better )

1.

2,

3.

Paper Review Seminar

TP : ( same cluster & same label ), TN : ( different cluster & different label )
FP : ( same cluster & different label ), FN : ( different cluster & same label )

H(X) = - 3., P(z)logP()
N
Clustering Accuracy (ACC ) | ACC = max (Zm Ly = m(zi)))
m N P(X,Y)
I(X;Y) = ZZP(X Y)log P
. = P HY | X)- P(Y)log P(Y
Normalized Mutual Information ( NMI) | NMT = 2% I(y; 2) Z | Xy: BB
H(y) + H(z) = —H(Y | X) + H(Y)
— H(Y) - H(Y | X)
Adjusted Rand Index ( ARI )
. TP+ TN AT — Ekl (n;l) . [Ek (a;) El (13)]/(72;) ay, : sum of row kin .conting.ency table
T TP+TN+FP+FN %[Zk (azk) +3 (bzl)] - (azk) S (1’21)]/(721) by : sum of column lin contingency table
cr = |yk N 2|
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4. Experiments

(2) Comparison with classical methods

( Parametric : K-means, GMM // Non-parametric : DBSCAN, moVB, DPM sampler )

NMI ARl ACC NMI ARl ACC NMI ARl  ACC
MNIST [ 1¢] USPS [35] Fashion-MNIST [69]
K -means? 90+ .02 84+ .05 85+06 .86+£.01 .79+05 .80+06 .67+01 .50+£.03 .60+.04
GMM? 94100  95+.00 98+.00 .86+02 79+£05 8106 66+01 49+.02 .58+.03
DBSCAN 92£0 860 890 7240  46£0 5740 630  -32£0 390
DPM Sampler 92401 .91£04 .93+£05 .87+01 82402 .83£03 .67+£01 .49+ .02 .59+.03
moVB 93£00 94+00 9700 .87+£02 86+£.04 90+.04 66+02 A47+£03 55+.03
DeepDPM (Ours) .94+.00  .95+.00 9800 .88+.00 .86:+.01 .89+2 .68:+£01 .51+.02 .62+.03
MNIST*™ USPSi™ Fashion-MNIST*™
K -means? 89+.03 .84+ .06 83106 .82+£.02 71+05 71+05 62401 .46+£.02 .56+.03
GMM? 9402 95403  96+04 .83+£01 74+05 76+05 62401 46+.02 .57+.03
DBSCAN 9310 9240 940  84E£0 7980  80E0 6240 3580 4630
DPM Sampler ~ .93+.01  .94£02 .96+£02 .89+.02 .89+06 9104 .66+£01 .50+.01 .61+.01
moVB 94200 95400 96+00 .88+£01 .89+£.02 91+02 .63+01 .44+£02 .53+.02

DeepDPM (Ours) .95+.01 .97+.01 .98+.01 .90+.00 .92+.00 .94+.00 .65+.00 .50+.00 .61+.00

Table 1. Comparing the mean results (+std. dev.) of DeepDPM with classical clustering methods. The results are the mean of 10
independent runs. Methods marked with ? are parametric (require K). Datasets marked with ‘™" are imbalanced ones.
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4. Experiments

(2) Comparison with classical methods

among the nonparametric methods, DeepDPM'’s inferred is the closest to the GT

Method Inferred K

MNIST USPS Fashion-MNIST
DBSCAN 9.0+0.00 6.040.00 4.0+0.00
DPM Sampler 11.3+0.82 8.54+0.85 12.4+0.97
moVB 14+1.00 11.2+1.08 16.9+2.30

DeepDPM (Ours) 10+0.00 9.240.42 10.2+0.79

Table 2. Comparing the mean inferred value (£std. dev.) for K of
10 runs among nonparametric methods. GT K = 10.
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4. Experiments

(3) Comparison with deep non-parametric methods

MNIST [18] STL-10[15] Reuters10k [43]
Method NMI ARI ACC NMI ARI ACC NMI ARI ACC
AdapVAEf [74] avg .86+1.02 .84+2.35 N/A 75+0.53 71+0.81 N/A 45+£1.79 434573 N/A
DCCt [572] best 912 N/A .96 N/A N/A N/A .59 N/A .60
DCCi [52] avg 90+.02 .894+.07 .91+.07 .22+.00 .01£.00 .04+.00 .25+.00 .00£.00 .00+.00
DeepDPM (ours) avg 90+.01 91+.02 .934+.03 .78+.004 .70+.01 .844+.01 .61+.00 .64+.01 .83+.00
DeepDPM (ours) best 92 93 96 79 J1 85 .61 64 83
Table 3. Comparing deep nonparametric methods. }: reported in the papers. I: obtained using their code. avg: mean (+std. dev.) of 5 runs.
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4. Experiments

(4) Clustering the entire ImageNet dataset

initialized with K=200, and converged to K=707 ... (GT : K= 1000 )

Figure 3. Examples of ImageNet images clustered together by DeepDPM Each panel stands for a different cluster.
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4. Experiments

(5) Class Imbalance

Paper Review Seminar

Method NMI ARI ACC
ImageNet-50: Balanced
DBSCAN S52+.00 .09+.00 .24+.00
moVB 70£.01  .384+.01 .55+.02
DPM Sampler 72+£.00 434+.01 .57+.01

DeepDPM (ours) J75+£.00 49+.01  .64+.00
DeepDPM (ours)x . 77+.00 .54+.01 .66+.01

ImageNet-50: Imbalanced

DBSCAN 33£.00 .04+.00 .24+.00
moVB .68+.01 .44+.03 .52+.03
DPM Sampler .70£.00 .40+.01 .51+.00

DeepDPM (ours)  .74+.01 .48+.02 .58+.01
DeepDPM (ours)x .75+.00 .51+.01 .60+.01

Table 4. Comparison of nonparametric methods on ImageNet-50
and its imbalanced version. * marks results with AE alternation.

Method Final/best K: Final/best K:
balanced imbalanced
K -means? 40 20
DCN++? 60 40
SCANP 70 40
DBSCAN 16 13
moVB 46.2+1.3 46.4+1.1
DPM Sampler 72.0+2.6 70.3+4.6
DeepDPM (ours) 52.0+1.0 43.67+1.2
DeepDPM (ours)* 55.3+1.5 46.31+2.5

Table 5. Comparing the mean (+std. dev.) value for K found on
ImageNet-50 of 3 runs. For the parametric methods (marked with
P) we use the K value with the best silhouette score. * marks
results obtained with AE alternation.
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