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Unsupervised Scalable Representation Learning with MTS (2019)

1. Introduction

2. Triplet Loss

3. Triplet Loss with MTS

4. Encoder Architecture

5. Experiment
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Challenges in Time Series Data :

- (1) highly variable lengths 

- (2) sparse labeling → need for UNSUPERVISED learning

1. Introduction

Paper Review Seminar

03 / 37



Challenges in Time Series Data :

- (1) highly variable lengths 

- (2) sparse labeling → need for UNSUPERVISED learning

This paper proposes “Unsupervised method to learn universal embeddings of time series”

- scalable w.r.t length

- proposes …

- ( Architecture ) Encoder based on Causal Dilated Convolutions

- ( Loss Function ) Novel Triplet Loss for Time Series ( via time-based negative sampling )

- demonstrate transferability of the learned representations

1. Introduction
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compare distance between ( Anchor & Positive ) and  ( Anchor & Negative )

2.  Triplet Loss
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Unsupervised : no need for label of each TS

- originated from same TS ( of anchor ) : POSITIVE
- originated from different TS ( of anchor ) : NEGATIVE

3.  Triplet Loss with MTS
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How to choose POS / NEG samples ?
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How to choose POS / NEG samples ?



3.  Triplet Loss with MTS
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Triplet Loss Function

1 Positive sample K Negative sample
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4.  Encoder Architecture
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Dilated Causal Convolution

- Dilated Convolution 
- make receptive field larger ! ( with less computation )
- ex) filter size = (3,3) & dilation factor = 1 / 2 / 3
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Dilated Causal Convolution

- Causal Convolution 
- make convolution filter consider the “time order”
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Dilated Causal Convolution

Dilated = allow LONG sequence input

Causal = consider TIME ORDER (causality)

Global Max Pooling (GMP) = allow VARIABLE-LENGTH input 

- output of Dilated Causal Convolution : given to a GMP

→  squeeze the temporal dimension & 

    aggregate all temporal information in a fixed-size vector



4.  Encoder Architecture
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Dilated Causal Convolution
regardless of Input Length!



Investigate the relevance of the “learned representations”

- Experiment 1) Time Series Classification

- Experiment 2) Evaluation on Long Time Series 

5.  Experiment
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Experiment 1) Time Series Classification

- test the quality of learned representations on supervised tasks

- K ( # of negative samples ) : significant impact on the performance

→ present a combined version of our method

- representations trained with different values of K are concatenated
- enables the representations with different parameters to complement each other 

& remove some noise in the classification scores
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Experiment 1) Time Series Classification

1-1 ) Univariate TS  : accuracy for all 128 datasets of UCR archive

5.  Experiment
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trained with another dataset ( = FordA ), with K=5



Experiment 1) Time Series Classification

1-1 ) Univariate TS  : accuracy for all 128 datasets of UCR archive
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[ Sparsely Labeled ]

Green : SVM, trained on our representations of a randomly chosen labeled set 

Red : ResNet, trained on a labeled set of the same size



Experiment 1) Time Series Classification

1-1 ) Univariate TS  : accuracy for all 128 datasets of UCR archive

5.  Experiment
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[ Representations metric space ]



Experiment 1) Time Series Classification

1-2 ) Multivariate TS  (classification task)

: accuracy for 30 datasets of UEA archive 

5.  Experiment
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- dimension-Dependent DTW

- extension of DTW in the MTS setting

- best baseline studied by Bagnall et al. (2018). 



Experiment 2) Evaluation on Long Time Series

- UCR, UEA : mostly SHORT TS

- IHEPC dataset ( from UCI ) : LONG single TS ( length = 2,075,259 )

→ train / test = 5 x 10^5 / remaining

→ single Nvidia Tesla P100 GPU in no more than a few hours

5.  Experiment
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Experiment 2) Evaluation on Long Time Series

use learned encoder on 2 regression tasks ( with 2 different input scales )

5.  Experiment
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induce only a “slightly degraded performance”

but provide a “large efficiency improvement” 

( due to their small size compared to the raw TS )

Task : for each time step, predict the discrepancy between mean value of the series …..

- (1) for the next period (either a day or quarter)

- (2) for the previous period
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Unsupervised Representation Learning for TS with Temporal Neighborhood Coding (2021)

1. Introduction

2. Temporal Neighborhood Coding (TNC)
a. Overall Architecture

b. Sampling Bias & PU-Learning

c. 2 main components of TNC

d. Objective Function

3. Experiment

Paper Review Seminar

21 / 37



1. Introduction

Paper Review Seminar

22 / 37

Challenges in Time Series Data : sparse labeling → need for UN/SELF-SUPERVISED learning

This paper proposes …..

“Self-supervised method to learn generalizable representations for non-stationary TS”

proposes Temporal Neighborhood Coding (TNC)

- takes advantages of “local smoothness” of signal’s generative process to define neighborhood

- distinguish (1) & (2) 

- (1) distn of signals from NEIGHBORHOOD 

- (2) distn of signals from NON-NEIGHBORHOOD 



2.  Temporal Neighborhood Coding (TNC)
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- Self-supervised Framework for learning representations for complex Non-stationary MTS

- Temporal Settings : latent distribution of the signals changes over time

- Goal : capture the progression of the underlying temporal dynamics

- Characteristics :

- (1) efficient

- (2) scalable to high dimensions

- (3) can be used in different TS settings

(a) Overall Architecture
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(a) Overall Architecture
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(a) Overall Architecture
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(a) Overall Architecture

Non-neighborhood : far from window (anchor / reference)

→ is it always NEGATIVE samples? 



Sampling Bias
- Why does it occur?

→ randomly drawing negative samples from data distn MAY NOT result in negative samples !!

( may be actually SIMILAR to the reference )

- Solution 

→ consider samples from NON-neighborhood as “UN-labeled samples” ( not NEGATIVE )

→ “PU Learning”

2.  Temporal Neighborhood Coding (TNC)
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(b) Sampling Bias & PU-Learning



PU Learning ( Positive-Unlabeled Learning )
- classifier is learned, using…

- (1) Positive samples (P)

- (2) Unlabeled samples (U)

- mixture of Positive (P) & Negative (N) ( with a positive class prior        )

- falls into 2 categories

- (1) identify negative samples from the unlabeled cohort

- (2) treat the unlabeled data as negative samples, with “smaller weights”

- unlabeled samples should be properly weighted to make an unbiased classifier

2.  Temporal Neighborhood Coding (TNC)

Paper Review Seminar

27 / 37

(b) Sampling Bias & PU-Learning
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PU Learning ( Positive-Unlabeled Learning )

(b) Sampling Bias & PU-Learning



2.  Temporal Neighborhood Coding (TNC)
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(c) 2 main components of TNC



2.  Temporal Neighborhood Coding (TNC)
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(d) Objective Function
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(d) Objective Function

Neighborhood Non-Neighborhood



- assess the quality of the learned representations on multiple datasets 

- show that the representations are general and transferable to many downstream tasks 

( such as classification and clustering )

- outperforms existing approaches for unsupervised representation learning

- performs closely to supervised techniques in classification tasks

3.  Experiments
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- test the “generalizability” of the representations, by…

- comparing (1) classification performance & (2) clusterability

- with 2 SOTA for unsupervised representation learning for TS

- a) Contrastive Predictive Coding (CPC)

- b) Triplet-loss (T-Loss)

- etc) K-means (for “clustering”) & KNN with DTW (for “classification”)

( for fair comparison : use same encoder for all cases )

- Dataset )

- (1) Simulated Data / (2) Clinical Waveform Data / (3) Human Activity Recognition (HAR) Data 
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(1) Clusterability
- assess the distn of the representations in the encoding space

- ex) Simulated Data
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(1) Clusterability
- 2 cluster validity indices :

- (1) Silhouette score

- measures the similarity of each sample to its own cluster, compared to other clusters

- (range) -1 ~ 1 : greater score, better cohesion

- (2) Davies-Bouldin index

- measures intra-cluster similarity & inter-cluster differences

- smaller values indicate “low within-cluster scatter” & “large separation btw clusters 

- use K-means in the representation space to measure these scores
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(1) Clusterability

CPC = Triplet Loss ( on ECG Waveform )

CPC < Triplet Loss ( on Simulation )

- signals are highly “non-stationary” & transitions are “less predictable”
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(1) Clusterability
CPC : perform well on HAR

- most activities are recorded in a specific order, empowering predictive coding. 
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(2)  Classification
- compared with (1) supervised classifier & (2) KNN with DTW metric

- (1) supervised classifier : composed of an encoder & classifier 

( identical architectures with unsupervised model )

- metric : AUPRC (Area Under the Precision-Recall Curve)

- better metric for “imbalanced classification settings” ( ex. Waveform )
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(2)  Classification



3.  Experiments

Paper Review Seminar

37 / 37

(2)  Classification

CPC ( in HAR ) : performs well

- inherent ordering usually exists in HAR

CPC ( with increased non-stationarity ) : performance drops
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(2)  Classification

Triplet Loss

- samples positive examples from overlapping windows of TS

- vulnerable to map the overlaps into the encoding 

→ fail to learn more general representations. 
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(2)  Classification

TNC 

- samples from a wider distn ( = temporal neighborhood )

- thus, many of the neighboring signals do not necessarily overlap
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(2)  Classification

TNC > CPC & Triplet-Loss ….reason ? 

whether they consider “sampling bias” !

( happens when randomly selected NEG samples are similar to the reference )



Thank You !


