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Abstract

Time series constitute a challenging data type for machine learning algorithms,
due to their highly variable lengths and sparse labeling in practice. In this paper,
we tackle this challenge by proposing an unsupervised method to learn universal
embeddings of time series. Unlike previous works, it is scalable with respect to
their length and we d the quality, ility and practicability of
the learned representations with thorough experiments and comparisons. To this
end, we combine an encoder based on causal dilated convolutions with a novel
triplet loss employing time-based negative li btaining general-purpose
representations for variable length and multivariate time series.

https://arxiv.ora/pdf/1901.10738.pdf
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ABSTRACT

Time series are often complex and rich in information but sparsely labeled and
therefore challenging to model In this paper, we propose a self- superv1sed frame-
work for learning for 'y time series. Our
approach, called Temporal Neighborhood Coding (TNC), takes advantage of the
local smoothness of a signal’s generative process to define neighborhoods in time
with stationary properties. Using a debiased contrastive objective, our framework
learns time series representations by ensuring that in the encoding space, the
distribution of signals from within a neighborhood is distinguishable from the
distribution of non-neighboring signals. Our motivation stems from the medical
field, where the ability to model the dynamic nature of time series data is especially
valuable for identifying, tracking, and predicting the underlying patients’ latent
states in settings where labe].mg data is practically impossible. We compare our
method to recently developed unsupervised ion learning app

and demonstrate superior performance on clustering and classification tasks for
multiple datasets.

https://arxiv.ora/pdf/2106.00750.pdf
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Unsupervised Scalable Representation Learning with MTS (2019)

Introduction
Triplet Loss
Triplet Loss with MTS

Encoder Architecture

a > L h =

Experiment
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1. Introduction

Challenges in Time Series Data :

- (1) highly variable lengths
- (2) sparse labeling — need for UNSUPERVISED learning
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1. Introduction

Challenges in Time Series Data :

- (1) highly variable lengths
- (2) sparse labeling — need for UNSUPERVISED learning

This paper proposes “Unsupervised method to learn universal embeddings of time series”

- scalable w.r.t length
- proposes ...
- (Architecture ) Encoder based on Causal Dilated Convolutions
- (Loss Function ) Novel Triplet Loss for Time Series ( via time-based negative sampling )

- demonstrate transferability of the learned representations

03 /37



Paper Review Seminar

2. Triplet Loss

compare distance between ( Anchor & Positive ) and ( Anchor & Negative )

£ (A, P, N) = max( || £(4) - £(P)|[* — | £(4) — £(N)||* + o, 0)

A : Anchor input

P : Positive input Negative

ANGhor LEARNING .
N : Negative input Negative
Anchor

o : Margin ( between positive pair & negative pair ) Positive rosiive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
e negative pair : ( A, N) n?ax1mlzc?s thet distance between the anchor and a negative of a
different identity.

e positive pair: (4, P)

f : Embedding function
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3. Triplet Loss with MTS

How to choose POS / NEG samples ?

> Time

Figure 1: Choices of ™, 2P°° and x"°8.

Unsupervised : no need for label of each TS

- originated from same TS ( of anchor ) : POSITIVE
- originated from different TS ( of anchor ) : NEGATIVE
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3. Triplet Loss with MTS

How to choose POS / NEG samples ?

Algorithm 1: Choices of z**f, zP°s and (z}°®

)i e[1,x7 for an epoch over the set (Ys)icp, N7

1
2
3
4
5

for i € [1, N] with s; = size(y;) do

pick sP°® = size(xP**) in [1, s;] and 5™ = size (") in [sP°%, s;] uniformly at random;
pick ™ uniformly at random among subseries of y, of length s™¢f;

pick £P°S uniformly at random among subseries of z™f of length sP°s;
neg _

pick uniformly at random i), € [1, N], then s;°® = size(x,®) in [1, size(y, )] and finally

x, ¢ among subseries of y;, of length s7.°%, for k € [1, K].

Paper Review Seminar
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3. Triplet Loss with MTS

Triplet Loss Function

] log(a(f@ G)Tf

)

ilog(a(—f@ O)Tf ey,

y

1 Positive sample

y

K Negative sample

Paper Review Seminar
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4. Encoder Architecture
Dilated Causal Convolution

- Dilated Convolution
- make receptive field larger ! ( with less computation )
- ex) filter size = (3,3) & dilation factor=1/2/3

.

H BN BN B
H N BN EEE
H_EE B
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4. Encoder Architecture
Dilated Causal Convolution

- Causal Convolution
- make convolution filter consider the “time order”

0O 0 0000000000000 O oum

$806988006808086%8 ——

9800609880060 8 4 ——

6666666666 o -
Figure 2: Visualization of a stack of causal convolutional layers.
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4. Encoder Architecture

Dilated Causal Convolution

CITTTTTT LT T T T T T Joum

Dilation 2% = 4

Dilation 2 = 2

TIT

Dilation 2° = 1

Figure 2: (a) Illustration of three stacked dilated causal convolutions. Lines between each sequence

represent their computational graph. Red solid lines highlight the dependency graph for the computa-

tion of the last value of the output sequence, showing that no future value of the input time series is

used to compute it. (b) Composition of the i-th layer of the chosen architecture.

Paper Review Seminar

Dilated = allow LONG sequence input
Causal = consider TIME ORDER (causality)
Global Max Pooling (GMP) = allow VARIABLE-LENGTH input
- output of Dilated Causal Convolution : given to a GMP
— squeeze the temporal dimension &

aggregate all temporal information in a fixed-size vector
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4 . E n COd e r ArCh ite Ctu re class CausalCNNEncoder(torch.nn.Module):

IR - regardless of Input Length!
- . ncoder or a using a causa
Dilated Causal Convolution @5 e *

(8, C_in, L)]-> (B,C_out,L)
adaptive max pooling ( makes TS to fixed size )
B = (B, C_out, L) -> (B,C_out, 1)
C_in - 8 - (3) squeeze
(B,C_out, 1) -> (B,C_out)
L = 100 om

def __init__(self, in_channels, mid_channels, depth, reduced_size,

) . out_channels, kernel_size):
input = torch.randn((B, C_in, L)) super(CausalCNNEncoder, self).__init__Q)

output = cau_cnn(input)
causal_cnn = CausalCNN(in_channels, mid_channels, depth, reduced_size, kernel_size)
reduce_size = torch.nn.AdaptiveMaxPoolld(1)
printCoutput.shape) squeeze = SqueezeChannels(squeeze_dim = 2) # Time dimension
linear = torch.nn.Linear(reduced_size, out_channels)

print(input.shape)

torch. Size( [64, 8 ’ 100] self.network = torch.nn.Sequential(causal_cnn, reduce_size, squeeze, linear)
tOI"Ch . Sl Ze( [64 ’ 20] ) forward(self, x):

return self.network(x)
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5. Experiment

Investigate the relevance of the “learned representations”

- Experiment 1) Time Series Classification

- Experiment 2) Evaluation on Long Time Series
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5. Experiment

Experiment 1) Time Series Classification

- test the quality of learned representations on supervised tasks
- K ( # of negative samples ) : significant impact on the performance
— present a combined version of our method
- representations trained with different values of K are concatenated
- enables the representations with different parameters to complement each other

& remove some noise in the classification scores
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S2.1 Influence of K

5 E X p e rl m e nt As mentioned in Section 5, K can have a significant impact on the performance of the encoder. We

" notably observed that K = 1 leads to statistically significantly lower scores compared to scores
obtained when trained with X > 1 on the UCR datasets, justifying the use of several negative
examples during training. We did not observe any clear statistical difference between other values of

K on the whole archive; however, we noticed important differences between different values of K
when studying individual datasets. Therefore, we chose to combine several encoders trained with

EXpe ri ment 1 ) Ti me Se ries C IaSSification different values of K in order to avoid selecting it as a fixed hyperparameter.

- test the quality of learned representations on supervised tasks /
- K ( # of negative samples ) : significant impact on the performance
— present a combined version of our method
- representations trained with different values of K are concatenated
- enables the representations with different parameters to complement each other

& remove some noise in the classification scores
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5. Experiment

Experiment 1) Time Series Classification

1-1 ) Univariate TS : accuracy for all 128 datasets of UCR archive

Paper Review Seminar

Table 1: Accuracy scores of variants of our method compared with othe

supervised

methods, on some UCR datasets. Results for the whole archive are availapie in the su

material, Section S3, Tables S1, S2 and S4. Bold and underlined scores respectively indicate the best

and second-best (when there is no tie for first place) performing methods.

unsupervised

Unsupervised Supervised
Dataset Ours Ensemble
ST BOSS

K=5 K =10 Combined FordQ HIVE-COTE EE
DiatomSizeReduction 0.993 0.984 0.993 0.974 0.925 0.931 0.941 0.944
ECGFiveDays 1 1 1 1 0.984 1 1 0.82
FordB 0.781 0.793 0.81 0.798 0.807 0.711 0.823 0.662
Ham 0.657 0.724 0.695 0.533 0.686  0.667 0.667 0.571
Phoneme 0.249 0.276 0.289 0.196 0.321 0.265 0.382 0.305
SwedishLeaf 0.925 0.914 0.931 0.925 0.928 0.922 0.954 0.915

unsupervised supervised "supervised & ensemble
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Figure 3: Boxplot of the ratio of the accuracy
versus maximum achieved accuracy (higher is
better) for compared methods on the first 85 UCR
datasets.

trained with another dataset ( = FordA ), with K=5
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5. Experiment

Experiment 1) Time Series Classification

1-1 ) Univariate TS : accuracy for all 128 datasets of UCR archive

1.0
0.9

0.8

[ Sparsely Labeled ]

0.7
>
)

Green : SVM, trained on our representations of a randomly chosen labeled set

306
2

Red : ResNet, trained on a labeled set of the same size

0.4

03

0.2

1 10 100
Percentage of labeled data

Figure 4: Accuracy of ResNet and our method
with respect to the ratio of labeled data on TwoPat-
terns. Error bars correspond to the standard devi-
ation over five runs per point for each method.
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5. Experiment

Experiment 1) Time Series Classification

1-1 ) Univariate TS : accuracy for all 128 datasets of UCR archive

[ Representations metric space |
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20 v v 7 % e
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0 . »
v +
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L 10 RS {:*“" *
+
20 20 0%0% %0
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=30 =20 =10 ] 10 20 =30 =20 =10 o 10 20 30 =10 -5 0 5 10 b [}
(a) DiatomSizeReduction. (b) FordB. (c) OSULeaf.

Figure 5: Two-dimensional t-SNE (Maaten & Hinton, 2008) with perplexity 30 of the learned
representations of three UCR test sets. Elements classes are distinguishable using their respective
marker shapes and colors.
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5. Experiment

Experiment 1) Time Series Classification

1-2 ) Multivariate TS (classification task)

: accuracy for 30 datasets of UEA archive

DTWp

- dimension-Dependent DTW
- extension of DTW in the MTS setting
- best baseline studied by Bagnall et al. (2018).

Paper Review Seminar

Unsupervised

Dataset Ours

DTWp

K=5 K=10 K =20 Combined

ArticularyWordRecognition 0.967 0.973 0.943 0.987 0.987
AtrialFibrillation 0.2 0.067 0.133 0.133 0.2
BasicMotions 1 1 1 1 0.975
CharacterTrajectories 0.986 0.99 0.993 0.994 0.989
Cricket 0.958 0.972 0.972 0.986 1
DuckDuckGeese 0.6 0.675 0.65 0.675 0.6
EigenWorms 0.87 0.802 0.84 0.878 0.618
Epilepsy 0.971 0.971 0.971 0.957 0.964
Ering 0.133 0.133 0.133 0.133 0.133
EthanolConcentration 0.289 0.251 0.205 0.236 0.323
FaceDetection 0.522 0.525 0.513 0.528 0.529
FingerMovements 0.55 0.49 0.58 0.54 0.53
HandMovementDirection 0.311 0.297 0.351 0.27 0.231
Handwriting 0.447 0.464 0.451 0.533 0.286
Heartbeat 0.756 0.732 0.741 0.737 0.717
InsectWingbeat 0.159 0.158 0.156 0.16 -
JapaneseVowels 0.984 0.986 0.989 0.989 0.949
Libras 0.878 0.883 0.883 0.867 0.87
LSST 0.535 0.552 0.509 0.558 0.551
MotorImagery 0.53 0.54 0.58 0.54 0.5
NATOPS 0.933 0.917 0.917 0.944 0.883
PEMS-SF 0.636 0.671 0.676 0.688 0.711
PenDigits 0.985 0.979 0.981 0.983 0.977
Phoneme 0.216 0.214 0.222 0.246 0.151
RacketSports 0.776 0.836 0.855 0.862 0.803
SelfRegulationSCP1 0.795 0.826 0.843 0.846 0.775
SelfRegulationSCP2 0.55 0.539 0.539 0.556 0.539
SpokenArabicDigits 0.908 0.894 0.905 0.956 0.963
StandWalkJump 0.333 0.4 0.333 0.4 0.2
UWaveGestureLibrary 0.884 0.869 0.875 0.884 0.903
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5. Experiment

Experiment 2) Evaluation on Long Time Series

- UCR, UEA : mostly SHORT TS
- IHEPC dataset ( from UCI ) : LONG single TS ( length = 2,075,259 )
— train / test = 5 x 1025 / remaining

— single Nvidia Tesla P100 GPU in no more than a few hours

18 /37



5. Experiment

Experiment 2) Evaluation on Long Time Series

Paper Review Seminar

use learned encoder on 2 regression tasks ( with 2 different input scales )

Task : for each time step, predict the discrepancy between mean value of the series .....

(1) for the next period (either a day or quarter)

(2) for the previous period

induce only a “slightly degraded performance”
but provide a “large efficiency improvement”

( due to their small size compared to the raw TS )

Table 2: Results obtained on the IHEPC dataset.

Task Metric Representations Raw values

Test MSE | 8.92 X 10~2 8.92 X 10— 2

Day  wall time 125 Sniiin T

Test MSE | 7.26 x 10°2  6.26 X 10-2 |
Wall time 9s 1h 40min 15s |

Quarter
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Abstract

Time series constitute a challenging data type for machine learning algorithms,
due to their highly variable lengths and sparse labeling in practice. In this paper,
we tackle this challenge by proposing an unsupervised method to learn universal
embeddings of time series. Unlike previous works, it is scalable with respect to
their length and we d the quality, ility and practicability of
the learned representations with thorough experiments and comparisons. To this
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ABSTRACT

Time series are often complex and rich in information but sparsely labeled and
therefore challenging to model In this paper, we propose a self- supervnsed frame-
work for learning for 'y time series. Our
h, called p Neighborhood Coding (TNC), takes advantage of the
loca.l smoothness of a signal’s generative process to define neighborhoods in time
with stationary properties. Using a debiased contrastive objective, our framework
learns time series representations by ensuring that in the encoding space, the
distribution of signals from within a neighborhood is distinguishable from the
distribution of non-neighboring signals. Our motivation stems from the medical
field, where the ability to model the dynamic nature of time series data is especially
valuable for identifying, tracking, and predicting the underlying patients’ latent
states in settings where labe].mg data is practically impossible. We compare our
method to recently developed unsupervised ion learning ap
and demonstrate superior performance on clustering and classlﬁcauon tasks for
multiple datasets.
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Unsupervised Representation Learning for TS with Temporal Neighborhood Coding (2021)

1. Introduction

2. Temporal Neighborhood Coding (TNC)
a. Overall Architecture
b. Sampling Bias & PU-Learning
c. 2 main components of TNC
d

Objective Function

3. Experiment
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1. Introduction

Challenges in Time Series Data : sparse labeling — need for UN/SELF-SUPERVISED learning

This paper proposes .....

“Self-supervised method to learn generalizable representations for non-stationary TS”
proposes Temporal Neighborhood Coding (TNC)

- takes advantages of “local smoothness” of signal’s generative process to define neighborhood
- distinguish (1) & (2)

- (1) distn of signals from NEIGHBORHOOD

- (2) distn of signals from NON-NEIGHBORHOOD

22/ 37
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2. Temporal Neighborhood Coding (TNC)

(a) Overall Architecture

- Self-supervised Framework for learning representations for complex Non-stationary MTS
- Temporal Settings : latent distribution of the signals changes over time
- Goal : capture the progression of the underlying temporal dynamics
- Characteristics :
- (1) efficient
- (2) scalable to high dimensions

- (3) can be used in different TS settings
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2. Temporal Neighborhood Coding (TNC)

(a) Overall Architecture

Data

5
iy

'
(&
..:g 2

e ° Representation @ Representation @
[
L

p(y) p(v)

(a) Neighborhood samples (b) Non-neighboring samples

Figure 1: Overview of the TNC framework components. For each sample window W; (indicated
with the dashed black box), we first define the neighborhood distribution. The encoder learns the
distribution of windows sampled from N; and /N, in the representation space. Then samples from
these distributions are fed into the discriminator alongside Z;, to predict the probability of the

windows being in the same neighborhood.
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2. Temporal Neighborhood Coding (TNC)

(a) Overall Architecture

Notation Value of

e |X € RDXT|- MTS e too SMALL : many samples within neighborhood will OVERLAP

.X[

e too BIG: the neighborhood would span over multiple ounderlying states

t-3 t+3] window ....... refer as W,
27 2

(fail to distinguish among these states)

~* [N, [ temporal neighborhood of window W}

o set of all windows, with centroids t*, where|{t* ~ N(¢,n - d)

= 7:range of neighborhood
< © how to setn?

= (1) domain experts

= (2) determined by analyzing the stationarity properties of the signal for every W;
) : non-neighborhood of window W;

( considered as negative samples))
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2. Temporal Neighborhood Coding (TNC)

(a) Overall Architecture

Notation Value of

RPDxT)|. e too SMALL : many samples within neighborhood will OVERLAP

Non-neighborhood : far from window (anchor / reference)

— IS it always NEGATIVE samples?

non-neighborhood of window W}

Ve

( considered as negative samples)

25/37
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2. Temporal Neighborhood Coding (TNC)
(b) Sampling Bias & PU-Learning

Sampling Bias
- Why does it occur?

— randomly drawing negative samples from data distn MAY NOT result in negative samples !!

( may be actually SIMILAR to the reference )

- Solution

— consider samples from NON-neighborhood as “UN-labeled samples” ( not NEGATIVE )

— “PU Learning”

26 /37
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2. Temporal Neighborhood Coding (TNC)

(b) Sampling Bias & PU-Learning

PU Learning ( Positive-Unlabeled Learning )

- classifier is learned, using...
- (1) Positive samples (P)
- (2) Unlabeled samples (U)
- mixture of Positive (P) & Negative (N) ( with a positive class prior 7 )
- falls into 2 categories
- (1) identify negative samples from the unlabeled cohort
- (2) treat the unlabeled data as negative samples, with “smaller weights”

- unlabeled samples should be properly weighted to make an unbiased classifier

27137
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2. Temporal Neighborhood Coding (TNC)

(b) Sampling Bias & PU

-Learning

PU Learning ( Positive-Unlabeled Learning )

Samples from...

e (1)neighborhood ( N; )|: positive

e (2)|non-neighborhood ( N; )

- combination of

positive ( weight : w)

&

negative (weight: 1 — w)

o weight (w) : probability of having samples similar to Wy in N

= (1) can be approximated using the prior knowledge

= (2) or tuned as hyperparameter
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2. Temporal Neighborhood Coding (TNC)

(c) 2 main components of TNC

(1) Encoder : Z; = Enc(Wy)

e maps W; € RP*9t0 Z; € RM

(2) Discriminator : D(Z;, Z)

e approximates the probability of Z being the representation of a window in IV

e predicts the probability of samples belonging to the same temporal neighborhood

29/ 37
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2. Temporal Neighborhood Coding (TNC)

(d) Objective Function

L=—-Ew~x |Ew~n,[log D (Enc(W;),Enc(W;)) + Ew, ¥, (1 —w) xlog (1 —D(Z, Zk)) +we X logD (Zy, Zt)|]

D(Z,,2) D(Enc(W;),Enc(Wi))

30/ 37
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2. Temporal Neighborhood Coding (TNC)

Non-Neighborhood

(d) Objective Function
Neighborhood
L =—Ew,~x |[Ew;~n, [log D (Enc(W;), Enc(W;)) HEw 5, [(1 — w;) |¥ log(l — D (Zy, Zy)) Hwe|x log D (Zy, Zt)]]
D(Z,,2) D(Enc(W;),Enc(Wi))

30/ 37
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3. Experiments

- assess the quality of the learned representations on multiple datasets

- show that the representations are general and transferable to many downstream tasks
( such as classification and clustering )

- outperforms existing approaches for unsupervised representation learning

- performs closely to supervised techniques in classification tasks

31/37
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3. Experiments

- test the “generalizability” of the representations, by...
- comparing (1) classification performance & (2) clusterability
- with 2 SOTA for unsupervised representation learning for TS
- a) Contrastive Predictive Coding (CPC)
- b) Triplet-loss (T-Loss)
- etc) K-means (for “clustering”) & KNN with DTW (for “classification”)
( for fair comparison : use same encoder for all cases )

- Dataset)
- (1) Simulated Data / (2) Clinical Waveform Data / (3) Human Activity Recognition (HAR) Data
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3. Experiments

(1) Clusterability

- assess the distn of the representations in the encoding space

- ex) Simulated Data 5 TNC _ TrpletLoss

(a) TNC representations (b) T-loss representations (c) CPC representations

Figure 2: T-SNE visualization of signal representations for the simulated dataset across all baselines.
Each data point in the plot presents a 10-dimensional representation of a window of time series of
size 6 = 50, and the color indicates the latent state of the signal window. See Appendix A.7 for
similar plots from different datasets.
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3. Experiments

(1) Clusterability

- 2 cluster validity indices :
- (1) Silhouette score
- measures the similarity of each sample to its own cluster, compared to other clusters
- (range) -1 ~ 1 : greater score, better cohesion
- (2) Davies-Bouldin index
- measures intra-cluster similarity & inter-cluster differences
- smaller values indicate “low within-cluster scatter” & “large separation btw clusters

- use K-means in the representation space to measure these scores
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3. Experiments

CPC = Triplet Loss ( on ECG Waveform )

CPC < Triplet Loss ( on Simulation )
(1) Clusterability -

signals are highly “non-stationary” & transitions are “less predictable”

Simulation ECG Waveform HAR
Method  Silhouette 1 DBI | Silhouette 1 DBI | Silhouette 1 DBI |
TNC 0.71+0.01 0.36+0.01 0.44+0.02 0.74+0.04 0.61+0.02 0.52+0.04
CPC 0.51+£0.03 0.84+0.06| |0.26+0.02 1.4440.04| 0.58+0.02 0.5740.05
T-Loss 0.61+0.08 0.64+0.12| |0.25+0.01 1.30+0.03| 0.17£0.01 1.76+0.20
K-means 0.01+0.019 7.23+0.14 0.194+0.11 3.65+048 0.124+0.40 2.66+0.05
Table 1: Clustering quality of representations in the encoding space for multiple datasets.
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3. Experiments

(1) Clusterability

Paper Review Seminar

CPC : perform well on HAR

- most activities are recorded in a specific order, empowering predictive coding.

Simulation ECG Waveform HAR
Method  Silhouette 1 DBI | Silhouette 1 DBI | Silhouette 1 DBI |
TNC 0.71+0.01 0.36+0.01 0.44+0.02 0.74+0.04 0.61+0.02 0.52+0.04
CPC 0.51+0.03 0.84+0.06 0.26+0.02 1.44+0.04 |0.58+0.02 0.57+0.05 |
T-Loss 0.61+£0.08 0.64+0.12 0.25+0.01 1.30+0.03 0.17+£0.01 1.76+0.20
K-means 0.01+0.019 7.23+0.14 0.19+0.11 3.65+0.48 0.12+0.40 2.6610.05

Table 1: Clustering quality of representations in the encoding space for multiple datasets.
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3. Experiments

(2) Classification
- compared with (1) supervised classifier & (2) KNN with DTW metric
- (1) supervised classifier : composed of an encoder & classifier
( identical architectures with unsupervised model )
- metric : AUPRC (Area Under the Precision-Recall Curve)

- better metric for “imbalanced classification settings” ( ex. Waveform )
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3. Experiments

(2)

Classification
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Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.99+0.00 97.52+0.13 0.55+0.01 77.79+0.84 0.94+0.007 88.32+0.12
CPC 0.69+£0.06 70.26+6.48 0.42+0.01 68.64+0.49 0.93+0.006 86.43+1.41
T-Loss 0.78+£0.01 76.66+1.40 0.474+0.00 75.51£1.26 0.71+0.007 63.60+3.37
KNN 0.42+0.00 55.53£0.65 0.38+0.06 54.76+5.46 0.75+0.01 84.85+0.84
Supervised 0.99+0.00 98.56+0.13 0.67+0.01 94.81+0.28 0.98+0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.
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3. Experiments

(2)

Classification
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CPC (in HAR ) : performs well

inherent ordering usually exists in HAR

CPC ( with increased non-stationarity ) : performance drops

Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.99+0.00 97.52+0.13 0.55£0.01 77.79+0.84 0.94+0.007 88.32+0.12
CPC [0.6940.06 70.26+6.48 0.424+0.01 68.64-0.49] [0.93+0.006 86.43+1.41 |
T-Loss 0.78+£0.01 76.66+1.40 0.474+0.00 75.51£1.26 0.71+0.007 63.60+3.37
KNN 0.42+0.00 55.53£0.65 0.38+0.06 54.76+5.46 0.75+0.01 84.85+0.84
Supervised 0.99+0.00 98.56+0.13 0.67+0.01 94.81+0.28 0.98+0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.
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3. Experiments

(2)

Classification
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Triplet Loss

samples positive examples from overlapping windows of TS

vulnerable to map the overlaps into the encoding

— fail to learn more general representations.

Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.99+0.00 97.52+0.13 0.55+0.01 77.79+0.84 0.94+0.007 88.32+0.12
CPC 0.69+0.06 70.26+6.48 0.424+0.01 68.64+0.49 0.931+0.006 86.43+1.41
T-Loss 0.78+0.01  76.66+1.40 0.47+0.00 75.51+1.26 0.71+0.007  63.60+3.37
KNN 0.42+0.00 55.53£0.65 0.38+0.06 54.76+5.46 0.75+0.01 84.85+0.84
Supervised 0.99+0.00 98.56+0.13 0.67+0.01 94.81+0.28 0.98+0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.
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3.

(2)
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Experiments

Classification

TNC
- samples from a wider distn ( = temporal neighborhood )

- thus, many of the neighboring signals do not necessarily overlap

Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.994+0.00 97.52+0.13  0.55+0.01 77.79+0.84 0.94+0.007 88.32+0.12 |
CPC 0.69+£0.06 70.26+6.48 0.42+0.01 68.64+0.49 0.93+0.006 86.43+1.41
T-Loss 0.78+£0.01 76.66+1.40 0.474+0.00 75.51£1.26 0.71+0.007 63.60+3.37
KNN 0.42+0.00 55.53+0.65 0.38+0.06 54.76+£5.46 0.75+£0.01 84.85+0.84

Supervised  0.99+0.00

98.56+0.13 0.67+0.01 94.81+0.28 0.98+0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.
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3. Experiments TNC >CPC & Triplet-Loss ....reason ?
whether they consider “sampling bias” !

(2)

Classification

Paper Review Seminar

Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.994+0.00 97.52+0.13  0.55+0.01 77.79+0.84 0.94+0.007 88.32+0.12 |
CPC 0.69+£0.06 70.26+6.48 0.42+0.01 68.64+0.49 0.93+0.006 86.43+1.41
T-Loss 0.78+£0.01 76.66+1.40 0.474+0.00 75.51£1.26 0.71+0.007 63.60+3.37
KNN 0.42+0.00 55.53£0.65 0.38+0.06 54.76+5.46 0.75+0.01 84.85+0.84
Supervised 0.99+0.00 98.56+0.13 0.67+0.01 94.81+0.28 0.98+0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.

( happens when randomly selected NEG samples are similar to the reference )
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Thank You !




