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1. Variational Inference

1-1. MCMC vs Variational Inference

Two main approaches to find the (intractable) posterior in Bayesian Inference!

(1)MCMC : sampling from the unnormalized posterior

- (Pros) Unbiased

- (Cons) High computational cost

(2) Variational Inference : Approximating target distn with a simpler distn

- (Pros) Faster & Scalable 

- (Cons) Biased
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1. Variational Inference

1-1. MCMC vs Variational Inference

Will be going to focus on Variational Inference

Before getting on…

- KL divergence

- Jensen’s Inequality
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1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

( Non-negative )
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1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

ELBO ( Evidence Lower Bound )

Why called like that? Think of “Evidence” in Bayes rule!

( Non-negative )
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Jensen’s Inequality



1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

ELBO ( Evidence Lower Bound )

Why called like that? Think of “Evidence” in Bayes rule!

( Non-negative )
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Minimizing KL-divergence



1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

ELBO ( Evidence Lower Bound )

Why called like that? Think of “Evidence” in Bayes rule!

( Non-negative )
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Maximizing ELBO



1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

Interpretation of ELBO

Rewrite ELBO as below
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1. Variational Inference

1-2. Evidence Lower Bound (ELBO)

Interpretation of ELBO

Rewrite ELBO as below

Term 1) Encourage good fit! Term 2) Regularize! Encourage posterior to be close to prior
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1. Variational Inference

1-3. Mean Field Variational Inference (MFVI)

We have to optimize w.r.t ELBO, but how?

Mean Field Assumption

( For simplicity, variational parameters are factorized 

as below, with an Independent Assumption )

Due to the assumption, its flexibility is limited!
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1. Variational Inference

1-3. Mean Field Variational Inference (MFVI)
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1. Variational Inference

1-3. Mean Field Variational Inference (MFVI)

Solution ( proof on the next page )

Coordinate-ascent method
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CAVI (Coordinate Ascent Variational Inference)



1. Variational Inference

1-3. Mean Field Variational Inference (MFVI)

Proof )
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1. Variational Inference

1-3. Mean Field Variational Inference (MFVI)

Algorithm
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2. Stochastic Variational Inference

Stochastic Variational Inference (SVI)? 

a stochastic optimization algorithm for mean-field variational inference, 

that can handle massive dataset (scalability)

- Mean Field Variational Inference

- Stochastic Optimization
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2. Stochastic Variational Inference

Mean Field Variational Inference

Factorize joint distribution

Approximate using MFVI

( This time, we will set hidden variables into 2 parts )
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Global latent variable

Local latent variable

Approximating distn :



2. Stochastic Variational Inference

Mean Field Variational Inference
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2. Stochastic Variational Inference
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2. Stochastic Variational Inference

INEFFICIENT for large data sets!

( should optimize the local variational params for each data, before re-estimating the global variational params ) 

SVI uses “stochastic optimization” to fit global variational parameters. 
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Each data has its OWN local variational parameter



2. Stochastic Variational Inference

Algorithm
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Simple! Just think it as

(1) SGD + (2) VI
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3. Variational Auto Encoder

3-1. Structure of VAE
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Auto Encoder : “The aim of an autoencoder is to learn a representation (encoding) for a set of data “

What’s the difference between AE & VAE?

Auto Encoder (AE)



3. Variational Auto Encoder

3-1. Structure of VAE
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3. Variational Auto Encoder

3-1. Structure of VAE

Variational Inference : approximate with variational distribution!

Seunghan Lee, Yonsei University

( use Neural Network! Flexible! )

Objective Function (ELBO)

- Minimize KL-divergence

= Maximize ELBO



3. Variational Auto Encoder

3-1. Structure of VAE
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Stochastic Optimization

1) Mini-batch

2) Monte Carlo Estimation

Update the parameters of Encoder & Decoder.

Due to flexible & complex model ( Neural Network ), it seems hard to solve…

But using some techniques ( + tricks ), we can solve it!

Tricks

1) Log-derivative trick

2) Reparameterization trick



3. Variational Auto Encoder

3-2. Update Decoder
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Not that hard to solve!



3. Variational Auto Encoder

3-3. Update Encoder
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A bit trickier than updating Encoder… 

We need some tricks to solve this!



3. Variational Auto Encoder

3-3. Update Encoder
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a. Log Derivate Trick

For question like solving 



3. Variational Auto Encoder

3-3. Update Encoder
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a. Log Derivate Trick



3. Variational Auto Encoder

3-3. Update Encoder
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a. Log Derivate Trick

1. Mini batching

2. Log-derivative Trick

Apply it to our derivative of ELBO!



3. Variational Auto Encoder

3-3. Update Encoder
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b. Reparameterization Trick

We can not backpropagate through “random” variable! 

It should be deterministic!



3. Variational Auto Encoder

3-3. Update Encoder
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b. Reparameterization Trick Apply it to our derivative of ELBO!

( simple example )

where



3. Variational Auto Encoder

Summary of VAE
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3. Variational Auto Encoder

3-4. Implementation using Pytorch
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https://seunghan96.github.io/stat/gan/bnn/code-6.Variational-Auto-Encoder/



Summary 
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Have dealt with basic concepts to know before reading papers about 

various variational inference methods, Bayesian NN.

Next Presentation : Normalizing Flow



Thank you !
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Review of Papers regarding VI/BNN 

( + some Statistical Models / Machine Learning / Deep Learning )

can be found in my github blog below :)

https://seunghan96.github.io/

( for more about VI/BNN https://seunghan96.github.io/categories/bnn/ )

https://seunghan96.github.io/
https://seunghan96.github.io/categories/bnn/

