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1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

1. TIME Domain Analysis:

- provides an intuitive understanding of the data's characteristics

- ex) when changes occurred & magnitude of values

- can identify trends, cycles, and seasonality
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1. TIME Domain Analysis:

- provides an intuitive understanding of the data's characteristics

- ex) when changes occurred & magnitude of values

- can identify trends, cycles, and seasonality

2. FREQUENCY Domain Analysis:

- useful for identifying the periodicity of data

- can be used to analyze the frequency distribution of data

- + ) can filter noise from data, resulting in refined data

Better to use BOTH!
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1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Fourier Transform : TIME domain -> FREQUENCY domain

https://www.youtube.com/watch?v=60cgbKX0fmE

06 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

07 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

07 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

07 / 54

DC

AC



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Example) 

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

08 / 54
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1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Example) 

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

08 / 54

using 1 sine function



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Example) 

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

08 / 54

using 5 sine function



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Example) 

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

08 / 54

using 11 sine function



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmEamplitude frequency phase

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

09 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

10 / 54



1. Time Series Data in TIME & FREQUENCY Domain

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

https://www.youtube.com/watch?v=60cgbKX0fmE

Thus, able to express any periodical function, using sin & cos!

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c) Fourier Transform

Inner Product : Relationship between two functions

Relationships between sin & cos => ORTHOGONAL
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Expect that TIME-based and FREQUENCY-based representations of the same data 

to be located close together in the time frequency space

2. Abstract

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency 

Consistency
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Contributions 

- adopts contrastive learning in

- in TIME space

- in FREQUENCY space

- in TIME & Frequency space 

- propose a set of novel augmentations 

- based on the characteristic of frequency spectrum

- first work to implement augmentation in frequency domain

- evaluate the new method on eight datasets

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

2. Abstract
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Problem Formulation 

a) Notation

3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency
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Problem Formulation 

b) Problem 

= Self-Supervised Contrastive Pretraining for TS

3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency
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Model Architecture

3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

a) Time Based Contrastive Encoder

Contrastive Time Loss
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

Frequency Transformation

Frequency component

= base function (e.g., sinusoidal function for Fourier transformation) with the corresponding frequency and amplitude
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

Augmentation

24 / 54



3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

Augmentation

24 / 54



3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

25 / 54



3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

25 / 54



3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

26 / 54



3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Model Architecture

b) Frequency Based Contrastive Encoder

26 / 54

 



3. Time-Frequency Consistency (TF-C)
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Time-Frequency Consistency

Instead of Triplet Loss … 

why not directly use NT-Xent Loss?
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Total Loss Function
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3. Time-Frequency Consistency (TF-C)

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

Final Embeddings
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4. Conclusion

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency

- Contrastive Learning in Frequency domain

- Data Augmentation in Frequency domain

- Suggestions
- 1) Inverse Fourier Transform after augmentation in Frequency domain?

( = working in Frequency domain only in augmentation step )

- a) no need for three types of loss functions

- b) only need one type of encoder

- inherent Time & Frequency Loss

- 2) Instead of Triplet loss in TF-C, why not use direct comparison (ex. NT-Xent) across different domains?  
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Disentangled Representation Learning

- disentangle features (factors) from input data

- get representation for each factor

1. Time Series Decomposition

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

Input Data

Factor 1

Factor 2

Factor m

Z 1

Z 2

Z m

Embedding 
Layer
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Disentangled Representation Learning

- TS in DL : learn (1) feature representation & (2) prediction function e2e

=> prone to overfitting!

- worsens when the representations are entangled!

1. Time Series Decomposition

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
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Disentangled Representation Learning

- TS in DL : learn (1) feature representation & (2) prediction function e2e

=> prone to overfitting!

- worsens when the representations are entangled!

TS = composed of “seasonal module” + “non-linear trend”

- Problem : change in one module, affect other module!

=> how can we disentangle TREND & SEASONALITY?

1. Time Series Decomposition

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
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Decompose Time Series (TS) into..
- (1) Trend
- (2) Seasonality
- (3) Residual

2 ways of TS decomposition
- (1) Additive

- (2) Multiplicative

1. Time Series Decomposition

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
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Ways of extracting Trend from TS : 

- ex) Moving Average ( look back window of H )

1. Time Series Decomposition

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
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2. Abstract

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

CoST = Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

● applies contrastive learning methods, to learn disentangled seasonal-trend representations

● comprises both

○ (1) TIME domain contrastive losses

○ (2) FREQUENCY domain contrastive losses

● use structural time series model

○ TS = trend + season + error variable
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a) Problem Formulation

3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

1. Seasonal-Trend Representations

propose CL framework to learn disentangled seasonal & trend representation for LTSF task

- LTSF task : Long Sequence Time-Series Forecasting task
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b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretation

Introduce structural priors for TS

● use Bayesian Structural Time Series Model

3. CoST
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3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

2. Seasonal-Trend Contrastive Learning Framework

step 0) Augmentation

- obtain robustness to error variables
- uses ..

- 1) scaling
- 2) shifting
- 3) jittering
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step 1) Encoder

3. CoST
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2. Seasonal-Trend Contrastive Learning Framework
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step 2) Trend & Seasonal Representation

3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
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step 3) Concatenate

Concatenate the outputs of Trend and Seasonal Feature Disentaglers,

to obtain final output representations

3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

2. Seasonal-Trend Contrastive Learning Framework
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1) Trend Feature Representation

3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. Trend & Seasonal Feature Representation
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1) Trend Feature Representation
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MA of window size 2,4,8,16 …

= Convolutional filter with kernel size 2,4,8,16 … 



1) Trend Feature Representation

3. CoST
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1) Trend Feature Representation

Time Domain Contrastive Loss

3. CoST
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2) Seasonal Feature Representation

3. CoST
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2) Seasonal Feature Representation

3. CoST
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Representation for AMPLITUDE & PHASE of each frequency



2) Seasonal Feature Representation

3. CoST
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3) Overall Loss

3. CoST

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. Trend & Seasonal Feature Representation
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4. Conclusion

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

54 / 54

- Time Series Decomposition using DL module

- different kernel sizes to obtain multiple trends

- Representation Learning in …

- (1) Time Domain ( for TREND )

- (2) Frequency Domain ( for SEASONALITY )

- 2-1) Amplitude

- 2-2) Phase

- Limitation : evaluation only on FORECASTING tasks



Thank You!


