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Abstract

Pre-training on time series poses a unique challenge due to the potential mismatch
between pre-training and target domains, such as shifts in temporal dynamics,
fast-evolving trends, and long-range and short-cyclic effects, which can lead to
poor downstream performance. While domain adaptation methods can mitigate
these shifts, most methods need examples directly from the target domain, making
them suboptimal for pre-training. To address this challenge, methods need to
accommodate target domains with different temporal dynamics and be capable
of doing so without seeing any target examples during pre-training. Relative
to other modalities, in time series, we expect that time-based and frequency-
based representations of the same example are located close together in the time-
frequency space To thls end we pOSl[ that time-frequency consistency (TF-C) —

b d of an example close to its frequency-based

C.

https://arxiv.org/pdf/2206.08496.pdf

nelghborhood is d rable for pre-training. Motivated by TF-C, we define a
decomposable pre-training model, where the self-supervised signal is provided by

Published as a conference paper at ICLR 2022
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ABSTRACT

Deep learning has been actively studied for time series forecasting, and the main-
stream paradigm is based on the end-to-end training of neural network architec-
tures, ranging from classical LSTM/RNNs to more recent TCNs and Transform-
ers. Motivated by the recent success of representation learning in computer vi-
sion and natural language processing, we argue that a more promising paradigm
for time series forecasting, is to first learn disentangled feature representations,
followed by a simple regression fine-tuning step — we justify such a paradigm
from a causal perspective. Following this principle, we propose a new time se-
ries representation learning framework for long sequence time series forecasting
named CoST which apphes contrastive learning methods to learn disentangled
1t CoST ises both time domain and frequency
domain contrastive losses to learn discriminative trend and seasonal representa-
tions, respectively. Extensive experiments on real-world datasets show thal CoST
consistently outperforms the state-of-the-art methods by a
achieving a 21.3% improvement in MSE on multivariate benchmarks. lt is also
robust to various choices of backb ders, as well as
Code is available at ht tps: //github.com/salesforce/CoST.

https://arxiv.org/pdf/2202.01575.pdf

(NeurlPS 2022)

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting (ICLR 2022)
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poor downstream performance. While domain adaptation methods can mitigate
these shifts, most methods need examples directly from the target domain, making
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1. Time Series Data in TIME & FREQUENCY Domain

1.  TIME Domain Analysis:
- provides an intuitive understanding of the data's characteristics
- ex) when changes occurred & magnitude of values

- can identify trends, cycles, and seasonality

Dependent Variable

Time
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1. Time Series Data in TIME & FREQUENCY Domain

1.  TIME Domain Analysis:

- provides an intuitive understanding of the data's characteristics

Dependent Variable

- ex) when changes occurred & magnitude of values

- can identify trends, cycles, and seasonality W

Time

2. FREQUENCY Domain Analysis:

- useful for identifying the periodicity of data

e

- can be used to analyze the frequency distribution of data R 4 OO
“‘v'\, l ) \‘\v )
-+ ) can filter noise from data, resulting in refined data W /

- Better to use BOTH!
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1. Time Series Data in TIME & FREQUENCY Domain

Different Perspective of TS data
- (1) Time Domain
- (2) Frequency Domain

10 26 36 4b 56
Frequency [HZz]
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1. Time Series Data in TIME & FREQUENCY Domain

Different Perspective of TS data
- (1) Time Domain
- (2) Frequency Domain

B A g A B bt
40 60 80

Frequency [Hz]

analyzing in FREQUENCY domain : useful in periodical functions
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1. Time Series Data in TIME & FREQUENCY Domain

Different Perspective of TS data
- (1) Time Domain
- (2) Frequency Domain

|
- WWM Pt ol Ny
40 60 80

Frequency [Hz]

analyzing in FREQUENCY domain : useful in periodical functions

https://www.youtube.com/watch?v=60cgbKX0fmE

05/54



Self-=Supervised Contrastive Pre—Training for Time Series via Time—Frequency Consistency

1. Time Series Data in TIME & FREQUENCY Domain

Fourier Transform : TIME domain -> FREQUENCY domain

20 3 40 50
Frequency [Hz]

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

https://www.youtube.com/watch?v=60cgbKX0fmE

07 /54



Self-=Supervised Contrastive Pre—Training for Time Series via Time—Frequency Consistency

1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula

-
(0]
(@)}
S
- ¢) Fourier Transform . &

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

Example)

How can we express this function, using Fourier Series?

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

using 1 sine function

Example)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

using 5 sine function

Example)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
a) Fourier Series
b) Euler’s formula
c) Fourier Transform

using 11 sine function

Example)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

e Flot = cos(wt) + isin(wt)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

e Flot = cos(wt) + isin(wt)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

e Flot = cos(wt) + isin(wt)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

e Flot = cos(wt) + isin(wt)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
a) Fourier Series
b) Euler’s formula
c) Fourier Transform

e Flot = cos(wt) + isin(wt)

f(t) . Re{l L eiZn*(t—O.lzs)}

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
a) Fourier Series
b) Euler’s formula
c) Fourier Transform

e Flot = cos(wt) + isin(wt)

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

f(w)= J-_oof(t) cos(wt) dt + l'f_oof(t) sin(wt)dt f(w) = f F(t)etiotds

=]

>

L ——

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

Inner Product : Relationship between two functions

(7.9) = [ r©g a

Relationships between sin & cos => ORTHOGONAL

(f g) = jsin(t) cos(t)dt =0

Thus, able to express any periodical function, using sin & cos!

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
a) Fourier Series
b) Euler’s formula
c) Fourier Transform

fwy = | foe e

FON= j_oo £ (©) [cos(wt) + isin(wt)] dt

f(w) = foof(t) cos(wt) dt + ijoof(t) sin(wt)dt

https://www.youtube.com/watch?v=60cgbKX0fmE
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries

- @) Fourier Series calculate using inner product : [JENES jf(t)g(t) dt

- b) Euler’s formula
- c¢) Fourier Transform

sin(2m * 1 = t)

IS

https://www.youtube.com/watch?v=60cgbKX0fmE

Frequency [Hz]
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries

- @) Fourier Series calculate using inner product : [JENES jf(t)g(t) dt

- b) Euler’s formula
- c¢) Fourier Transform

sin(2m x 1 x t) Sin(2m * 2 x t)

IS

https://www.youtube.com/watch?v=60cgbKX0fmE

Frequency [Hz]
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries

- @) Fourier Series calculate using inner product : [JENES jf(t)g(t) dt

- b) Euler’s formula
- c¢) Fourier Transform

sin(2r *x 1 = t) sin(2mw % 2 % t) sin(2m * 3 * t)

https://www.youtube.com/watch?v=60cgbKX0fmE

Frequency [Hz]
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1. Time Series Data in TIME & FREQUENCY Domain

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

)= [ r@g a

sin(2m * 1 = t)

IS

5 https://www.youtube.com/watch?v=60cgbKX0fmE
Frequency [Hz]
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1. Time Series Data in TIME & FREQUENCY Domain

fmf(t)cos(mt)dt

Preliminaries
- a) Fourier Series
- b) Euler’s formula
- c¢) Fourier Transform

COSs

Example :
Frequency [Hz]

J. f(t) sin(wt) dt

sin

0
Frequency [Hz]

https://www.youtube.com/watch?v=60cgbKX0fmE

14 /54



Self-=Supervised Contrastive Pre—Training for Time Series via Time—Frequency Consistency

1. Time Series Data in TIME & FREQUENCY Domain

{ f(t) cos(wt) dt

Preliminaries

- a) Fourier Series co
- b) Euler’s formula R f(t) * elwt dt
- c) Fourier Transform e
— 00
cos .
0.5
Example : -10 ¥ 0

Frequency [Hz]

Frequency [Hz]

https://www.youtube.com/watch?v=60cgbKX0fmE
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2. Abstract

Self-Supervised Contrastive Pre—Training for Time Series via Time—Frequency

Consistency

Time series

oty

ML

A

:

Time-based
contrastive encoder

{

Frequency-based
contrastive encoder

-

? =~

R |

e

-

.z,T

~

~
A

A ’
' Time-Frequency

| F
+ Consistency (TF-C) + %@
’

Expect that TIME-based and FREQUENCY-based representations of the same data

to be located close together in the time frequency space

15/ 54
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2. Abstract

Contributions

- adopts contrastive learning in
- in TIME space
- in FREQUENCY space
- in TIME & Frequency space
- propose a set of novel augmentations
- based on the characteristic of frequency spectrum
- first work to implement augmentation in frequency domain

- evaluate the new method on eight datasets

16 / 54
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3. Time-Frequency Consistency (TF-C)

Problem Formulation

a) Notation

e pre-training dataset : pprret — {m?ret | i=1,... ,N} .... (unlabeled) Self-supervised One-to-many independent fine-tuning
pre-training Scenario 1 Scenario 2 Scenario 3
- w?ret :Kpret channels & Lpret time-stamps W Gesture recognition Fault detection Seizure diagnosis
v IR -l UM
A AW TN F i

PV NN

meawe HEOY L L B B
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3. Time-Frequency Consistency (TF-C)

Problem Formulation

a) Notation

e pre-training dataset : pprret — {m?ret | i=1,... ,N} .... (unlabeled) Self-supervised One-to-many independent fine-tuning
pre-training Scenario 1 Scenario 2 Scenario 3
- wpret . Kpret channels & Lpret time-stamps W Gesture recognition Fault detection Seizure diagnosis

Ay WAF* i @ YN
e fine-tuning dataset : D™ = {(!° y;) |1 =1,..., M} ... (labeled) B
g {(a™ 5:)| ) e S N

o classlabel:y; € {1,...,C} —— /_L\ /_L\ /_L\
o (M < N). ':.'> F(-,®)

meawe HEOY L L B B
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3. Time-Frequency Consistency (TF-C)

Problem Formulation

a) Notation

e pre-training dataset : DP™®t = {cc

pret
7

[#=lgen: ,N} .... (unlabeled)

t N
o & : KPPt channels & LP™ time-stamps

e fine-tuning dataset : D™ = {(!° y;) [i=1,...,M} ...

o class label :y; € {1,...,

o (M < N).

® |nput time series :|®

* Frequency spectrum {z;

i

C}

(labeled)

Self-supervised
pre-training

Ry
A AN A WA

One-to-many independent fine-tuning

Scenario 1 Scenario 2 Scenario 3
Gesture recognition Fault detection Seizure diagnosis
"W““ o Q W
ww gy

B o S

Well-trained model
considering TF-C

DI 42 L B B
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3. Time-Frequency Consistency (TF-C)

Problem Formulation

b) Problem
= Self—Supervised Contrastive Pretraining fOI" TS Self-supervised One-to-many independent fine-tuning
pre-training Scenario 1 Scenario 2 Scenario 3
W Gesture recognition Fault detection Seizure diagnosis
Goal : use DP'* to pre-train F W @@"f"‘” Wi Q @)
AN it

—» generate a generalizable representation z{™¢ = F (@i ) E—— /_L\ /_L\ /_L\
P =

e Fis pre-trained on DP*" & O are fine-tuned using D¢ conscemg 1o Ay Jh @@ @ Q @

o F(-,0)to F(:, ®) using dataset Dtune

e NOT a domain adaptation !!
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3. Time-Frequency Consistency (TF-C)

Model Architecture

F :4 components

e |(1) time encoder : G

e |(2) frequency encoder : Gy

e |(3) two cross-space projectors|: ( map to time-frequency space )

o (3-1) for time domain : Ry
o (3-2) for frequency domain : Rp

— 4 components embed x; to the latent time-frequency space

Time Series |,

) i .
' Positive pair

w!

<4
' Negative pair

|.° | xiF I encoder

Frequency

Gr

Lr;

Loy

Lr;

Time loss Frequency loss Consistency loss

19/ 54
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3. Time-Frequency Consistency (TF-C)

Model Architecture

a) Time Based Contrastive Encoder

Lr;
b
. !
cra———yd
Time Series W | — .
x; | | ) Le,
! Frequency "
x E xiF en&der h.iF;# : “ ‘\
1
' — '
; lleL HHE .
: ~F Gr t:F : R . ‘
4 x‘,’ ~ 1
i — 1
: | ] ~
' o hirl;‘, ; Lrs

Al - : A ; ; . )
' Positive pair ¥' Negative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture
a) Time Based Contrastive Encoder
Data Augmentation

e input:;
e Augmentation: BT : 2f — xT
e output:(set) XT ....... Zl € Xt

o augmented based on temporal characteristics

Time Series

s i .
' Positive pair

xiF encoder
—

Frequency

Gr

‘
I =

F

4
' Negative pair

Time loss

Frequency loss

Lr;

L,

Lr;

Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture

a) Time Based Contrastive Encoder

Data Augmentation .
Iy
e input:;
e Augmentation: BT : ] — xT |—|:x,- - |
T ~T T Time Series W
e output:(set) X ....... T c i i Leyi
o ; - Frequency
o augmented based on temporal characteristics Qe ! Fnea
| Lk
E <F Gn
. . b
Time-based augmentation bank | P
' T Lr;
e ex)jittering, scaling, time-shifts, and neighborhood segments .| ~ "77TTommmmosooommsmmmmooeees
e use diverse augmentations ;‘ Positive pair f Negative pair Time loss Frequency loss Consistency loss
o make more robust time-based embeddings!
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3. Time-Frequency Consistency (TF-C)

Model Architecture

a) Time Based Contrastive Encoder

Procedure e
i encoder h{ y : Lo
e step 1) randomly select an augmented sample Z} € X, : ;i/,\\v coder T ﬁ
1 —
[ a = er| i AH:
xj " I : M—) 1
Time Series W | — {7 p A =
; Frequency 5t ' : H
K ' xF encoder hf;# . X 2!
Ltk — |
: e aNYL -
: | %F | FHH:
T — i
! o Eirl;‘, : Lr;

Al - : A ; ; . )
' Positive pair ¥' Negative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture

a) Time Based Contrastive Encoder

Procedure ,

! r
e step 1) randomly select an augmented sample Z} € X, M encoder by ﬁ

Lr;

e step 2) feed into a contrastive time encoder Gt | l ! oT Gr
~ X; A

o hT GT ( ) & th = GT (5?) Time Series WI

, . . A Iy - emee e N L,
o assume these two are close, if from same % m | | """"""'F;e;;;r;c‘y """"" : x '
: F

(far, if differentz)

Gr

o pos & neg pairs :

= pos pairs: (z], ;) , Lr;
= neg pairs i (ZIBT il?;[‘) and (il?;[‘, i?) ,ﬁ Positive pair ,’4 Negative pair Time loss Frequency loss Consistency loss

21/54



Self—=Supervised Contrastive Pre—Training for Time Series via Time—Frequency Consistency

3. Time-Frequency Consistency (TF-C)

Model Architecture

a) Time Based Contrastive Encoder

Procedure c
Ty
e step 1) randomly select an augmented sample Z} € X
e step 2) feed into a contrastive time encoder Gt
T T\ ¢ T ~T o - I
o hl = GT (ml ) & hz = GT (33z ) Time Series W
. . - | | Le,
o assume these two are close, if from same ¢ B i Freemenes - '
. L ! xF encoder hf;#
(far, if different ¢ ) ; || ||||| —] | o+
o pos & neg pairs : LAy %F -
: £
= pos pairs : (z, ] ) J"""_h}r Lr
= neg pairs : (ZE;F, il?;[‘) and (il?;[‘, i?) ,ﬁ Positive pair f Negative pair Time loss Frequency loss Consistency loss

e step 3) calculate contrastive time loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture
a) Time Based Contrastive Encoder

Contrastive Time Loss

e adopt the NT-Xent (the normalized temperature-scaled cross entropy loss)

exp (sim (h?,fl?) /7')
zjeppret Tizj exp(sim(h,G(;)) /7)

‘| ET,i =d (h;I',E;I,Dpret) = —log 5

o where sim(u,v) = uTv/ || u ||| v ||

o @; € DPr : different TS sample and its augmented sample
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder ; enT;g‘jer BT % Lr;

1
1 1
l ’
Time Series W ' —— h p = "
: + : ' y ' ;
x MOl | e i . i \\ LC,,'
: Frequency i ! N
L ! xF encoder bf F 1 A
1 N
i 2
] G . i
: | " . u:l-_' :
1| X;
i —
1 ~
I — b ’I;‘ L

Al - : A ; ; . )
' Positive pair ¥' Negative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder ; enT;g‘jer BT % Lr;

Frequency Transformation Lo Gr
e 1 _@
B

° inpUt . wi Time Series Ej é — ;) i :' ‘ :, :
x MM I!1 ! L. - i 2 i \\ LC,i
y ' F T ¢ :
e transformation : transform operator I,I'VIA\V T A4 | encoder h,ﬁ \ \
(e. g., Fourier Transformation ) 5 .I.|...|.L|].I.,_" '

' Gr i ~i
1 ~F | »
1| X; \,I
° output:azf ' | L =1
. h; 7 Lr;

Al - : A ; ; . )
' Positive pair ¥' Negative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder

T
I M_’ _ﬁ .
Frequency Transformation ' oxT . -
— | .
° Inputa: Time Series W
otk g

x MM I!1 ! L. - ! : \l " ‘: LC,i
i i 7 . -1
e transformation : transform operator I,I'V/A\V |LJ l I encoser h,ﬁ \ \

(e. g., Fourier Transformation )
Gr i i
,._,F |\ »
|xi , :F
h; Lr;

]

e output: z¥

,ﬁ Positive pair ,’4 Negative pair Time loss Frequency loss Consistency loss
Frequency component

= base function (e.g., sinusoidal function for Fourier transformation) with the corresponding frequency and amplitude
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3. Time-Frequency Consistency (TF-C)

Model Architecture
b) Frequency Based Contrastive Encoder

Augmentation

e perturb mf based on characteristics of frequency spectra

o perturb the frequency spectrum by adding/removing frequency components

e (small perturbation in freq spectrum — may cause large change in time domain)
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3. Time-Frequency Consistency (TF-C)

Model Architecture
b) Frequency Based Contrastive Encoder

Augmentation

e perturb mf based on characteristics of frequency spectra

o perturb the frequency spectrum by adding/removing frequency components

e (small perturbation in freq spectrum — may cause large change in time domain )

Frequency-augmentation bank

e input:x;

e augmentation : BY : &} — XF

o 2 methods :[removing|orfadding|

e output: (set) X[ ... | &F [=2
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3. Time-Frequency Consistency (TF-C)

Model Architecture
b) Frequency Based Contrastive Encoder

Small Budget E/

use E in perturbation,

e where E : # of frequency components we manipulate

To|removing|frequency components ...

— randomly select F frequency components & set their amplitudes as 0
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder

Small Budget E/ Toladd|frequency components ...
use E in perturbation, — randomly choose E frequency components

= where.B: dof frequency campamerits we manipulate e from the ones that have smaller amplitude than « - 4,,

e increase their amplitude to a - A,,.

To|removing|frequency components ...

— randomly select F frequency components & set their amplitudes as 0

o A,, : maximum amplitude

o «: pre-defined coefficient (set 0.5)
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder

Procedure

e step 1) hf = Gp ()
e step 2) set pos & neg pairs :
o pos pairs: (@}, &} )

o neg pairs: (:cF a:F) and (w wF)

12"

e step 3) calculate frequency-based contrastive loss

Time Series

s i .
' Positive pair

Wl

.

Time

encoder hT

_ﬁ

%!
—>

Frequency

I
F
X; encoder bf F
—

Gr

Jf

"

4
' Negative pair

Time loss

Frequency loss

Lr;

L,

Lr;

Consistency loss
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3. Time-Frequency Consistency (TF-C)

Model Architecture

b) Frequency Based Contrastive Encoder _— s Y
gl

Procedure [ a2 vV < Gr
S | : — _ﬁ
1 ﬁT

e step 1) hf = Gp () Time Series Ej [

X;
. . : Frequency 1
e step 2) set pos & neg pairs : M . xiFl encoder h'j!

o pos pairs: (@}, &} )

. B Gr '
o neg pairs: (:cf,azf) and (w wF) ! %/ :r-l
a I B

e step 3) calculate frequency-based contrastive loss

A A :
' Positive pair ' Negative pair Time loss

Contrastive frequency loss

oferi = a(nr Az o) = 1o b)) ‘

LA ajeppret Tizj exp(sim(hY,Gr(z;))/7)

Frequency loss

Lr;

L,

Lr;

Consistency loss
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

Time ﬁT,i
Consistency loss L¢; : m encoder ﬁ
3 1 ———)
e to urge the learned embeddings to satisfy TF-C _ | i i M Gr E‘ : i
J A : E— RT l

— time-based & frequency-based embeddings : CLOSE ! WD EEIEE LJ :

'
' 3 '
1 ] ' §
.............. S o - TN Lo
1 1 C,i
-
i '

Frequency M '
1
: xiF encoder hplf E i A
— 1
1
: ” A "
: Gr ' ! i i
. <F ‘“’FI : K
1 i
' J_._l_, v '
' ~
: — b I; : Lri

A » . A . : . .
“' Positive pair “' Negative pair Tlme loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

' Time Lr;
' der ?
Consistency loss Lc; ; m encod ﬁ
’ | SN
e to urge the learned embeddings to satisfy TF-C I_I:.Lx_ I Cox e
J A : —1 RT

— time-based & frequency-based embeddings : CLOSE ! WD EEIEE Ej : —

= Ry (h?), 27 = R (RY). ;NIA\V

E x; encoder hF
T H || ||||| —
© map h; fromspace to aljoint time-frequency|space with Rt '

Ho! ¥ ﬁ
_ ST -
F — Ry (hF), 2 = Rr (RF). LS L R Loy

° map hf fromspace to afjoint time-frequency|space with Ry

Frequency

A » . A . : . .
“' Positive pair “' Negative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

! T erT(I:rgc?er ﬁT’i
T
STF d(zT 2F Dpret) """‘A" ) ﬁ E = i

7 t 1% )

e distance between z7 and zf Time series |, 1Y ; ;
x |u ool Lo
. T F . . H Frequenc: & \ ' L f
(define S;TF, STF, and ST similarly ) ,/I'V/A\V A o en?:idery hFIE E E E
Al I|||| ] .

: %F Cr :ll::' ' Hidemn :
: | iy = -
' — Fh, ' Lry

A A . .
/" Positive pair “' Negative pair Tlme loss Frequency loss Consistency loss

¥
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

' Time ﬁT,i
' x;r encoder
TF _ T F ret :
STF — d (21, 2F, prret), el ‘ﬁ T~

7

e distance between z7 and zf Time Seres Ej E —
. T Fo. . H Frequenc "y :
(define S;TF, STF, and ST similarly ) ,/I'V/A\V A o en‘lidery bF
H || ||||| —

c g = .
STE |_HHA:

. —_— . . o) i —
intuitively, 2T should be closer to zI in comparison to zF - I e =

Lr;

TF TF
— encourage the proposed model to learna §;** < S, A st 7 iegaiiva i Time loss Frequency loss cgnsistency loss

— (inspired by the triplet loss) design (SlTF — SZ-TF + (5) as a term of consistency loss L¢;
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

Lr;

8 =d(z], 2], D),

7

e distance between z7 and zf T WI
(define|STF, STF, and ST¥ kimilarly ) ',I'V/A\V |LJ

intuitively, 2T should be closer to zI in comparisgn to £F

Lr;

TF TF
— encourage the proposed model to learn a §;** <& A st 7 iegaiiva i Time loss Frequency loss consistency loss

— (inspired by the triplet loss) design (SlTF — SZTF + (5) asa term of consistency loss L¢;

don't consider the distance between z] and Z! & distance between 2} and £F
(where the two embeddings are from the same domain )

e information is already in L7 ; and Lp;
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

,,il'*\v - ooder hT ﬁ E;ET . _ Lry
Consistency loss L¢; =t | M_,GA;@E
: - g Bl .

. ) e~ ~ : e S [ 0 Lo
= TF paiz TF gTF QTF xi R Frinisininniossini o) | :
Loi= s, (ST° =87 +3), sv  {8]F,8]7, 57} M M o waR LR :

h
' ' L
: Gr| ' Zi %
) % =
' 1
. —r |; ,
1 }LL p ' ['F,i
A » . A . : . .
“, Positive pair ; Negative pair Time loss Frequency loss Consist tency loss
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3. Time-Frequency Consistency (TF-C)

Time-Frequency Consistency

V4T encoder h?' E Lr;
Consistency loss L¢ ; '_I_—“i FAlE fl g :
- | A:jf :

. . ~ ~ ~ ) R ---.---‘.-:'.---: ' - .\ Lo
a. Xi M. 1] | ----emmeeaoo e N RS L 2
EC,i = ZS ' (S;I‘F _ Szp 1T i d 6), Spall‘ & {SZTF) SZTF, SZTF} m LJ H - Frequency o & ' ! E‘ E
pair ‘ o d 7 encoder H E: 3] “
! ' E 2 Z;
E 1% | SEHE
: ~F o
: R I; : Lr,

Ins tead Of Triplet LOSS aam “" Positive pair f Negative pair Time loss Frequency loss Consistency loss

why not directly use NT-Xent Loss?
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3. Time-Frequency Consistency (TF-C)

Total Loss Function

Lr;
| £rv.c s = A(Lri+ Lrg) + (1 - VLo, | m—y
Xj "
Time Series W
Xj M I‘ | Lo,
overall loss function : 3 terms
e (1) time-based contrastive loss L
o urges the model to learn embeddings invariant to temporal augmentations
Lr;
e (2) frequency-based contrastive loss Lg

e (3) consistency loss L¢

o guides the model to retain the consistency between time-based and frequency-based
embeddings.

o promotes learning of embeddings invariant to frequency spectrum-based augmentations

E—
legative pair Time loss Frequency loss Consistency loss
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3. Time-Frequency Consistency (TF-C)
Final Embeddings

z;une = f(w’tiune’ @) = [z;une,T; z;[;une,F]

Self-supervised One-to-many independent fine-tuning

pre-training Scenario 1 Scenario 2 Scenario 3
/\'VW Gesture recognition Fault detection Seizure diagnosis
nmptprsromul ™ wm sy Q @),
W
A AW w«- e

@T&%AA A

Well-trained model g - ! {@}
considering TF-C {b @ @ @D {@}
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4. Conclusion

- Contrastive Learning in Frequency domain
- Data Augmentation in Frequency domain

- Suggestions
- 1) Inverse Fourier Transform after augmentation in Frequency domain?
( = working in Frequency domain only in augmentation step )
- a) no need for three types of loss functions
- b) only need one type of encoder
- inherent Time & Frequency Loss

- 2) Instead of Triplet loss in TF-C, why not use direct comparison (ex. NT-Xent) across different domains?
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Self-Supervised Contrastive Pre-Training for Time
Series via Time-Frequency Consistency
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xiang_zhang@hms.harvard.edu  ziyuanzhao@college.harvard.edu
Theodoros Tsiligkaridis Marinka Zitnik
MIT Lincoln Laboratory Harvard University
ttsili€ll.mit.edu marinka@hms.harvard.edu
Abstract

Pre-training on time series poses a unique challenge due to the potential mismatch
between pre-training and target domains, such as shifts in temporal dynamics,
fast-evolving trends, and long-range and short-cyclic effects, which can lead to
poor downstream performance. While domain adaptation methods can mitigate
these shifts, most methods need examples directly from the target domain, making
them suboptimal for pre-training. To address this challenge, methods need to
accommodate target domains with different temporal dynamics and be capable
of doing so without seeing any target examples during pre-training. Relative
to other modalities, in time series, we expect that time-based and frequency-
based representations of the same example are located close together in the time-
fmquency space To thls end we pOSl[ that time-frequency consistency (TF-C) —
d of an example close to its frequency-based
is desnrable for pre-training. Motivated by TF-C, we define a

nelghborhood

https://arxiv.org/pdf/2206.08496.pdf

decomposable pre-training model, where the self-supervised signal is provided by

Published as a conference paper at ICLR 2022

COST: CONTRASTIVE LEARNING OF DISENTANGLED
SEASONAL-TREND REPRESENTATIONS FOR
TIME SERIES FORECASTING

Gerald Woo! 2, Chenghao Liu! *, Doyen Sahoo!, Akshat Kumar? & Steven Hoi®
1Salesforce Research Asia, 2Singapore Management University
{gwoo, chenghao.liu, dsahoo, shoi}@salesforce.com, akshat kumar@smu.edu.sg

ABSTRACT

Deep learning has been actively studied for time series forecasting, and the main-
stream paradigm is based on the end-to-end training of neural network architec-
tures, ranging from classical LSTM/RNNs to more recent TCNs and Transform-
ers. Motivated by the recent success of representation learning in computer vi-
sion and natural language processing, we argue that a more promising paradigm
for time series forecasting, is to first learn disentangled feature representations,
followed by a simple regression fine-tuning step — we justify such a paradigm
from a causal perspective. Following this principle, we propose a new time se-
ries representation learning framework for long sequence time series forecasting
named CoST which app].les contrastive learning methods to learn disentangled

1t CoST ises both time domain and frequency
domain contrastive losses to learn discriminative trend and seasonal representa-
tions, respectively. Extensive experiments on real-world datasets show thal CoST

consistently outperforms the state-of-the-art methods by a argin,
achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also
robust to various choices of backb ders, as well as

Code is available at ht tps: //github.com/salesforce/CoST.

https://arxiv.org/pdf/2202.01575.pdf

(NeurlPS 2022)

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting (ICLR 2022)
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Contents

1. Time Series Decomposition
Abstract

CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

i

Experiments
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

1. Time Series Decomposition

Disentangled Representation Learning
- disentangle features (factors) from input data

- get representation for each factor

— . Factor 1 — — Z1
— Factor2z — . — Z2
Embedding
Input Data Layer
— .+ Factorm — — Zm
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

1. Time Series Decomposition

Disentangled Representation Learning
- TS inDL: learn (1) feature representation & (2) prediction function e2e
=> prone to overfitting!

- worsens when the representations are entangled!
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1. Time Series Decomposition

Disentangled Representation Learning

- TS inDL: learn (1) feature representation & (2) prediction function e2e

=> prone to overfitting!

- worsens when the representations are entangled!

Observed

TS = composed of “seasonal module” + “non-linear trend”

Season

- Problem : change in one module, affect other module!
=> how can we disentangle TREND & SEASONALITY?

Trend

Figure 1: Time series com-
posed of seasonal and trend
components.
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

1. Time Series Decomposition

Decompose Time Series (TS) into.. e
- (1) Trend "4 I
- (2) Seasonality -
- (3) Residual
2 ways of TS decomposition
- (1) Additive "B
yt=8:+T;+ R; - .10»*%
- (2) Multiplicative " J |
MWW[ ol Ll
Y = St X T’t X Rt L8 .,,,'I. ,|'|,.

yr = S X Ty x Ry is equivalent to logy; = log S; + logT; + log R;
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

1. Time Series Decomposition

Ways of extracting Trend from TS :

ex) Moving Average ( look back window of H )

3-MA
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

2. Abstract

CoST = Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

e applies contrastive learning methods, to learn disentangled seasonal-trend representations
e comprises both

o (1) TIME domain contrastive losses

o (2) FREQUENCY domain contrastive losses
e use structural time series model

o TS =trend + season + error variable
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

a) Problem Formulation

propose CL framework to learn disentangled seasonal & trend representation for LTSF task

- LTSF task : Long Sequence Time-Series Forecasting task
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations
a) Problem Formulation

propose CL framework to learn disentangled seasonal & trend representation for LTSF task

- LTSF task : Long Sequence Time-Series Forecasting task

Notation
o (xy1,...27) € RT*™ . MTS - = abels
e h:lookback window "“ ‘“. KWM
e k: forecasting horizon i I e e 2O
¢ X = g(X): model grescggt?ngs.'equence g?gre%:;igngs.equence - feature window
o X € R™™ :input e —

o X € RF™: output
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

a) Problem Formulation

Not an end-to-end model!

e instead, focus on learning feature representations from observed data

e aim to learn a nonlinear feature embedding function V = f(X), m a
[ E——
o where X € R"™™and V € R4, 1
; X2
o map per each timestamp resture i o
2 Extractor ' 7 RREMEER
Xr 1 =]
X 4
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

a) Problem Formulation

Not an end-to-end model!

e instead, focus on learning feature representations from observed data

e aim to learn a nonlinear feature embedding function V = f(X), m a
o where X € R"™™ and V' € R"q, "1 Il I

o map per each timestamp

Feature

Regressor

Extractor Future time window

Then, using the learned representations of the final timestamp v, “ E

— used as inputs for the downstream regressor of the forecasting task.
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations Datalaughentation
b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio ‘ 0

Introduce structural priors for TS @ Q

e use Bayesian Structural Time Series Model s

—_——

~

Representation learning

Figure 2: Causal graph of the genera-
tive process for time series data.

41 /54
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3. CoST

1. Seasonal-Trend Representations Datalaughentation
b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio ‘ 0

Introduce structural priors for TS @ Q

e use Bayesian Structural Time Series Model s

—_——

~

Representation learning
Assumption 1
Figure 2: Causal graph of the genera-
e observed TS : X is generated from... tive process for time series data.

o (1) E: error variable

o (2) X™* : error-free latent variable : generated from...

m (2-1) T : trend variable
= (2-2) S:seasonal variable

e Since E'is not predictable...focus on X*
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3. CoST

1. Seasonal-Trend Representations

0 Datajaugmentation

b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio ‘

Introduce structural priors for TS @ @ °

e use Bayesian Structural Time Series Model —

-

—_——

~

Representation learning
Assumption 1
Figure 2: Causal graph of the genera-
e observed TS : X is generated from... tive process for time series data.

o (1) E: error variable

o (2) X™* : error-free latent variable : generated from...

Assumption 2 : Independent mechanism
m (2-1) T : trend variable

= (2-2) S seasonal variable e season & trend do not interact with each other

e Since F is not predictable...focus on X* — disentangle S & T
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

° Datajaugmentation

b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio G

Introduce structural priors for TS m m m
Learning representations for S & T’

e allows us to find stable result

cra-

e since targets X ™ are unknown.... construct a proxy CONTRASTIVE learning task

() L7 . CTTuUr valiaguitc

o (2) X* :error-free latent variable : generated from...

Assumption 2 : Independent mechanism
m (2-1) T : trend variable

= (2-2) S seasonal variable e season & trend do not interact with each other

e Since F is not predictable...focus on X* — disentangle S & T
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

Frequency Domain Contrastive Loss

CoST framework

I |
5 : : | Amplitude Phase I
e DomaLLnsgontrasnve l Contrastive Contrastive |
I Loss Loss I
1 I-——E————}——I
Trend Feature Seasonal Feature
Disentangler Disentangler
t 3

Backbone Encoder

(a) Overall Framework
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

1. Seasonal-Trend Representations

CoST framework

e |earn disentangled seasonal-trend reperesentation
e for each time step, have the disentangled representations for S & T
o V=[VvID;vE] e R
u |trend : V(T) ¢ Rhxdr

m season : V' (5) ¢ Rhxds

Frequency Domain Contrastive Loss

|
5 : : | Amplitude Phase
Time DomaLlons gontrastlve I Gontrastive Con e
Loss Loss
|
T .
| 1
Trend Feature Seasonal Feature
Disentangler Disentangler
t 3

Backbone Encoder

(a) Overall Framework
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CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

2. Seasonal-Trend Contrastive Learning Framework

step 0) Augmentation

- obtain robustness to error variables
- uses..

- 1) scaling

- 2) shifting

- 3)jittering

NN

(b) Jittering

(a) Original (c) Scaling

Trend Feature
Disentangler

Seasonal Feature
Disentangler

f

t

Backbone Encoder

(a) Overall Framework
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3. CoST

2. Seasonal-Trend Contrastive Learning Framework

step 1) Encoder

e encoder | fp : Ri>m s RAxd

® map into latent space ( = intermediate rep

Frequency Domain Contrastive Loss

. ; : Amplitude
Time Domain Contrastive Gontrastive
o Loss

Phase
Contrastive
Loss

A

F— ===

~

Trend Feature
Wl‘

e Sy e

t

Seasonal Feature
Disentangler

1

\*

Backbone Encoder

(a) Overall Framework
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3. CoST

2. Seasonal-Trend Contrastive Learning Framework

step 2) Trend & Seasonal Representation

(1) TFD ( Trend Feature Disentagler ) : fp : R?*@ — Rhxdr
= extracts trend representation,
= via a mixture of AR experts

= |earned via a time domain constrastive loss L.

L= ﬁtime +

% (L:amp = Ephase )

® o :trade-off between T & S

Frequency Domain Contrastive Loss

|
s : | Amplitude Phase
Time DomaLi)lls :ontrastlve I Gontrastive Cont e
I Loss Loss
7'y
[ T E PR — } R
Trend Feature Seasonal Feature
Disentangler Disentangler

t

1

Backbone Encoder

(a) Overall Framework
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3 . COST L = Lijme + %(ﬁamp + Ephase )

m « :trade-off between T & S
2. Seasonal-Trend Contrastive Learning Framework

step 2) Trend & Seasonal Representaton [ m e e e === ===
I Frequency Domain Contrastive Loss I
) . |
(1) TFD ( Trend Feature Disentagler ) : fp : R?*@ — Rhxdr TimeDomaLi:Contrastive : &’:gl;ts“ﬁ‘ffe Co:t]:;ss:ive I
. 55 Loss Loss
= extracts trend representation, I 1
- |

A

= via a mixture of AR experts - t"—_|;+ -

= |earned via a time domain constrastive loss L. Trend Featu s | Featu
ren eature easonal reature
Disentangler Disentangler
(2) SFD ( Seasonal Feature Disentagler): fg : RAxd _y Rhxds L I T

® extracts seasonal representation,
Backbone Encoder

= via a learnable Fourier layer

= |earned via frequency domain constrastive loss, which consists of
(a) Overall Framework

® a) Lgmy - amplitude component

® b) Lppese - Phase component
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3. CoST

2. Seasonal-Trend Contrastive Learning Framework

step 3) Concatenate

Concatenate the outputs of Trend and Seasonal Feature Disentaglers,

to obtain final output representations
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3. CoST

3. Trend & Seasonal Feature Representation

1) Trend Feature Representation

Autoregressive filtering

e able to capture time-lagged causal relationships from past observation

e problem : how to select lookback window?

— propose to use a MIXUTRE of auto-regressive exports

( adaptively select the appropriate lookback window )

Frequency Domain Contrastive Loss

: 5 : Amplitude
Time Domain Contrastive Conteastive
o Loss

Phase
Contrastive
Loss

A

F— == =

oy ey e

Trend Feature
Disentangler

Seasonal Feature
Disentangler

f

t

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

1) Trend Feature Representation

Autoregressive filtering

e able to capture time-lagged causal relationships from past observation

e problem : how to select lookback window?

— propose to use a MIXUTRE of auto-regressive exports

( adaptively select the appropriate lookback window )

MA of window size 2,4,8,16 ...

= Convolutional filter with kernel size 2,4,8,16 ...

Frequency Domain Contrastive Loss

Time Domain Contrastive

Loss

Amplitude
Contrastive
Loss

Phase
Contrastive
Loss

A

F— == =

e Sy e

Trend Feature
Disentangler

Seasonal Feature
Disentangler

f

t

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

1) Trend Feature Representation

Trend Feature Disentangler (TFD)

e mixture of L 4+ 1 autoregressive experts

e implemented as 1-d causal convolution

© 0 0 ©O O/<I>
o input channel : d S5 8 66 A

o output channel : dr 5 &5 /j/T
o kernel size : 2¢ 5 i/ 1/1
e each expert: V(T*) = CausalConv (V, 2i) o M

e average-pooling operation :

o V(@ = AvePool (ff(T:O),f/*(Trl),...,v(T»M) Ly

V. —>

7,

CausalConv-2°
CausalConv-2*

CausalConv-2-

AvePool

(b) Trend Feature Disentangler

Output

Hidden Layer

Hidden Layer

Hidden Layer

Input

/
N
I Frequency Démain Contrastive Loss I
7
= 5 : | Andplitude Phase I
Time DomaLlons ::ontmstlve I Ghriastive Conteaciive I
I /  Loss Loss |
Z
1 /../--E----}--l

/

Trend Feature
Disentangler

Seasonal Feature
Disentangler

f

t

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

1) Trend Feature Representation

Time Domain Contrastive Loss

e employ contrastive loss in time domain

e Given N Samples & K negative samples...

I Frequency Domain Contrastive Loss
I| Amplitude Phase
Time Domain Contrastive X 2
Loss | Contrastive Contrastive
I Loss Loss
b
[

e Sy e

' - N _ exp(qi-ki/T)
o Ltlme - Z’LZl log exp(qi-ki/’r)+z]['{:1 eXp(qi'kj/T)

Trend Feature
Disentangler

Seasonal Feature
Disentangler

f

t

Backbone Encoder

(a) Overall Framework

49/ 54



CoST : Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

3. CoST

3. Trend & Seasonal Feature Representation

2) Seasonal Feature Representation

spectral analysis in frequency domain
2 issues

e (1) how to support INTRA-frequency interactions
e (2) what kind of learning signal is requred to learn representations,

which are able to discriminate between different seasonality patterns

Frequency Domain Contrastive Loss

Time Domain Contrastive

Loss

Amplitude
Contrastive
Loss

Phase
Contrastive
Loss

A

F— == =

Trend Feature
Disentangler

e Sy e

f

Seasonal Feature
Disentangler

1

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

2) Seasonal Feature Representation

spectral analysis in frequency domain
2 issues

e (1) how to support INTRA-frequency interactions
e (2) what kind of learning signal is requred to learn representations,

which are able to discriminate between different seasonality patterns

— introduce SFD, which makes use of a learnable Fourier Layer

( SFD = Seasonal Feature Disentangler )

Frequency Domain Contrastive Loss

Time Domain Contrastive

Loss

Amplitude
Contrastive
Loss

Phase
Contrastive
Loss

A

F— == =

Trend Feature
Disentangler

oy ey e

f

Seasonal Feature
Disentangler

1

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

2) Seasonal Feature Representation

Seasonal Feature Disentangler (SFD)

composed of 2 parts
e (1) DFT (discrete Fourier Transform)
o map intermediate features to FREQUENCY domain ( F(V) € CF*4)

® (2) learnable Fourier layer

o mapinto V(8 ¢ Rhxds

e
1 Frequency Domain Contrastive Loss
L ) el e B B B
Vl,: —»
Vz’: —> (Per-
. || || Element) ; || )
. FFT Linear iFFT LA
- Layer
Vh,: —
(c) Seasonal Feature Disentangler
N
N 1
N —— -
~ I Frequency Domain Contrastive Loss 1 I
o 1| Amplitud Fhae, I
= 5 : p e as
Tlme DomaLlons:m\ e I Contrastive Con! ve |
S Loss Loss
N I |
A N
I Tp— - I |
A
N |
~
Trend Feature Seasonal Feature
Disentangler Disentangler
t 1

Backbone Encoder

(a) Overall Framework
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3. CoST

3. Trend & Seasonal Feature Representation

2) Seasonal Feature Representation

Seasonal Feature Disentangler (SFD)

composed of 2 parts

e (1) DFT (discrete Fourier Transform)
o map intermediate features to FREQUENCY domain ( F(V) € CF*d)
® (2) learnable Fourier layer

o mapinto V(8 ¢ Rhxds

Model iFFT FFT

f
° Vz(lf) =F (Z?:I AijxF(V)ij+ Bi,k)

e
1 Frequency Domain Contrastive Loss
L ) el e B B B
Vl,: —»
Vz’: —> (Per-
. || || Element) ; || )
. FFT Linear iFFT LA
- Layer
Vh,: —
(c) Seasonal Feature Disentangler
N
N 1
N —— -
~ I Frequency Domain Contrastive Loss 1 I
o 1| Amplitud Fhae, I
= 5 : p e as
Tlme DomaLlons:m\ e I Contrastive Con! ve |
S Loss Loss
N I |
A N
I Tp— - I |
A
N |
~
Trend Feature Seasonal Feature
Disentangler Disentangler
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3. CoST

3. Trend & Seasonal Feature Representation
2) Seasonal Feature Representation

Representation for AMPLITUDE & PHASE of each frequency
| Fi,:| and ¢(F5 ;)

Wavelength |

il

-~ Amplitude

A

m

&’

2 3 4

T T T U

Phase (¢)

Amplitude

1
L
1

Line
ayer

1 Frequency Domain Contrastive Loss
S e b e R K
Vl,:
V. (Per-
Element ;
) iFFT m

> Y

N
\ ————————— l —-— —
S ~ I Frequency Domain Contrastive Loss 1 I
o~ I| Amplitude Phasel I
Time Domain Contrastive :
opid I Contrastive Con ve |
S Loss Loss
N I |
A N
S —-—- - L |
N |
N

Trend Feature
Disentangler

f

Seasonal Feature
Disentangler

1

Backbone Encoder

(a) Overall Framework
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Frequency Domain Contrastive Loss

3. CoST

3. Trend & Seasonal Feature Representation

2) Seasonal Feature Representation

Trend Feature Seasonal Feature
Frequency Domain Contrastive Loss Drenenger Denenger
t 1
discriminate between different periodic patterns, given an frequency I
Backbone Encoder

3 3 !
exp(IFY1I(FY) 1)

; N . *
exp (|FZ(]) || (szj)) |) +ZkN# exp (|Fl§]) ||Fl(k) |> (a) Overall Framework

F N
® Lamp = ﬁ > izo Zj:l —log

exp (¢ (Fl(])) i ( (F z(])) l) ) |
e (8(m) o{ (7)) )+ b em(o(517) o(2))

N\ /
(.])> is the augmented version of that sample.

9.

_ 1 F N
® Lohase = T Dizo Zj:l —log

where FZEJ) is the 7-th sample in a mini-batch, and (FZ
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3. CoST

3. Trend & Seasonal Feature Representation

3) Overall Loss

Frequency Domain Contrastive Loss

a
L = Lijme + 2 (Lamp + Lphase)
Time Domain Contrastive
Loss

Amplitude Phase
Contrastive Contrastive

Loss Loss

A

Trend Feature
Disentangler

f

Seasonal Feature
Disentangler

t

Backbone Encoder

(a) Overall Framework
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4. Conclusion

- Time Series Decomposition using DL module
- different kernel sizes to obtain multiple trends
- Representation Learning in ...
- (1) Time Domain ( for TREND )
- (2) Frequency Domain ( for SEASONALITY )
- 2-1) Amplitude
- 2-2) Phase
- Limitation : evaluation only on FORECASTING tasks
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