BRL Seminar

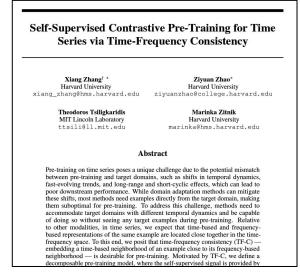
(2023.03.13. Mon)

Self-Supervised Learning with Time Series Data (3)

통합과정 6학기 이승한

Papers

- 1. Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency (NeurlPS 2022)
- 2. CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting (ICLR 2022)



https://arxiv.org/pdf/2206.08496.pdf

Published as a conference paper at ICLR 2022

COST: CONTRASTIVE LEARNING OF DISENTANGLED SEASONAL-TREND REPRESENTATIONS FOR TIME SERIES FORECASTING

Gerald Woo¹², Chenghao Liu¹*, Doyen Sahoo¹, Akshat Kumar² & Steven Hoi¹¹Salesforce Research Asia. ²Singapore Management University {gwoo, chenghao.liu, dsahoo, shoi}@salesforce.com, akshatkumar@smu.edu.sg

ABSTRACT

Deep learning has been actively studied for time series forecasting, and the mainstream paradigm is based on the end-to-end training of neural network architectures, ranging from classical LSTM/RNNs to more recent TCNs and Transformers. Motivated by the recent success of representation learning in computer vision and natural language processing, we argue that a more promising paradigm

for time series forecasting, is to first learn disentangled feature representations,

followed by a simple regression fine-tuning step - we justify such a paradigm

from a causal perspective. Following this principle, we propose a new time se-

ries representation learning framework for long sequence time series forecasting

named CoST, which applies contrastive learning methods to learn disentangled

seasonal-trend representations. CoST comprises both time domain and frequency

domain contrastive losses to learn discriminative trend and seasonal representa-

tions, respectively. Extensive experiments on real-world datasets show that CoST

consistently outperforms the state-of-the-art methods by a considerable margin.

achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also

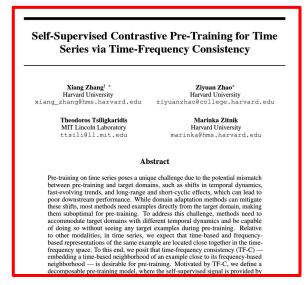
robust to various choices of backbone encoders, as well as downstream regressors.

Code is available at https://github.com/salesforce/CoST.

https://arxiv.org/pdf/2202.01575.pdf

Papers

- Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency (NeurlPS 2022)
- 2. CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting (ICLR 2022)



https://arxiv.org/pdf/2206.08496.pdf

Published as a conference paper at ICLR 2022

COST: CONTRASTIVE LEARNING OF DISENTANGLED SEASONAL-TREND REPRESENTATIONS FOR TIME SERIES FORECASTING

Gerald Wool 2, Chenghao Liul *, Doyen Sahool, Akshat Kumar² & Steven Hoil 1 Salesforce Research Asia, *Singapore Management University (gwoo, chenghao.liu, dsahoo, shoi) @salesforce.com, akshat kumar@smu.edu.sg

ABSTRACT

Deep learning has been actively studied for time series forecasting, and the mainstream paradigm is based on the end-to-end training of neural network architectures, ranging from classical LSTM/RNNs to more recent TCNs and Transformers. Motivated by the recent success of representation learning in computer vision and natural language processing, we argue that a more promising paradigm

for time series forecasting, is to first learn disentangled feature representations,

followed by a simple regression fine-tuning step - we justify such a paradigm

from a causal perspective. Following this principle, we propose a new time se-

ries representation learning framework for long sequence time series forecasting

named CoST, which applies contrastive learning methods to learn disentangled

seasonal-trend representations. CoST comprises both time domain and frequency

domain contrastive losses to learn discriminative trend and seasonal representa-

tions, respectively. Extensive experiments on real-world datasets show that CoST

consistently outperforms the state-of-the-art methods by a considerable margin.

achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also

robust to various choices of backbone encoders, as well as downstream regressors.

https://arxiv.org/pdf/2202.01575.pdf

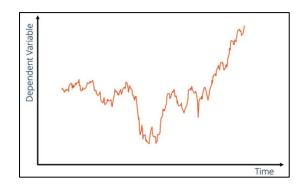
Code is available at https://github.com/salesforce/CoST.

Contents

- 1. Time Series Data in TIME & FREQUENCY domain
- 2. Abstract
- 3. Time-Frequency Consistency (TF-C)
- 4. Experiments

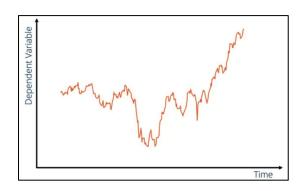
TIME Domain Analysis:

- provides an **intuitive understanding** of the data's characteristics
 - ex) when **changes** occurred & **magnitude** of values
- can identify trends, cycles, and seasonality



1. **TIME Domain Analysis**:

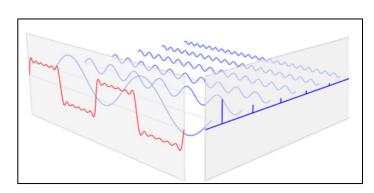
- provides an **intuitive understanding** of the data's characteristics
 - ex) when **changes** occurred & **magnitude** of values
- can identify trends, cycles, and seasonality



FREQUENCY Domain Analysis:

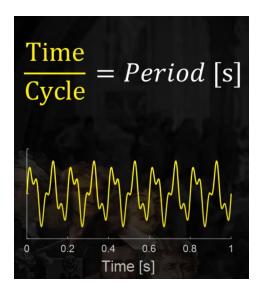
- useful for identifying the periodicity of data
- can be used to analyze the frequency distribution of data
- +) can filter noise from data, resulting in refined data

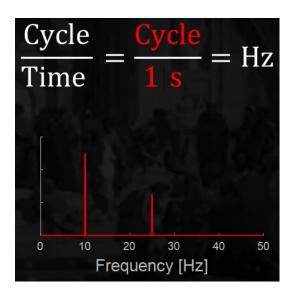
Better to use BOTH!



Different Perspective of TS data

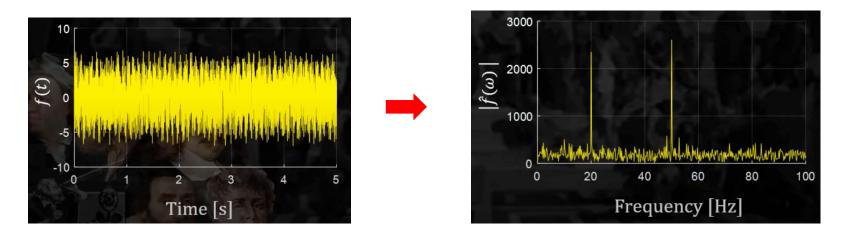
- (1) Time Domain
- (2) Frequency Domain





Different Perspective of TS data

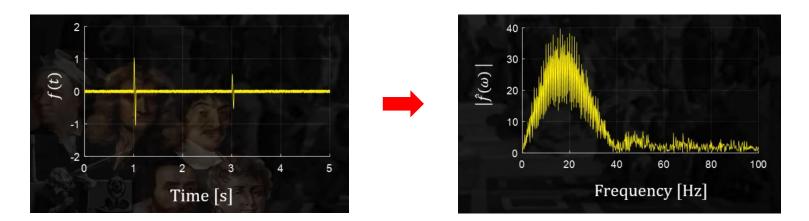
- (1) Time Domain
- (2) Frequency Domain



analyzing in FREQUENCY domain: useful in periodical functions

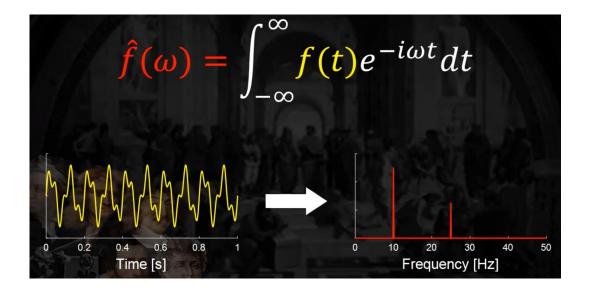
Different Perspective of TS data

- (1) Time Domain
- (2) Frequency Domain



analyzing in FREQUENCY domain: useful in periodical functions

Fourier Transform : TIME domain -> FREQUENCY domain

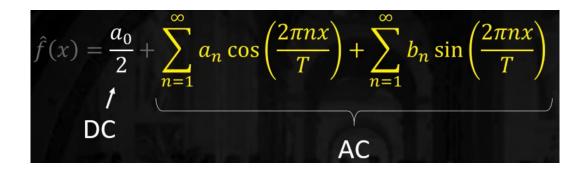


- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

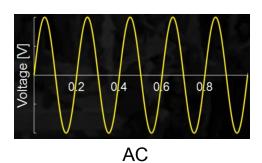
- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



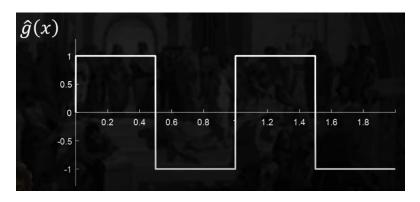
DC



Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Example)

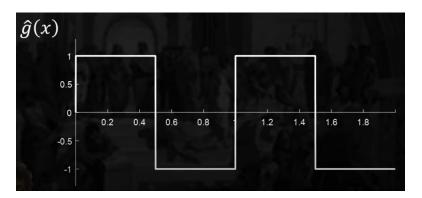


How can we express this function, using Fourier Series?

Preliminaries

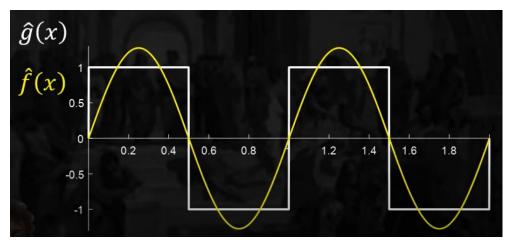
- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Example)



using 1 sine function

$$\hat{f}(x) = \sum_{n=1,3,5..}^{N=1} \frac{4}{\pi n} \sin\left(\frac{2\pi nx}{1}\right) = \frac{4}{\pi 1} \sin\left(\frac{2\pi 1x}{1}\right)$$



Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Example)

using 5 sine function

$$\hat{f}(x) = \sum_{n=1,3,5..}^{N=5} \frac{4}{\pi n} \sin\left(\frac{2\pi nx}{1}\right) = \frac{4}{\pi 1} \sin\left(\frac{2\pi 1x}{1}\right) + \frac{4}{\pi 3} \sin\left(\frac{2\pi 3x}{1}\right)$$



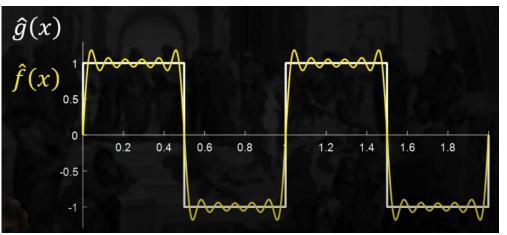
Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Example)

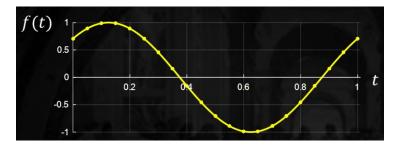
using 11 sine function

$$\hat{f}(x) = \sum_{n=1,3,5...}^{N=11} \frac{4}{\pi n} \sin\left(\frac{2\pi nx}{1}\right) = \frac{4}{\pi 1} \sin\left(\frac{2\pi 1x}{1}\right) + \frac{4}{\pi 3} \sin\left(\frac{2\pi 3x}{1}\right) + \frac{4}{\pi 5} \sin\left(\frac{2\pi 5x}{1}\right) \dots + \frac{4}{\pi 7} \sin\left(\frac{2\pi 7x}{1}\right) + \frac{4}{\pi 9} \sin\left(\frac{2\pi 9x}{1}\right) + \frac{4}{\pi 11} \sin\left(\frac{2\pi 11x}{1}\right)$$



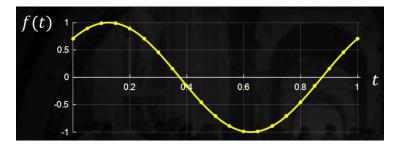
- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

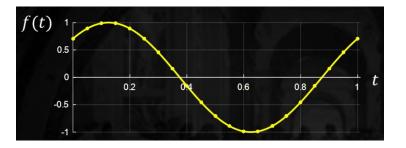
- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

$$f(t) = 1 * \sin(2\pi * (t + 0.125))$$

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

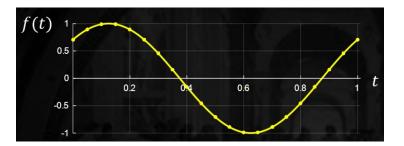


$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

$$f(t) = 1 * \sin(2\pi * (t + 0.125))$$

$$f(t) = 1 * \cos(2\pi * (t - 0.125))$$

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



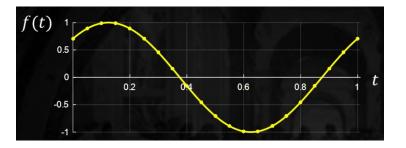
$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

$$f(t) = 1 * \sin(2\pi * (t + 0.125))$$

$$f(t) = 1 * \cos(2\pi * (t - 0.125))$$

$$f(t) = \frac{\sqrt{2}}{2}\sin(2\pi * t) + \frac{\sqrt{2}}{2}\cos(2\pi * t)$$

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

$$f(t) = 1 * \sin(2\pi * (t + 0.125))$$

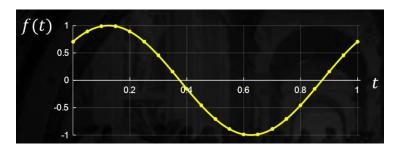
$$f(t) = 1 * \cos(2\pi * (t - 0.125))$$

$$f(t) = \frac{\sqrt{2}}{2} \sin(2\pi * t) + \frac{\sqrt{2}}{2} \cos(2\pi * t)$$

$$f(t) = \text{Re}\{1 * e^{i2\pi * (t - 0.125)}\}$$

Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



$$e^{+i\omega t} = \cos(\omega t) + i\sin(\omega t)$$

$$f(t) = 1 * \sin(2\pi * (t + 0.125))$$

$$f(t) = 1 * \cos(2\pi * (t - 0.125))$$

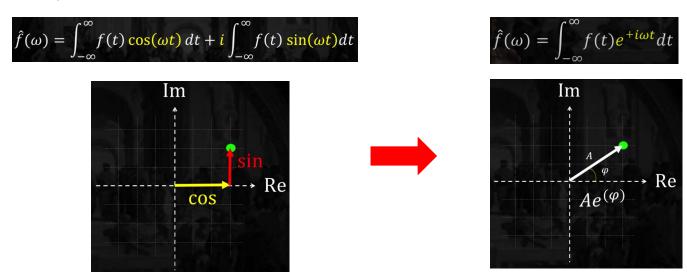
$$f(t) = \frac{\sqrt{2}}{2} \sin(2\pi * t) + \frac{\sqrt{2}}{2} \cos(2\pi * t)$$

$$f(t) = \text{Re}\{1 * e^{i2\pi * (t - 0.125)}\}$$

$$f(t) = A * e^{i2\pi f * (t - \varphi)}$$
amplitude frequency phase

Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform



Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

Inner Product: Relationship between two functions

$$\langle \hat{f}, \hat{g} \rangle = \int f(t)g(t) dt$$

Relationships between sin & cos => ORTHOGONAL

$$\langle \hat{f}, \hat{g} \rangle = \int \sin(t) \cos(t) dt = 0$$

Thus, able to express any periodical function, using sin & cos!

Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) \left[\cos(\omega t) + i\sin(\omega t)\right]dt$$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t) \cos(\omega t) dt + i \int_{-\infty}^{\infty} f(t) \sin(\omega t) dt$$

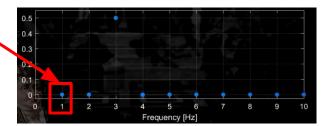
Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

 $F1(t) \sin(2\pi * 1 * t)$ 0.5
0.0
0.2
0.4
0.6
0.8

calculate using inner product:

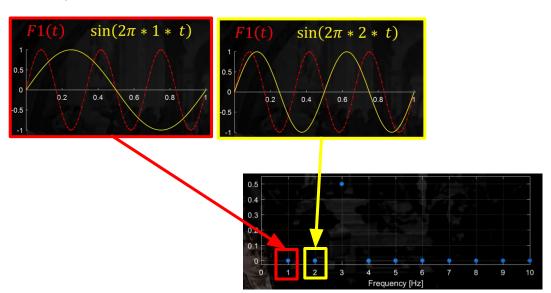
$$\langle \hat{f}, \hat{g} \rangle = \int f(t)g(t) dt$$



Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

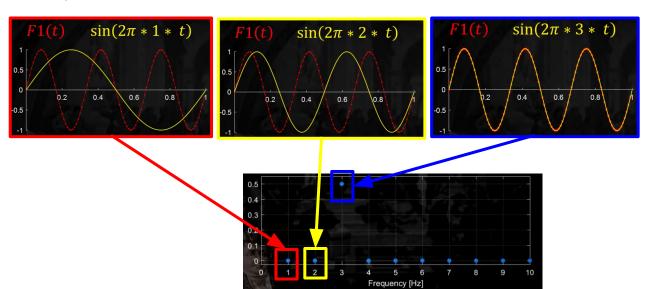
calculate using inner product:



Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

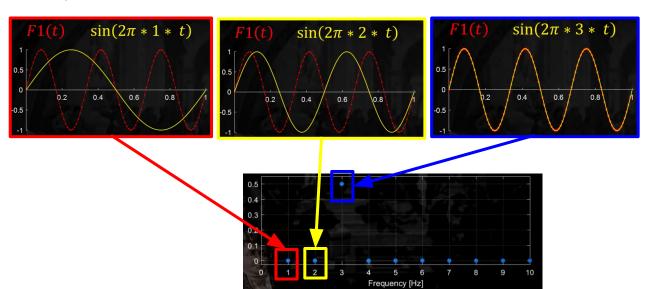
calculate using inner product :

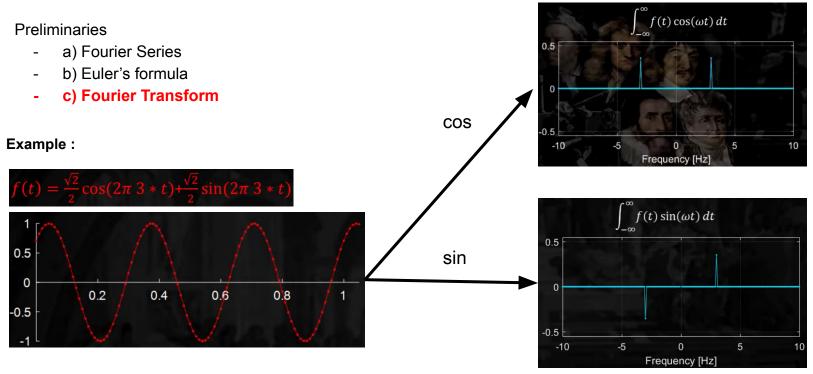


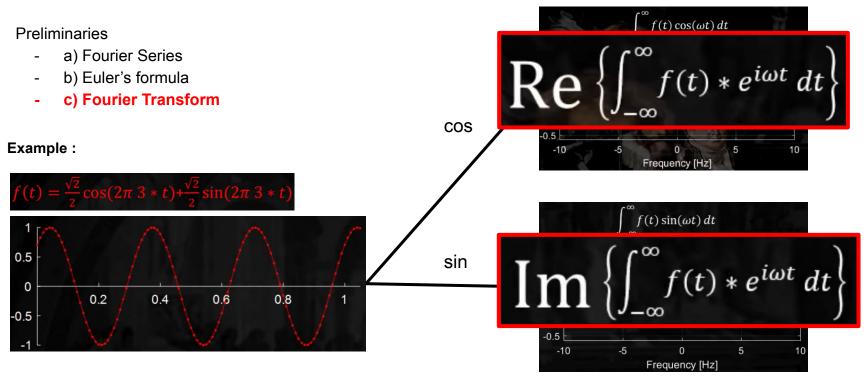
Preliminaries

- a) Fourier Series
- b) Euler's formula
- c) Fourier Transform

calculate using inner product:



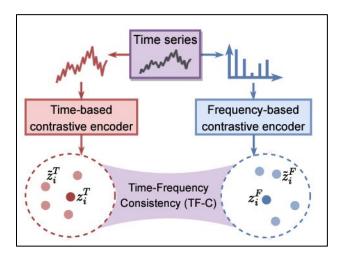




2. Abstract

Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency

Consistency



Expect that **TIME-based** and **FREQUENCY-based** representations of the same data

to be located close together in the time frequency space

2. Abstract

Contributions

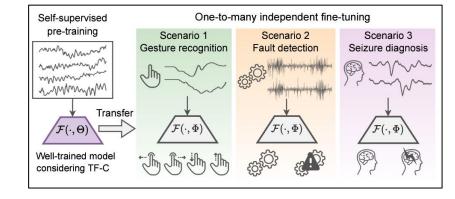
- adopts contrastive learning in
 - in TIME space
 - in FREQUENCY space
 - in TIME & Frequency space
- propose a set of novel augmentations
 - based on the characteristic of frequency spectrum
 - first work to implement augmentation in frequency domain
- evaluate the new method on eight datasets

3. Time-Frequency Consistency (TF-C)

Problem Formulation

a) Notation

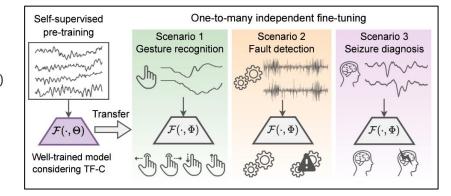
ullet pre-training dataset : $\mathcal{D}^{ ext{pret}} = \left\{m{x}_i^{ ext{pret}} \mid i=1,\ldots,N
ight\}$ (unlabeled) $\circ m{x}_i^{ ext{pret}} : K^{ ext{pret}}$ channels & $L^{ ext{pret}}$ time-stamps



Problem Formulation

a) Notation

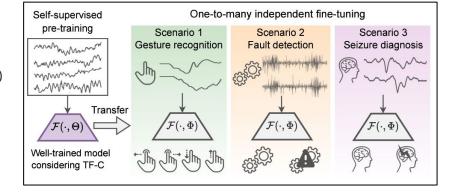
- ullet pre-training dataset : $\mathcal{D}^{ ext{pret}} = \left\{m{x}_i^{ ext{pret}} \mid i=1,\ldots,N
 ight\}$ (unlabeled)
 - $\circ \; oldsymbol{x}_i^{ ext{pret}} : K^{ ext{pret}} \; ext{channels \& } L^{ ext{pret}} \; ext{time-stamps}$
- ullet fine-tuning dataset : $\mathcal{D}^{ ext{tune}} = \{(oldsymbol{x}_i^{ ext{tune}}, y_i) \mid i=1,\dots,M\}$ (labeled)
 - \circ class label : $y_i \in \{1, \ldots, C\}$
 - $\circ (M \ll N).$



Problem Formulation

a) Notation

- ullet pre-training dataset : $\mathcal{D}^{ ext{pret}} = \left\{m{x}_i^{ ext{pret}} \mid i=1,\ldots,N
 ight\}$ (unlabeled)
 - $\circ \; oldsymbol{x}_i^{ ext{pret}} : K^{ ext{pret}} \; ext{channels \& } L^{ ext{pret}} \; ext{time-stamps}$
- ullet fine-tuning dataset : $\mathcal{D}^{ ext{tune}} = \{(oldsymbol{x}_i^{ ext{tune}}, y_i) \mid i=1,\dots,M\}$ (labeled)
 - \circ class label : $y_i \in \{1, \dots, C\}$
 - $\circ (M \ll N).$
- ullet Input time series : $oldsymbol{x}_i^{
 m T} \equiv oldsymbol{x}_i$
- ullet Frequency spectrum : $oldsymbol{x}_i^{ ext{F}}$



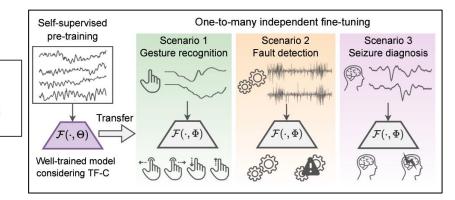
Problem Formulation

b) Problem

= Self-Supervised Contrastive Pretraining for TS

Goal : use $\mathcal{D}^{\mathrm{pret}}$ to pre-train \mathcal{F}

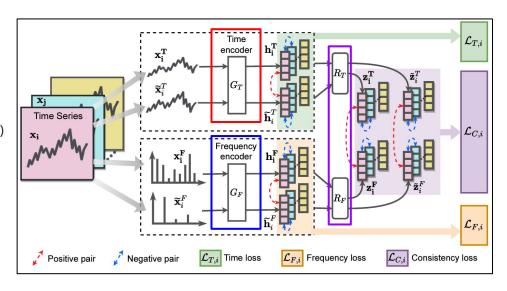
- ightarrow generate a generalizable representation $m{z}_i^{ ext{tune}} = \mathcal{F}\left(m{x}_i^{ ext{tune}}
 ight)$
- ullet ${\mathcal F}$ is pre-trained on ${\mathcal D}^{
 m pret}$ & Θ are fine-tuned using ${\mathcal D}^{
 m tune}$
 - $\circ~\mathcal{F}(\cdot,\Theta)$ to $\mathcal{F}(\cdot,\Phi)$ using dataset $\mathcal{D}^{\mathrm{tune}}$
- NOT a domain adaptation!!



Model Architecture

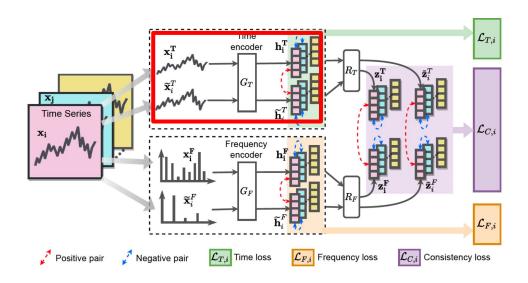
\mathcal{F} : 4 components

- ullet (1) time encoder : $G_{
 m T}$
- ullet (2) frequency encoder : $G_{
 m F}$
- (3) two cross-space projectors : (map to time-frequency space)
 - \circ (3-1) for time domain : $R_{
 m T}$
 - \circ (3-2) for frequency domain : $R_{
 m F}$
- ightarrow 4 components embed $m{x}_i$ to the latent time-frequency space



Model Architecture

a) Time Based Contrastive Encoder

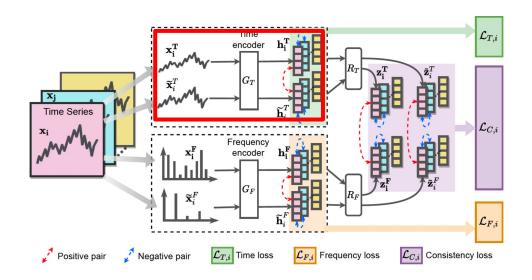


Model Architecture

a) Time Based Contrastive Encoder

Data Augmentation

- input: \boldsymbol{x}_i
- Augmentation : $oldsymbol{\mathcal{B}}^{\mathrm{T}}:oldsymbol{x}_i^{\mathrm{T}} o oldsymbol{\mathcal{X}}_i^{\mathrm{T}}$
- ullet output : (set) $\mathcal{X}_i^{\mathrm{T}}$ $\widetilde{m{x}}_i^{\mathrm{T}} \in \mathcal{X}_i^{\mathrm{T}}$
 - augmented based on temporal characteristics



Model Architecture

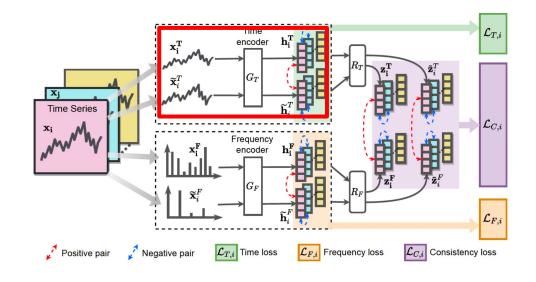
a) Time Based Contrastive Encoder

Data Augmentation

- input : \boldsymbol{x}_i
- Augmentation : $oldsymbol{\mathcal{B}}^{\mathrm{T}}:oldsymbol{x}_{i}^{\mathrm{T}}
 ightarrow\mathcal{X}_{i}^{\mathrm{T}}$
- ullet output : (set) $\mathcal{X}_i^{\mathrm{T}}$ $\widetilde{m{x}}_i^{\mathrm{T}} \in \mathcal{X}_i^{\mathrm{T}}$
 - augmented based on temporal characteristics

Time-based augmentation bank

- ex) jittering, scaling, time-shifts, and neighborhood segments
- use diverse augmentations
 - make more robust time-based embeddings!



Model Architecture

a) Time Based Contrastive Encoder

Procedure

ullet step 1) randomly select an augmented sample $m{\widetilde{x}}_i^{ ext{T}} \in \mathcal{X}_i^{ ext{T}}$



Model Architecture

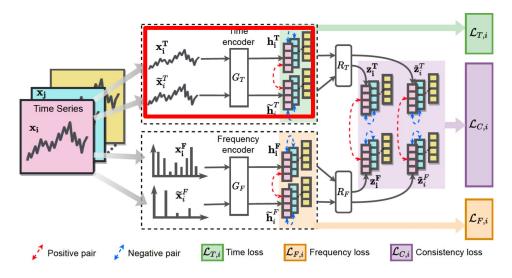
a) Time Based Contrastive Encoder

Procedure

- ullet step 1) randomly select an augmented sample $m{\widetilde{x}}_i^{ ext{T}} \in \mathcal{X}_i^{ ext{T}}$
- step 2) feed into a contrastive time encoder $G_{
 m T}$

$$\circ~oldsymbol{h}_{i}^{ ext{T}}=G_{ ext{T}}\left(oldsymbol{x}_{i}^{ ext{T}}
ight)$$
 & $oldsymbol{\widetilde{h}}_{i}^{ ext{T}}=G_{ ext{T}}\left(oldsymbol{\widetilde{x}}_{i}^{ ext{T}}
ight)$

- \circ assume these two are close, if from same i (far, if different i)
- o pos & neg pairs:
 - pos pairs : $(\boldsymbol{x}_i^{\mathrm{T}}, \widetilde{\boldsymbol{x}}_i^{\mathrm{T}})$
 - lacksquare neg pairs : $\left(m{x}_i^{\mathrm{T}}, m{x}_j^{\mathrm{T}}\right)$ and $\left(m{x}_i^{\mathrm{T}}, \widetilde{m{x}}_j^{\mathrm{T}}\right)$



Model Architecture

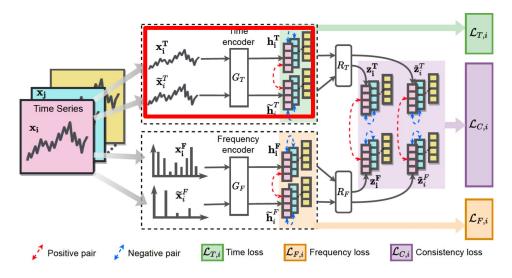
a) Time Based Contrastive Encoder

Procedure

- step 1) randomly select an augmented sample $\widetilde{m{x}}_i^{\mathrm{T}} \in \mathcal{X}_i^{\mathrm{T}}$
- step 2) feed into a contrastive time encoder $G_{
 m T}$

$$\circ~oldsymbol{h}_{i}^{ ext{T}}=G_{ ext{T}}\left(oldsymbol{x}_{i}^{ ext{T}}
ight)$$
 & $oldsymbol{\widetilde{h}}_{i}^{ ext{T}}=G_{ ext{T}}\left(oldsymbol{\widetilde{x}}_{i}^{ ext{T}}
ight)$

- \circ assume these two are close, if from same i (far, if different i)
- o pos & neg pairs:
 - pos pairs : $(\boldsymbol{x}_i^{\mathrm{T}}, \widetilde{\boldsymbol{x}}_i^{\mathrm{T}})$
 - lacksquare neg pairs : $\left(m{x}_i^{\mathrm{T}}, m{x}_j^{\mathrm{T}}\right)$ and $\left(m{x}_i^{\mathrm{T}}, \widetilde{m{x}}_j^{\mathrm{T}}\right)$
- step 3) calculate contrastive time loss



Model Architecture

a) Time Based Contrastive Encoder

Contrastive Time Loss

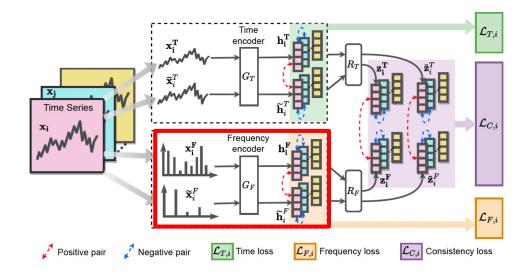
• adopt the NT-Xent (the normalized temperature-scaled cross entropy loss)

$$ullet \mathcal{L}_{\mathrm{T},i} = d\left(oldsymbol{h}_i^{\mathrm{T}}, \widetilde{oldsymbol{h}}_i^{\mathrm{T}}, \mathcal{D}^{\mathrm{pret}} \,
ight) = -\lograc{\exp\left(\sin\left(oldsymbol{h}_i^{\mathrm{T}}, \widetilde{oldsymbol{h}}_i^{\mathrm{T}}
ight)/ au
ight)}{\sum_{oldsymbol{x}_j \in \mathcal{D}^{\mathrm{pret}}} \mathbb{1}_{i
eq j} \exp\left(\sin\left(oldsymbol{h}_i^{\mathrm{T}}, G_{\mathrm{T}}(oldsymbol{x}_j)
ight)/ au
ight)}.$$

- \circ where $\sin(oldsymbol{u},oldsymbol{v}) = oldsymbol{u}^Toldsymbol{v}/\mid\midoldsymbol{u}\mid\mid\mid\midoldsymbol{v}\mid\mid$
- $\circ \; m{x}_i \in \mathcal{D}^{ ext{pret}} : ext{different TS sample and its augmented sample}$

Model Architecture

b) Frequency Based Contrastive Encoder

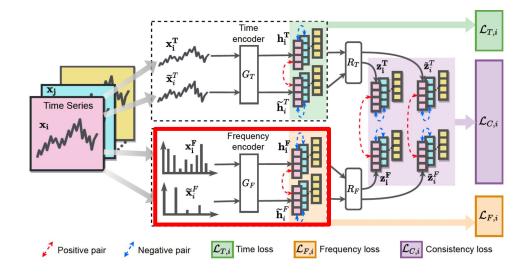


Model Architecture

b) Frequency Based Contrastive Encoder

Frequency Transformation

- input : \boldsymbol{x}_i
- transformation : transform operator (e. g., Fourier Transformation)
- output : $oldsymbol{x}_i^{ ext{F}}$

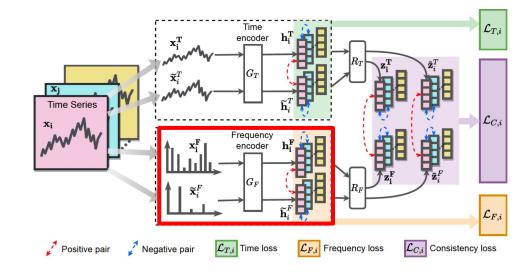


Model Architecture

b) Frequency Based Contrastive Encoder

Frequency Transformation

- input : \boldsymbol{x}_i
- transformation : transform operator (e. g., Fourier Transformation)
- output : $oldsymbol{x}_i^{ ext{F}}$



Frequency component

= base function (e.g., sinusoidal function for Fourier transformation) with the corresponding frequency and amplitude

Model Architecture

b) Frequency Based Contrastive Encoder

Augmentation

- ullet perturb $oldsymbol{x}_i^{
 m F}$ based on characteristics of frequency spectra
 - perturb the frequency spectrum by adding/removing frequency components
- ullet (small perturbation in freq spectrum o may cause large change in time domain)

Model Architecture

b) Frequency Based Contrastive Encoder

Augmentation

- ullet perturb $oldsymbol{x}_i^{
 m F}$ based on characteristics of frequency spectra
 - o perturb the frequency spectrum by adding/removing frequency components
- ullet (small perturbation in freq spectrum o may cause large change in time domain)

Frequency-augmentation bank

- input: \boldsymbol{x}_i
- ullet augmentation : $oldsymbol{\mathcal{B}}^{ ext{F}}:oldsymbol{x}_i^{ ext{F}} o oldsymbol{\mathcal{X}}_i^{ ext{F}}$
 - 2 methods: removing or adding
- ullet output : (set) $\mathcal{X}_i^{ ext{F}}$ $\mid \mathcal{X}_i^{ ext{Y}} \mid = 2$

Model Architecture

b) Frequency Based Contrastive Encoder

Small Budget ${\cal E}$

use E in perturbation,

• where E: # of frequency components we manipulate

To removing frequency components ...

ightarrow randomly select E frequency components & set their amplitudes as 0

Model Architecture

b) Frequency Based Contrastive Encoder

Small Budget ${\cal E}$

use E in perturbation,

ullet where E : # of frequency components we manipulate

To removing frequency components ...

ightarrow randomly select E frequency components & set their amplitudes as 0

To add frequency components ...

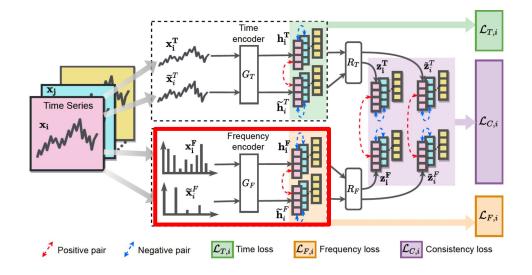
- ightarrow randomly choose E frequency components
- ullet from the ones that have smaller amplitude than $lpha \cdot A_m$
- increase their amplitude to $\alpha \cdot A_m$.
 - $\circ A_m$: maximum amplitude
 - $\circ \alpha$: pre-defined coefficient (set 0.5)

Model Architecture

b) Frequency Based Contrastive Encoder

Procedure

- ullet step 1) $oldsymbol{h}_i^{ ext{F}} = G_{ ext{F}}\left(oldsymbol{x}_i^{ ext{F}}
 ight)$
- step 2) set pos & neg pairs :
 - \circ pos pairs : $(oldsymbol{x}_i^{ ext{F}}, ilde{oldsymbol{x}}_i^{ ext{F}})$
 - \circ neg pairs : $\left(m{x}_i^{
 m F},m{x}_j^{
 m F}
 ight)$ and $\left(m{x}_i^{
 m F},\widetilde{m{x}}_j^{
 m F}
 ight)$
- step 3) calculate frequency-based contrastive loss

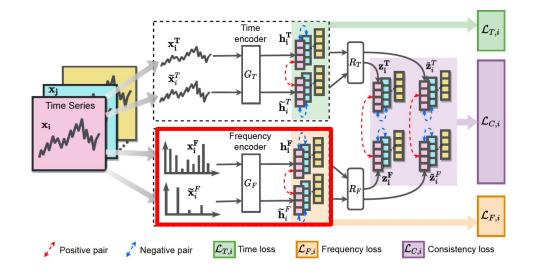


Model Architecture

b) Frequency Based Contrastive Encoder

Procedure

- ullet step 1) $oldsymbol{h}_i^{ ext{F}} = G_{ ext{F}}\left(oldsymbol{x}_i^{ ext{F}}
 ight)$
- step 2) set pos & neg pairs :
 - \circ pos pairs : $(oldsymbol{x}_i^{\mathrm{F}}, ilde{oldsymbol{x}}_i^{\mathrm{F}})$
 - \circ neg pairs : $\left(m{x}_i^{ ext{F}},m{x}_j^{ ext{F}}
 ight)$ and $\left(m{x}_i^{ ext{F}},\widetilde{m{x}}_j^{ ext{F}}
 ight)$
- step 3) calculate frequency-based contrastive loss



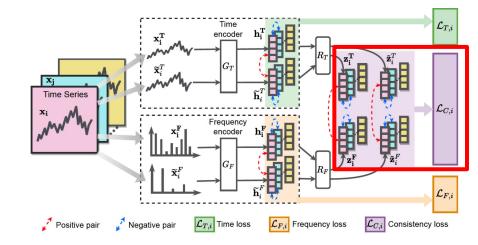
Contrastive frequency loss

$$\bullet \ \mathcal{L}_{\mathrm{F},i} = d\left(\boldsymbol{h}_{i}^{\mathrm{F}}, \widetilde{\boldsymbol{h}}_{i}^{\mathrm{F}}, \mathcal{D}^{\mathrm{pret}}\right) = -\log \frac{\exp\left(\sin\left(\boldsymbol{h}_{i}^{\mathrm{F}}, \widetilde{\boldsymbol{h}}_{i}^{\mathrm{F}}\right)/\tau\right)}{\sum_{\boldsymbol{x}_{j} \in \mathcal{D}^{\mathrm{pret}}} \mathbb{1}_{i \neq j} \exp\left(\sin\left(\boldsymbol{h}_{i}^{\mathrm{F}}, G_{\mathrm{F}}(\boldsymbol{x}_{j})\right)/\tau\right)}$$

Time-Frequency Consistency

Consistency loss $\mathcal{L}_{\mathrm{C},i}$

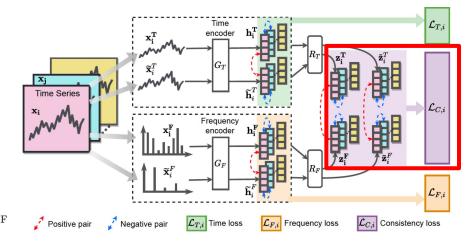
- to urge the learned embeddings to satisfy TF-C
 - ightarrow time-based & frequency-based embeddings : CLOSE !



Time-Frequency Consistency

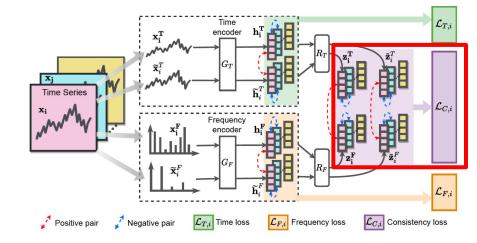
Consistency loss $\mathcal{L}_{\mathrm{C},i}$

- to urge the learned embeddings to satisfy TF-C
 - ightarrow time-based & frequency-based embeddings : CLOSE !
- $ullet oldsymbol{z}_i^{
 m T} = R_{
 m T} \left(oldsymbol{h}_i^{
 m T}
 ight), oldsymbol{\widetilde{z}}_i^{
 m T} = R_{
 m T} \left(oldsymbol{\widetilde{h}}_i^{
 m T}
 ight).$
 - \circ map $m{h}_i^{
 m T}$ from time space to a joint time-frequency space with $R_{
 m T}$
- $ullet egin{aligned} ullet oldsymbol{z}_i^{ ext{F}} = R_{ ext{F}} \left(oldsymbol{h}_i^{ ext{F}}
 ight), oldsymbol{\widetilde{z}}_i^{ ext{F}} = R_{ ext{F}} \left(oldsymbol{\widetilde{h}}_i^{ ext{F}}
 ight). \end{aligned}$
 - \circ map $m{h}_i^{ ext{F}}$ from frequency space to a joint time-frequency space with $R_{ ext{F}}$



Time-Frequency Consistency

$$egin{aligned} S_i^{ ext{TF}} &= d\left(m{z}_i^{ ext{T}}, m{z}_i^{ ext{F}}, \mathcal{D}^{ ext{pret}}
ight), \ &ullet & ext{ distance between } m{z}_i^{ ext{T}} ext{ and } m{z}_i^{ ext{F}} \ & ext{ (define } S_i^{ ext{TF}}, S_i^{ ilde{TF}}, ext{ and } S_i^{ ilde{TF}} ext{ similarly)} \end{aligned}$$



Time-Frequency Consistency

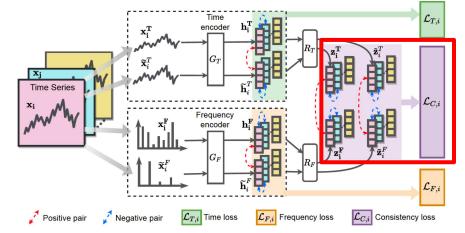
$$\left|S_i^{ ext{TF}} = d\left(oldsymbol{z}_i^{ ext{T}}, oldsymbol{z}_i^{ ext{F}}, \mathcal{D}^{ ext{pret}}
ight)$$
 ,

ullet distance between $oldsymbol{z}_i^{
m T}$ and $oldsymbol{z}_i^{
m F}$

(define $S_i^{ ext{TF}}$, $S_i^{ ilde{T}F}$, and $S_i^{T ilde{F}}$ similarly)

intuitively, $m{z}_i^{\mathrm{T}}$ should be closer to $m{z}_i^{\mathrm{F}}$ in comparison to $\tilde{m{z}}_i^{\mathrm{F}}$

- ightarrow encourage the proposed model to learn a $S_i^{
 m TF}$ < $S_i^{
 m TF}$
- o (inspired by the <code>triplet loss)</code> design $\left(S_i^{ ext{TF}}-S_i^{ ext{TF}}+\delta
 ight)$ as a term of consistency loss $\mathcal{L}_{ ext{C},i}$



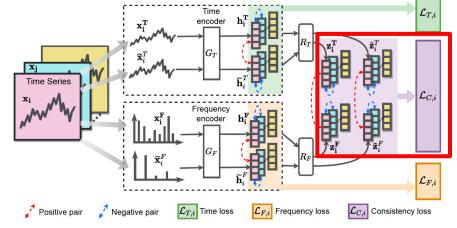
Time-Frequency Consistency

$$ig|S_i^{ ext{TF}} = d\left(oldsymbol{z}_i^{ ext{T}}, oldsymbol{z}_i^{ ext{F}}, \mathcal{D}^{ ext{pret}}
ight)$$
 ,

ullet distance between $m{z}_i^{
m T}$ and $m{z}_i^{
m F}$ (define $S_i^{
m TF}$, $S_i^{
m TF}$, and $S_i^{
m TF}$ similarly)

intuitively, $m{z}_i^{ ext{T}}$ should be closer to $m{z}_i^{ ext{F}}$ in comparison to $ilde{m{z}}_i^{ ext{F}}$

- ightarrow encourage the proposed model to learn a $S_i^{ ext{TF}}$ < $S_i^{ ext{TF}}$
- o (inspired by the triplet loss) design $\left(S_i^{ ext{TF}}-S_i^{ ext{TF}}+\delta
 ight)$ as a term of consistency loss $\mathcal{L}_{ ext{C},i}$



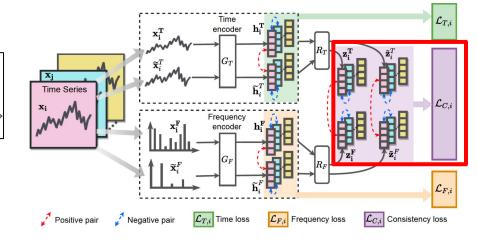
don't consider the distance between $m{z}_i^{\mathrm{T}}$ and $\widetilde{m{z}}_i^{\mathrm{T}}$ & distance between $m{z}_i^{\mathrm{F}}$ and $\widetilde{m{z}}_i^{\mathrm{F}}$ (where the two embeddings are from the same domain)

ullet information is already in $\mathcal{L}_{\mathrm{T},i}$ and $\mathcal{L}_{\mathrm{F},i}$

Time-Frequency Consistency

Consistency loss $\mathcal{L}_{\mathrm{C},i}$

$$\mathcal{L}_{ ext{C},i} = \sum_{S_{ ext{pair}}} \Big(S_i^{ ext{TF}} - S_i^{ ext{pair}} \, + \delta \Big), \quad S^{ ext{pair}} \, \in \Big\{ S_i^{ ilde{ ext{TF}}}, S_i^{ ilde{ ext{TF}}}, S_i^{ ilde{ ext{TF}}} \Big\}$$

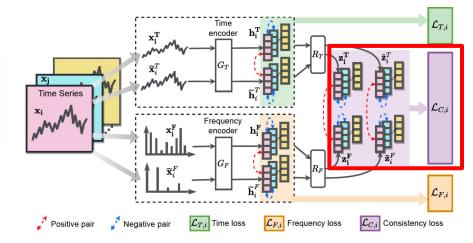


Time-Frequency Consistency

Consistency loss $\mathcal{L}_{\mathrm{C},i}$

$$\mathcal{L}_{ ext{C},i} = \sum_{S_{ ext{pair}}} \Big(S_i^{ ext{TF}} - S_i^{ ext{pair}} + \delta \Big), \quad S^{ ext{pair}} \, \in \Big\{ S_i^{ ilde{ ext{TF}}}, S_i^{ ilde{ ext{TF}}}, S_i^{ ilde{ ext{TF}}} \Big\}$$

Instead of Triplet Loss ... why not directly use NT-Xent Loss?



Time Series

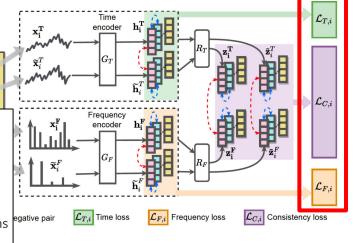
3. Time-Frequency Consistency (TF-C)

Total Loss Function

$$\mathcal{L}_{ ext{TF-C}\,,i} = \lambda \left(\mathcal{L}_{ ext{T},i} + \mathcal{L}_{ ext{F},i}
ight) + (1-\lambda) \mathcal{L}_{ ext{C},i}.$$

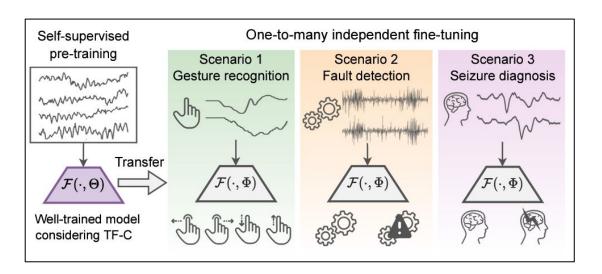
overall loss function: 3 terms

- ullet (1) time-based contrastive loss \mathcal{L}_{T}
 - urges the model to learn embeddings invariant to temporal augmentations
- ullet (2) frequency-based contrastive loss \mathcal{L}_{F}
 - o promotes learning of embeddings invariant to frequency spectrum-based augmentations
- (3) consistency loss \mathcal{L}_{C}
 - guides the model to retain the consistency between time-based and frequency-based embeddings.



Final Embeddings

$$oldsymbol{z}_i^{ ext{tune}} = \mathcal{F}(oldsymbol{x}_i^{ ext{tune}}, \Phi) = [oldsymbol{z}_i^{ ext{tune}, ext{T}}; oldsymbol{z}_i^{ ext{tune}, ext{F}}]$$



4. Conclusion

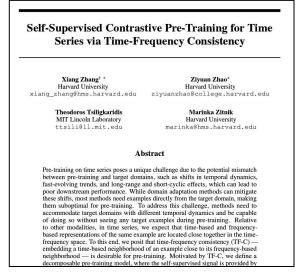
- Contrastive Learning in Frequency domain
- Data Augmentation in Frequency domain

- Suggestions

- 1) Inverse Fourier Transform after augmentation in Frequency domain?
 - (= working in Frequency domain only in augmentation step)
 - a) no need for three types of loss functions
 - b) only need one type of encoder
 - inherent Time & Frequency Loss
- 2) Instead of Triplet loss in TF-C, why not use direct comparison (ex. NT-Xent) across different domains?

Papers

- 1. Self-Supervised Contrastive Pre-Training for Time Series via Time-Frequency Consistency (NeurlPS 2022)
- 2. CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting (ICLR 2022)



https://arxiv.org/pdf/2206.08496.pdf

Published as a conference paper at ICLR 2022 COST: CONTRASTIVE LEARNING OF DISENTANGLED SEASONAL-TREND REPRESENTATIONS FOR TIME SERIES FORECASTING Gerald Woo¹, Chenghao Liu¹, Doven Sahoo¹, Akshat Kumar², Steven Hoi¹ ¹Salesforce Research Asia, ²Singapore Management University {qwoo, chenghao.liu, dsahoo, shoi}@salesforce.com, akshatkumar@smu.edu.sg ABSTRACT Deep learning has been actively studied for time series forecasting, and the mainstream paradigm is based on the end-to-end training of neural network architectures, ranging from classical LSTM/RNNs to more recent TCNs and Transformers. Motivated by the recent success of representation learning in computer vision and natural language processing, we argue that a more promising paradigm for time series forecasting, is to first learn disentangled feature representations, followed by a simple regression fine-tuning step - we justify such a paradigm from a causal perspective. Following this principle, we propose a new time series representation learning framework for long sequence time series forecasting named CoST, which applies contrastive learning methods to learn disentangled seasonal-trend representations. CoST comprises both time domain and frequency domain contrastive losses to learn discriminative trend and seasonal representations, respectively. Extensive experiments on real-world datasets show that CoST consistently outperforms the state-of-the-art methods by a considerable margin. achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also robust to various choices of backbone encoders, as well as downstream regressors. Code is available at https://github.com/salesforce/CoST.

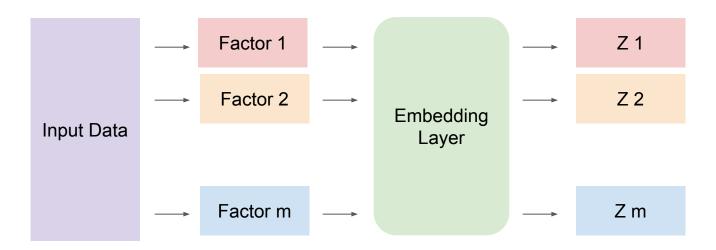
https://arxiv.org/pdf/2202.01575.pdf

Contents

- 1. Time Series Decomposition
- 2. Abstract
- 3. CoST: Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting
- 4. Experiments

Disentangled Representation Learning

- disentangle features (factors) from input data
- get representation for each factor



Disentangled Representation Learning

- TS in DL : learn (1) feature representation & (2) prediction function e2e => prone to overfitting!
- worsens when the representations are entangled!

Disentangled Representation Learning

- TS in DL : learn (1) feature representation & (2) prediction function e2e
 - => prone to overfitting!
- worsens when the representations are entangled!

TS = composed of "seasonal module" + "non-linear trend"

- Problem : change in one module, affect other module!
 - => how can we disentangle TREND & SEASONALITY?

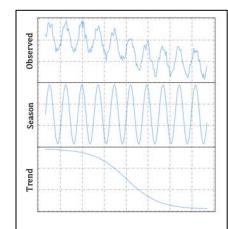


Figure 1: Time series composed of seasonal and trend components.

Decompose Time Series (TS) into..

- (1) Trend
- (2) Seasonality
- (3) Residual

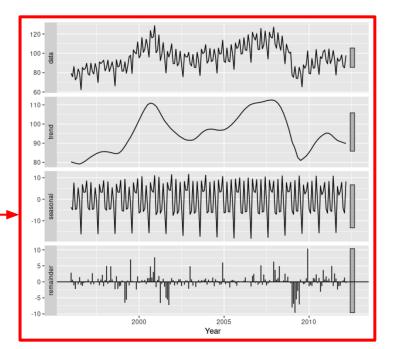
2 ways of TS decomposition

- (1) Additive

$$y_t = S_t + T_t + R_t$$

- (2) Multiplicative

$$y_t = S_t imes T_t imes R_t$$

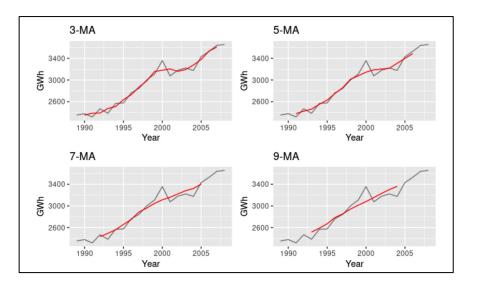


$$y_t = S_t imes T_t imes R_t$$
 is equivalent to $\log y_t = \log S_t + \log T_t + \log R_t$

1. Time Series Decomposition

Ways of extracting Trend from TS:

ex) Moving Average (look back window of H)



2. Abstract

CoST = Contrastive Learning of Disentangled Seasonal-Trend Representations for TS forecasting

- applies contrastive learning methods, to learn disentangled seasonal-trend representations
- comprises both
 - (1) TIME domain contrastive losses
 - (2) FREQUENCY domain contrastive losses
- use structural time series model
 - TS = trend + season + error variable

- 1. Seasonal-Trend Representations
- a) Problem Formulation

propose CL framework to learn disentangled seasonal & trend representation for LTSF task

- LTSF task : Long Sequence Time-Series Forecasting task

1. Seasonal-Trend Representations

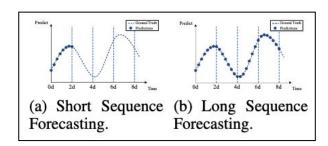
a) Problem Formulation

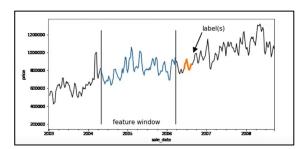
propose CL framework to learn disentangled seasonal & trend representation for LTSF task

- LTSF task : Long Sequence Time-Series Forecasting task

Notation

- ullet $(oldsymbol{x}_1, \dots oldsymbol{x}_T) \in \mathbb{R}^{T imes m}$: MTS
- h : lookback window
- *k* : forecasting horizon
- $\hat{m{X}} = g(m{X})$: model
 - \circ $oldsymbol{X} \in \mathbb{R}^{h imes m}$: input
 - $\hat{m{X}} \in \mathbb{R}^{k imes m}$: output

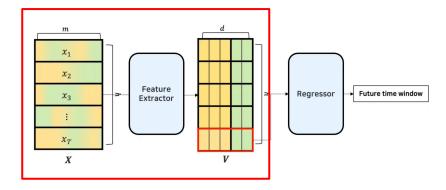




- 1. Seasonal-Trend Representations
- a) Problem Formulation

Not an end-to-end model!

- instead, focus on learning feature representations from observed data
- ullet aim to learn a **nonlinear feature embedding** function $oldsymbol{V}=f(oldsymbol{X})$,
 - \circ where $oldsymbol{X} \in \mathbb{R}^{h imes m}$ and $oldsymbol{V} \in \mathbb{R}^{h imes d}$,
 - o map per each timestamp



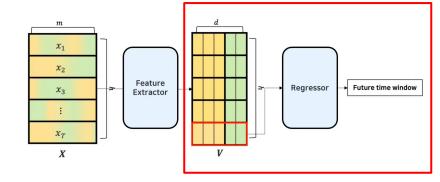
- 1. Seasonal-Trend Representations
- a) Problem Formulation

Not an end-to-end model!

- instead, focus on learning feature representations from observed data
- ullet aim to learn a **nonlinear feature embedding** function $oldsymbol{V}=f(oldsymbol{X})$,
 - \circ where $oldsymbol{X} \in \mathbb{R}^{h imes m}$ and $oldsymbol{V} \in \mathbb{R}^{h imes d}$,
 - o map per each timestamp

Then, using the learned representations of the **final timestamp** $oldsymbol{v}_h$

ightarrow used as inputs for the **downstream regressor of the forecasting task.**



- 1. Seasonal-Trend Representations
- b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio

Introduce **structural priors** for TS

use Bayesian Structural Time Series Model

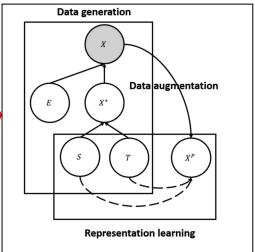


Figure 2: Causal graph of the generative process for time series data.

- 1. Seasonal-Trend Representations
- b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio

Introduce **structural priors** for TS

use Bayesian Structural Time Series Model

Assumption 1

- $\bullet \ \ {\rm observed} \ {\rm TS}: X \ {\rm is} \ {\rm generated} \ {\rm from}... \\$
 - \circ (1) E : error variable
 - $\circ~$ (2) X^{\star} : error-free latent variable : generated from...
 - (2-1) T: trend variable
 - (2-2) S: seasonal variable
- ullet Since E is not predictable...focus on X^\star

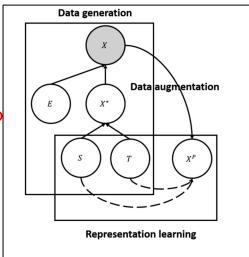


Figure 2: Causal graph of the generative process for time series data.

- 1. Seasonal-Trend Representations
- b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio

Introduce **structural priors** for TS

use Bayesian Structural Time Series Model

Assumption 1

- ullet observed TS : X is generated from...
 - \circ (1) E : error variable
 - \circ (2) X^\star : error-free latent variable : generated from...
 - (2-1) T: trend variable
 - (2-2) S: seasonal variable
- ullet Since E is not predictable...focus on X^\star

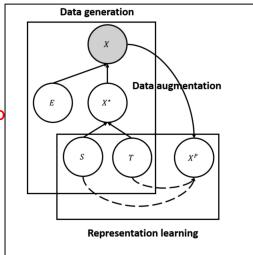


Figure 2: Causal graph of the generative process for time series data.

Assumption 2: Independent mechanism

- season & trend do not interact with each other
- ightarrow disentangle S & T

- 1. Seasonal-Trend Representations
- b) Disentangled Seasonal-Trend Representation Learning & Causal Interpretatio

Introduce **structural priors** for TS

Learning representations for S & T

- allows us to find stable result.
- ullet since targets X^\star are unknown.... **construct a proxy CONTRASTIVE learning task**

 $^{\circ}$ (1) $_{L^{\prime}}$, error variable

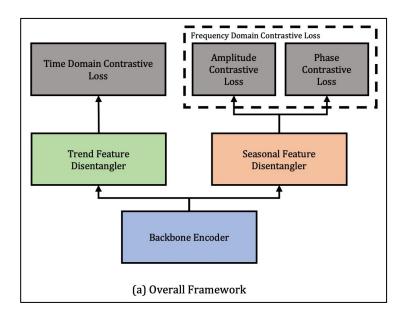
- $\circ~$ (2) X^{\star} : error-free latent variable : generated from...
 - (2-1) T: trend variable
 - (2-2) S: seasonal variable
- ullet Since E is not predictable...focus on X^\star

Assumption 2: Independent mechanism

- season & trend do not interact with each other
 - ightarrow disentangle S & T

1. Seasonal-Trend Representations

CoST framework



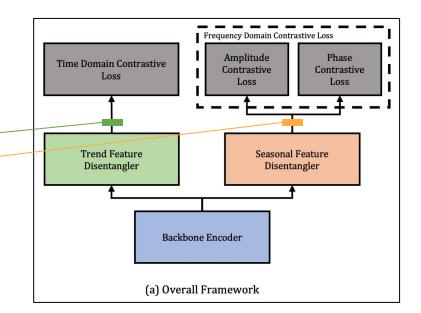
1. Seasonal-Trend Representations

CoST framework

- learn **disentangled** seasonal-trend reperesentation
- for each time step, have the disentangled representations for S & T

$$\circ ~ oldsymbol{V} = \left[oldsymbol{V}^{(T)}; oldsymbol{V}^{(S)}
ight] \in \mathbb{R}^{h imes d}.$$

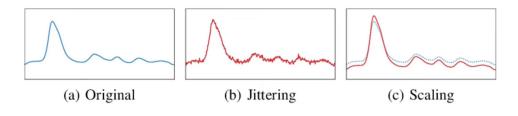
- lacktriangledown trend : $oldsymbol{V}^{(T)} \in \mathbb{R}^{h imes d_T}$ season : $oldsymbol{V}^{(S)} \in \mathbb{R}^{h imes d_S}$

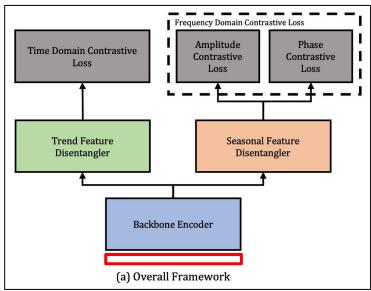


2. Seasonal-Trend Contrastive Learning Framework

step 0) Augmentation

- obtain robustness to error variables
- uses ..
 - 1) scaling
 - 2) shifting
 - 3) jittering

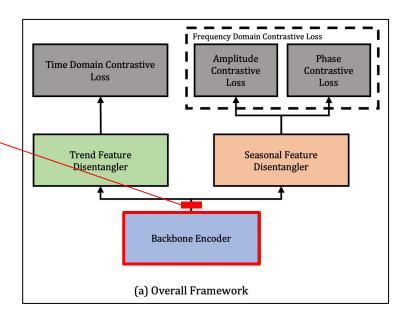




2. Seasonal-Trend Contrastive Learning Framework

step 1) Encoder

- ullet encoder $f_b: \mathbb{R}^{h imes m}
 ightarrow \mathbb{R}^{h imes d}$
- map into latent space (= intermediate representation)



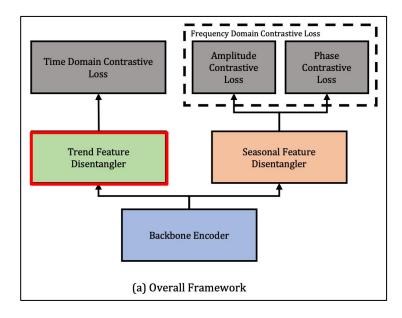
2. Seasonal-Trend Contrastive Learning Framework

step 2) Trend & Seasonal Representation

- (1) TFD (Trend Feature Disentagler) : $f_T: \mathbb{R}^{h imes d} o \mathbb{R}^{h imes d_T}$
 - extracts trend representation,
 - via a mixture of AR experts
 - lacktriangle learned via a **time domain constrastive loss** L_{time}

$$\mathcal{L} = \mathcal{L}_{time} \, + rac{lpha}{2} (\mathcal{L}_{amp} + \mathcal{L}_{phase} \,)$$

lacksquare α : trade-off between T & S



2. Seasonal-Trend Contrastive Learning Framework

step 2) Trend & Seasonal Representation

(1) TFD (Trend Feature Disentagler) : $f_T: \mathbb{R}^{h imes d} o \mathbb{R}^{h imes d_T}$

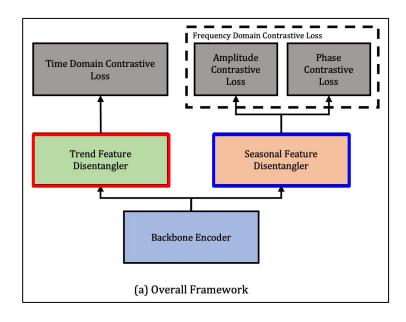
- extracts trend representation,
- via a mixture of AR experts
- lacktriangle learned via a **time domain constrastive loss** L_{time}

(2) SFD (Seasonal Feature Disentagler) : $f_S: \mathbb{R}^{h imes d} o \mathbb{R}^{h imes d_S}$

- extracts seasonal representation,
- via a learnable Fourier layer
- learned via frequency domain constrastive loss, which consists of
 - lacksquare a) L_{amp} : amplitude component
 - lacksquare b) L_{phase} : phase component

$$\mathcal{L} = \mathcal{L}_{time} \, + rac{lpha}{2} (\mathcal{L}_{amp} + \mathcal{L}_{phase} \,)$$

lacksquare α : trade-off between T & S



2. Seasonal-Trend Contrastive Learning Framework

step 3) Concatenate

Concatenate the outputs of **Trend and Seasonal Feature Disentaglers**,

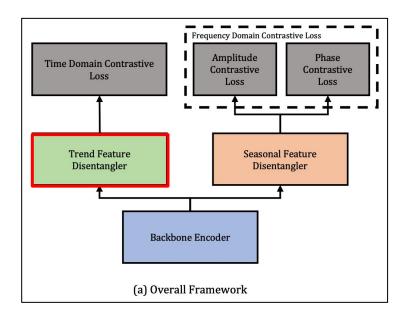
to obtain final output representations

- 3. Trend & Seasonal Feature Representation
- 1) Trend Feature Representation

Autoregressive filtering

- able to capture **time-lagged causal relationships** from past observation
- problem: how to select lookback window?
 - → propose to use a **MIXUTRE of auto-regressive exports**

(adaptively select the appropriate lookback window)



- 3. Trend & Seasonal Feature Representation
- 1) Trend Feature Representation

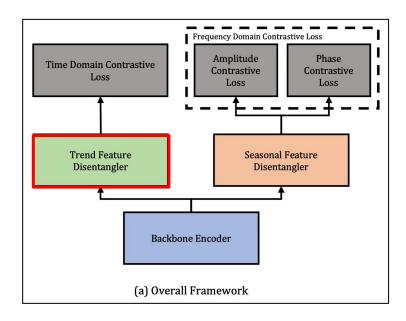
Autoregressive filtering

- able to capture **time-lagged causal relationships** from past observation
- problem: how to select lookback window?
 - ightarrow propose to use a **MIXUTRE of auto-regressive exports**

(adaptively select the appropriate lookback window)

MA of **window** size 2,4,8,16 ...

= Convolutional filter with **kernel** size 2,4,8,16 ...

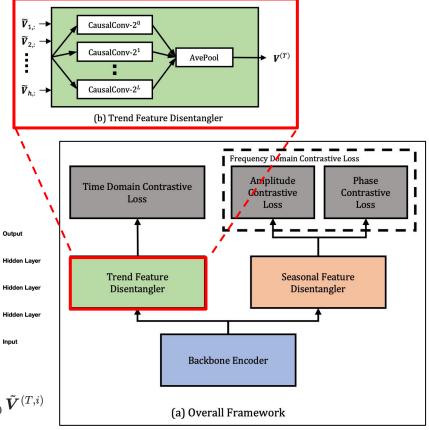


- 3. Trend & Seasonal Feature Representation
- 1) Trend Feature Representation

Trend Feature Disentangler (TFD)

- ullet mixture of L+1 autoregressive experts
- implemented as 1-d causal convolution
 - \circ input channel : d
 - \circ output channel : d_T
 - \circ kernel size : 2^i
- ullet each expert : $ilde{oldsymbol{V}}^{(T,i)} = ext{CausalConv}\left(ilde{oldsymbol{V}}, 2^i
 ight)$
- average-pooling operation :

$$egin{aligned} \circ ~ oldsymbol{V}^{(T)} = \operatorname{AvePool}\left(ilde{oldsymbol{V}}^{(T,0)}, ilde{oldsymbol{V}}^{(T,1)}, \ldots, ilde{oldsymbol{V}}^{(T,L)}
ight) = rac{1}{(L+1)} \sum_{i=0}^{L} ilde{oldsymbol{V}}^{(T,i)} \end{aligned}$$

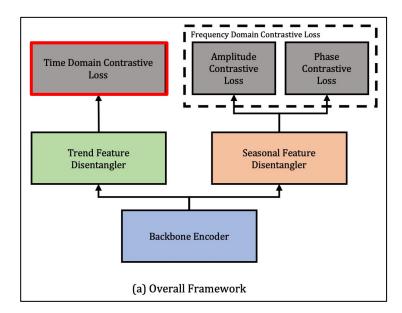


- 3. Trend & Seasonal Feature Representation
- 1) Trend Feature Representation

Time Domain Contrastive Loss

- employ contrastive loss in time domain
- ullet Given N Samples & K negative samples...

$$\circ ~~ \mathcal{L}_{ ext{time}} = \sum_{i=1}^{N} -\log rac{\exp(oldsymbol{q}_i \cdot oldsymbol{k}_i / au)}{\exp(oldsymbol{q}_i \cdot oldsymbol{k}_i / au) + \sum_{j=1}^{K} \exp(oldsymbol{q}_i \cdot oldsymbol{k}_j / au)}$$

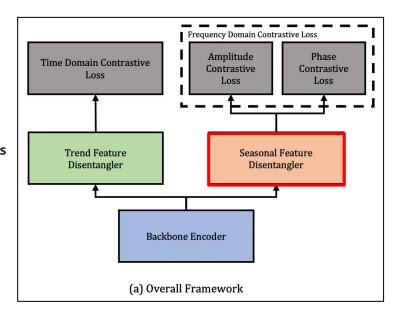


- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

spectral analysis in frequency domain

2 issues

- (1) how to support **INTRA-frequency interactions**
- (2) what kind of learning signal is required to learn representations, which are able to **discriminate between different seasonality patterns**



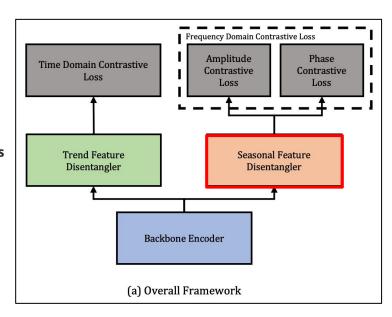
- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

spectral analysis in frequency domain

2 issues

- (1) how to support INTRA-frequency interactions
- (2) what kind of learning signal is required to learn representations, which are able to **discriminate between different seasonality patterns**
- \rightarrow introduce **SFD**, which makes use of a **learnable Fourier Layer**

```
(SFD = Seasonal Feature Disentangler)
```

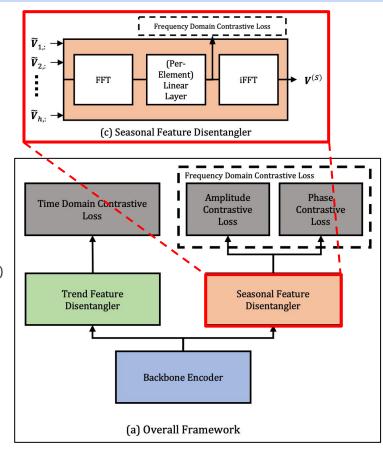


- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

Seasonal Feature Disentangler (SFD)

composed of 2 parts

- (1) DFT (discrete Fourier Transform)
 - \circ map **intermediate features** to **FREQUENCY** domain ($\mathcal{F}(ilde{m{V}}) \in \mathbb{C}^{F imes d}$)
- (2) learnable Fourier layer
 - \circ map in to $oldsymbol{V}^{(S)} \in \mathbb{R}^{h imes d_S}$

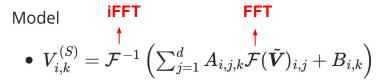


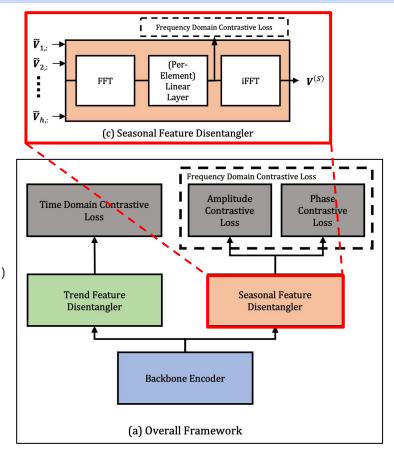
- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

Seasonal Feature Disentangler (SFD)

composed of 2 parts

- (1) DFT (discrete Fourier Transform)
 - \circ map **intermediate features** to **FREQUENCY** domain ($\mathcal{F}(ilde{m{V}}) \in \mathbb{C}^{F imes d}$)
- (2) learnable Fourier layer
 - \circ map in to $oldsymbol{V}^{(S)} \in \mathbb{R}^{h imes d_S}$

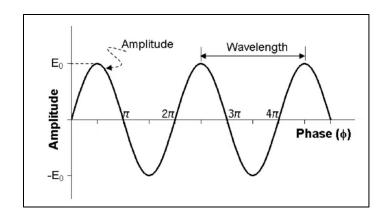


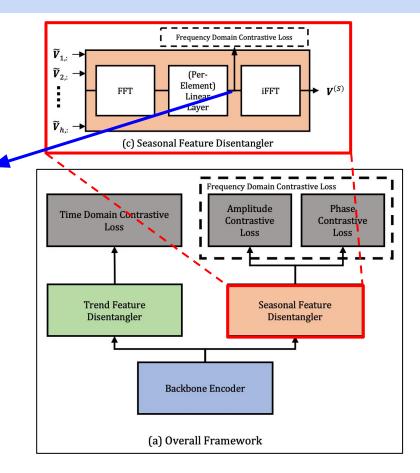


- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

Representation for **AMPLITUDE** & **PHASE** of each frequency

$$|m{F}_{i,:}|$$
 and $\phi(m{F}_{i,:})$





- 3. Trend & Seasonal Feature Representation
- 2) Seasonal Feature Representation

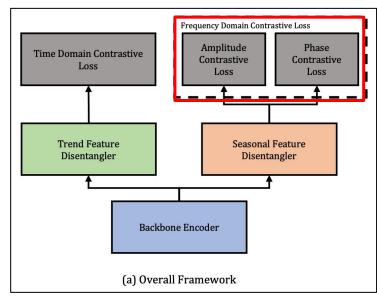
Frequency Domain Contrastive Loss

discriminate between different periodic patterns, given an frequency

$$\bullet \ \ \mathcal{L}_{\mathrm{amp}} = \tfrac{1}{FN} \sum_{i=0}^{F} \sum_{j=1}^{N} -\log \tfrac{\exp \left(| \boldsymbol{F}_{i,:}^{(j)}| \cdot | \left(\boldsymbol{F}_{i,:}^{(j)} \right)'| \right)}{\exp \left(| \boldsymbol{F}_{i,:}^{(j)}| \cdot | \left(\boldsymbol{F}_{i,:}^{(j)} \right)'| \right) + \sum_{k \neq j}^{N} \exp \left(| \boldsymbol{F}_{i,:}^{(j)}| \cdot | \boldsymbol{F}_{i,:}^{(k)}| \right)}.$$

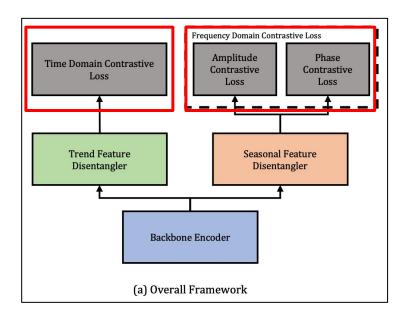
$$\bullet \ \ \mathcal{L}_{\mathrm{phase}} \ = \frac{1}{FN} \sum\nolimits_{i=0}^F \sum\nolimits_{j=1}^N -\log \frac{\exp\Bigl(\phi\bigl(\boldsymbol{F}_{i,:}^{(j)}\bigr) \cdot \phi\Bigl(\bigl(\boldsymbol{F}_{i,:}^{(j)}\bigr)'\Bigr)\Bigr)}{\exp\Bigl(\phi\bigl(\boldsymbol{F}_{i,:}^{(j)}\bigr) \cdot \phi\Bigl(\bigl(\boldsymbol{F}_{i,:}^{(j)}\bigr)'\Bigr)\Bigr) + \sum_{k \neq j}^N \exp\bigl(\phi\bigl(\boldsymbol{F}_{i,:}^{(j)}\bigr) \cdot \phi\bigl(\boldsymbol{F}_{i,:}^{(k)}\bigr)\Bigr)}.$$

where $m{F}_{i,:}^{(j)}$ is the j-th sample in a mini-batch, and $\left(m{F}_{i,:}^{(j)}\right)'$ is the augmented version of that sample.



- 3. Trend & Seasonal Feature Representation
- 3) Overall Loss

$$\mathcal{L} = \mathcal{L}_{\text{time}} + \frac{\alpha}{2} (\mathcal{L}_{amp} + \mathcal{L}_{phase})$$



4. Conclusion

- Time Series Decomposition using DL module
 - different kernel sizes to obtain multiple trends
- Representation Learning in ...
 - (1) Time Domain (for TREND)
 - (2) Frequency Domain (for SEASONALITY)
 - 2-1) Amplitude
 - 2-2) Phase
- Limitation : evaluation only on FORECASTING tasks

Thank You!