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Variational Inference using Implicit Distributions

Ferenc Huszar

Abstract

Generative adversarial networks (GANs) have
given us a great tool to fit implicit generative
models to data. Implicit distributions are ones we
can sample from easily, and take derivatives of
samples with respect to model parameters. These
models are highly expressive and we argue they
can prove just as useful for variational inference
(VD) as they are for generative modelling. Sev-
eral papers have proposed GAN-like algorithms
for inference, however, connections to the the-
ory of VI are not always well understood. This
paper provides a unifying review of existing al-
gorithms establishing connections between vari-
ational autoencoders, adversarially learned infer-
ence, operator VI, GAN-based image reconstruc-
tion, and more. Secondly, the paper provides
a framework for building new algorithms: de-
pending on the way the variational bound is ex-
pressed we introduce prior-contrastive and joint-
contrastive methods, and show practical infer-
ence algorithms based on either density ratio es-
timation or denoising.

1. Introduction

Implicit distributions are probability models whose prob-
ability density function may be intractable, but there is a
way to

1. sample from them exactly and/or calculate and ap-
proximate expectations under them, and

2. calculate or estimate gradients of such expectations
with respect to model parameters.

A popular example of implicit models are stochastic gener-
ative networks: samples from a simple distribution - such
as uniform or Gaussian - are transformed nonlinearly and
non-invertably by a deep neural network. Such networks
can flexibly parametrise a wide range of probability dis-

tributions, including even degenerate ones which may not
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even have a continuous density.

Implicit models have been successfully applied to genera-
tive modelling in generative adversarial networks (GANs
Goodfellow et al., 2014) and subsequent work (Salimans
et al., 2016; Radford et al., 2016; Donahue et al., 2017; Du-
moulin et al., 2017). They work particularly well for visual
data, partly because they can exploit the inductive biases of
convolutional neural networks, and partly because they can
flexibly model potentially degenerate, manifold-like distri-
butions which natural images are assumed to follow.

This note is about using implicit distributions in another
important probabilistic machine learning problem: approx-
imate inference in latent variable models. Unlike in the first
applications of GANS to generative modelling where an im-
plicit model directly models the distribution of observed
data, in approximate inference we are interested in mod-
elling the posterior distribution of latent variables given ob-
served data. Direct generative modelling and approximate
inference are very different problems indeed: in the former
we are provided with samples z; from the distribution to be
modelled, in the latter we are given a joint distribution of
latents z and observations x, and a set of observed samples
x;, but no samples from the posterior itself.

In this note we focus on variational inference (VI) which
works by minimising a divergence between the approxi-
mate and real posteriors. More precisely we follow the
usual KL-divergence formulation, but other, more general
variational methods exist (e.g. Li & Turner, 2016; Ran-
ganath et al., 2016). VI also provides a lower bound to
the marginal likelihood or model evidence - the evidence
lower bound or ELBO - which can be maximised with re-
spect to parameters of the latent variable model to approx-
imate maximum likelihood learning. It’s important to keep
in mind that despite several algorithms in this note look
and feel like adversarial training procedures, the way the
model is fit to observed data is more akin to variational
auto-encoders (VAE, Kingma & Welling, 2014; Rezende
& Mohamed, 2015) than to GANSs.

There are several reasons to explore implicit distributions
in the context of variational inference. Firstly, explicit
VI is often limited to exponential family distributions or
other distributions with tractable densities (Rezende & Mo-
hamed, 2015; Kingma et al., 2016) which may not be ex-
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pressive enough to capture non-trivial dependencies that
the real posterior exhibits. A flexible, implicit distribution
may provide a better approximation to the posterior and a
sharper lower bound. Secondly, It may be desirable to use
an implicit likelihood as the resulting latent variable model
may fit the data better. For example, the likelihood or for-
ward model might be described as a probabilistic program
(Vajda, 2014) whose density is intractable or unknown. Fi-
nally, sometimes we may want to use implicit priors over
latent variables. For example in a deep hierarchical latent
variable model the prior for a layer may be a complicated
probabilistic model with an intractable density. Or, when
solving inference problems in computational photography,
the prior may be the empirical distribution of natural im-
ages as in (Sgnderby et al., 2017). In summary, any or all
of the prior, the likelihood and the approximate posterior
may have to be modelled implicitly, and we need VI proce-
dures that are ready to tackle these situations.

In this note we present two sets of tools to handle implicit
distributions in variational inference: GAN-like adversar-
ial algorithms which rely on density ratio estimation, and
denoising-based algorithms which build a representation of
the gradients of each implicit distribution’s log-density and
use these gradient estimates directly in a stochastic gradient
descent (SGD) algorithm. We further classify algorithms as
prior-contrastive and joint-contrastive depending on which
form of the variational bound they use. Prior-contrastive
methods only deal with implicit distributions over latent
variables (i.e. the prior or approximate posterior), while
joint-contrastive methods can handle fully implicit mod-
els where none of the distributions involved has a tractable
density. This classification gives rise to a range of algo-
rithms listed in Table 1, alongside related algorithms from
prior work. All of the algorithms presented here can per-
form variational approximate inference, which is the main
focus of this note, but not all of them can perform learning
unless the likelihood is explicitly defined.

1.1. Overview of prior work

Several of the algorithms proposed here have been discov-
ered in some form before. However, their connections to
variational inference is rarely made explicit. In this sec-
tion we review algorithms for inference and feature learn-
ing which use implicit distributions or adversarial training.
As we will see, several of these admit a variational inter-
pretation or can be rather straightforwardly modified to fit
the variational framework.

GANSs have been used rather successfully to solve inverse
problems in computer vision. These inverse problems can
be cast as a special case of approximate inference. Doso-
vitskiy & Brox (2016) used GANSs to reconstruct and gen-
erate images from non-linear feature representations. As

IMPLICIT
po(2) po(z|z) gqy(z|z)

ALGORITHM

VAE (KINGMA & WELLING, 2014)
NF (REZENDE & MOHAMED, 2015)
PC-ADV, ALGoriTaM 1
AFFGAN]L (SONDERBY ET AL., 2017)
AVB (MESCHEDER ET AL., 2017)
OPVI (RANGANATHET AL., 2016)
PC-DEN, ALcoriTaM 3

JC-ADV, ALGORITHM 2

JC-DEN

JC-ADV-RMD*

AAE (MAKHZANI ET AL., 2016)
DEEPSIM (DOSOVITSKIY & BROX, 2016)
ALI (DUMOULIN ET AL., 2017)
BIGAN (DONAHUE ET AL., 2017)
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Table 1. Summary of algorithms for variational inference and
learning in latent variable models using implicit distributions.
Columns 2-4 indicate whether the component distributions: the
prior, likelihood or approximate posterior are handled implicitly
by the algorithm. “I” denotes inference only - the parameters 6
of these distributions cannot be learned unless they are explicitly
defined, but inference can still be performed. The last column
indicates whether the algorithm has a variational interpretation,
i.e. minimises an approximation to ELBO. In naming the algo-
rithms PC and JC stand for prior-contrastive or joint-contrastive,
Adv and Den stand for adversarial (Section 3) or denoiser-based
(Section 4). Algorithms that share a row are equivalent or special
cases of each other. TAf fGAN is specialised to the task of image
super-resolution where the likelihood is degenerate and linear. ¥
The reverse-mode differentiation-based JC-Adv—RMD algorithm
has not been validated experimentally.

pointed out later by Sgnderby et al. (2017), this method,
DeePSiM, can be interpreted as a special case of amortised
maximum a posteriori (MAP) or variational inference with
a Gaussian observation model. GANs have also been used
for inference in image super-resolution Ledig et al. (2016);
Sgnderby et al. (2017). Connections between GANs and
VI in this context were first pointed out in (Sgnderby et al.,
2017, Appendix F). Sgnderby et al. (2017) also introduced
a modified objective function for the GAN generator which
ensures that the algorithm minimises the Kullback-Leibler
divergence as opposed to the Jensen-Shannon divergence,
an essential step to using GANSs for VI. The AffGAN algo-
rithm presented there is highly application specific, thus, it
does not solve VI in general.

In more recent, parallel work, (Mescheder et al., 2017)
proposes adversarial variational Bayes(AVB), perhaps the
best description of the use of GANs for variational in-
ference. AVB is a general algorithm that allows for im-
plicit variational distributions and is in fact equivalent to
the prior-contrastive adversarial algorithm (PC-Adv, Al-
gorithm 1) described in Section 3. Operator variational in-
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ference (OPVI, Ranganath et al., 2016) formulates a gen-
eral class of variational lower bounds based on operator
divergences, resulting in a practical algorithm for training
implicit inference networks without a tractable density. As
is shown in the paper, the KL-divergence-based variational
bound used here and in (Mescheder et al., 2017) is a special
case of OPVI. Adversarial autoencoders (AAE, Makhzani
et al., 2016) are similar to variational autoencoders where
the KL-divergence term is replaced by an adversarial objec-
tive. However, AAEs do not use the KL-divergence formu-
lation of the adversarial loss and their discriminator is inde-
pendent of the encoder’s input, thus they are not a true vari-
ational method. Finally, Karaletsos (2016) proposed varia-
tional message passing, in which adversaries are employed
to minimise local Jensen-Shannon divergences in an algo-
rithm more akin to expectation propagation (Minka, 2001)
than to variational inference.

Another line of research extends GANs to latent variable
models by training the discriminator on the joint distribu-
tion of latent and observed variables. This technique has
been independently discovered as bi-directional GAN (Bi-
GAN, Dumoulin et al., 2017) and adversarially learned in-
ference (ALI, Donahue et al., 2017). These algorithms
are closely related to the joint-contrastive adversarial al-
gorithm (JC-Adv, Algorithm 2). ALI and BiGAN use the
Jensen-Shannon formulation of GANs rather than the KL-
divergence ones used here. On the one hand, this means
that the Jensen-Shannon variants aren’t technically VI al-
gorithms. On the other hand, the symmetry of the Jensen-
Shannon divergence makes ALI and BiGAN completely
symmetric, enabling not only approximate inference but
also learning in the same algorithm. Unfortunately, this is
no longer true when KL divergences are used: JC-Adv is
an algorithm for inference only.

The algorithms mentioned so far are examples of adver-
sarial techniques which rely on density ratio estimation
as the primary tool for dealing with implicit distributions
(Mohamed & Lakshminarayanan, 2016). Se¢nderby et al.
(2017) and Warde-Farley & Bengio (2017) demonstrated
an alternative or complementary technique based on de-
noising autoencoders. As shown by (Alain & Bengio,
2014) the optimal denoising function learns to represent
gradients of the log data density - which in turn can be used
in an inference method. Sgnderby et al. (2017) used this
insight to build a denoiser-based inference algorithm for
image super-resolution and connected it to amortised max-
imum a posteriori (MAP) inference. The extension from
MAP to variational inference is straightforward and this
method is closely related to the prior-contrastive denoising
VI (PCDen, Algorithm 3) algorithm presented here.

2. Variational Inference: Two forms

In this section, we give a lightweight overview of amortised
variational inference (VI) in a latent variable model, in a
model similar to e. g. variational autoencoders (Kingma &
Welling, 2014). We observe an i.1.d. sequence of N ob-
served data D = {x,,n = 1...N}. For each data point
there exists an associated latent variable z,,n = 1... .
We specify a prior pg(z) over latent variables and a forward
model pg(x|y) which describes how the observations are
related to latents. In such model we are interested in max-
imum likelihood learning, which maximises the marginal
likelihood or model evidence Zf:le log pg(z,,) with re-
spect to parameters 6, and inference which involves cal-
culating the posterior py(z|z). We assume that neither the
marginal likelihood or the posterior are tractable.

In amortized VI we introduce an auxiliary probability dis-
tribution ¢(z|x,; ), known as the recognition model, in-
ference network or approximate posterior. Using gy we
define the evidence lower bound (ELBO) as follows:

N
£(0.4) = 3" {log po(wn) — KL [y (zla) [po =)}
n=1
(1)

As the name suggests, ELBO is a lower bound to the model
evidence py(D) and it is exact when g,, matches the true
posterior py(z|z) exactly. Maximising ELBO with respect
to ¢ is known as variational inference. This minimises
the KL divergence KL [[[|q],, [po(2|x)] thus moving the gy
closer to the posterior. Conversely, maximising ELBO with
respect to 6 is known as variational learning which approx-
imates maximum likelihood learning.

The ELBO can be calculated exactly for many combina-
tions of pg and ¢, whose densities are tractable. VAEs use
a re-parametrisation trick to construct a low variance esti-
mator to ELBO, but still require tractable densities for both
the model py and recognition model g,,. If pg and/or g, are
implicit the ELBO needs to be approximated differently.
As we will see in the next sections, it is useful to formulate
ELBO in terms of density ratios.

There are two main forms considered here. Firstly, the
prior-contrastive form used also by VAEs (Kingma &
Welling, 2014):

N
L= Z Ezwqw(z\ﬂﬂn) [logPG(xn‘Z) - Tg_yw(Z, xn)} )

n=1

N
=Y [Eengy(elon) 108 po(wn]2) — KL gy (2[20) 6 (2)] |
n=1

where we introduced notation for the logarithmic density
ay (z|zn)

ratio 79,y = log =, 755
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We call Eqn. (2.1) the prior-contrastive expression as the
K L term contrasts the approximate posterior g, with the
prior pg(z).Alternatively, we can write ELBO in a joint-
contrastive form as follows:

L(0,) = =N - (KL [gy (z|2)pp (2)|lpe (2, 2)] — H[pp])
N
== Eugy(elon)S0.5(xn, 2) — N - Hlpp], 3)

n=1

where we introduced notation pp to denote the real data
distribution and H[pp] denotes its entropy'. H[pp] can be
ignored as it is constant with respect to both 6 and ). We
also introduced notation sg ,, to denote the logarithmic den-

; : — gy (2|zn)pp (2) :
sity ratio se,w(mn,.z) = log ‘”pe(guiz) Note that .whlle
T9,, Was a log-ratio between densities over z, sg 4 is the
ratio of joint densities over the tuple (x, z). As this form
contrasts joint distributions, we call Eqn. (2.1) the joint-

contrastive expression.

‘When using implicit models the density ratios 74, and sg 4,
cannot be computed analytically. Indeed, even if all distri-
butions involved are explicitly defined, pp is only available
as an empirical distribution, thus sg , cannot be calculated
even if the densities of other distributions are tractable. In
this note we rely on techniques for estimating g,y Or sg,y,
or their gradients, directly from samples. For this to work
we need to deal with a final difficulty: that rg 4 or sg
themselves implicitly depend on the parameter v which we
would like to optimise.

2.1. Dependence of 7y , and 54, on v

The KL-divergences in equations and depend on % in two
ways: first, an expectation is taken with respect to gy -
this is fine as we assumed expectations under implicit dis-
tributions and their gradients can be approximated easily.
Secondly, the ratios gy and sg , themselves depend on
1), which may cause difficulties. If one optimised ELBO
naively via gradient descent, one should back-propagate
through both of these dependencies. Fortunately, the sec-
ond dependence can be ignored:

0 0
= Bongy0,0(2)| y_y = 7 Bang,T0,0(2)
oY / Y=1bo oY v 0 71):%(4)

The only difference between the LHS and RHS of the equa-
tion is in the subscripts 79 4 V.S. Tg,y,. AS Tg 4, 1S a con-

"In practice, pp is an empirical distribution of samples, so
technically it does not have a continuous density or differential
entropy H[pp]. We still use this notation liberally to avoid unnec-
essarily complicating the derivations.

stant with respect to ¢, Eqn. (4) reduces to the gradient of
an expectation with respect to g, which we assumed we
can approximate if g, is an implicit distribution. The de-
tailed proof of Eqn. (4) is in Appendix A, the key idea of
which is the observation that for any 1

Engyr0,5(2) = Ba zngyymo,6 (2, 2) + KL gy | gy, ]

A similar equation analogously holds for sg ,, in Eqn. (2.1),
or indeed, any other KL divergence as well.

2.2. Approximate SGD Algorithms for VI

In the following sections we outline algorithms for VI
which allow for implicit distributions. These algorithms
can generally described as two nested loops of the follow-
ing nature:

e the outer loop performs stochastic gradient descent
(SGD) on an approximation to ELBO with respect to
¢, using gradient estimates obtained by the inner loop

e in each iteration of outer loop, with ¢ = 1/, fixed, the
inner loop constructs an estimate to 7 ,, 56,1, or
more generally to the gradient in Eqn. (4)

As long as the gradient estimates provided by the inner loop
has no memory between subsequent iterations of the outer
loop, and the gradient estimates provided by the inner loop
on average constitute a conservative vector field, the algo-
rithms can be seen as instances of SGD, and as such, should
have the convergence properties of SGD.

3. Direct Density Ratio Estimation

Direct density ratio estimation, also known as direct impor-
tance estimation, is the task of estimating the ratio between
the densities of two probability distribution given only
i.1.d. samples from each of the distributions (Kanamori
et al., 2009; Sugiyama et al., 2008; Mohamed & Laksh-
minarayanan, 2016, see e.g. ). This task is relevant in
many machine learning applications, such as dealing with
covariate shift or domain adaptation. A range of methods
have been introduced to learn density ratios from samples,
here we focus on adversarial techniques which employ a
discriminator trained via logistic regression. We note that
other methods such as KLIEP (Sugiyama et al., 2008; Mo-
hamed & Lakshminarayanan, 2016) or LSIF (Kanamori
et al., 2009; Uehara et al., 2016) could be used just as well.

3.1. Adversarial approach using discriminators

(Bickel et al., 2007) proposed estimating density ratios by
training a logistic regression classifier between samples
from the two distributions. Assuming the classifier is close
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to a unique Bayes-optimum, it can then be used directly to
provide an estimate of the logarithmic density ratio. This
approach has found great application in generative adver-
sarial networks (Sgnderby et al., 2017; Mohamed & Laksh-
minarayanan, 2016; Uehara et al., 2016), which work par-
ticularly well for generative modelling of images (see e. g.
Salimans et al., 2016).

Let us use this to construct an approximation 7 to the log-
arithmic density ratio 7y ¢ from Eqn. (2.1). We can do this
by minimising the following objective function, typically
via SGD:

N
lyg™ (@) = D Banpet™ (ro(an, 2))
n=1
N
- Z Ezwqw(z\wn)g_ (7”45(3)7“ Z)) ) )]
n=1

where 1 (t) = log(1 + exp?) and £~ (t) = t — £T(¢t) are
the softplus and softminus functions, respectively. Once
the approximate log ratio r4 is found, we can use it to
take a gradient descent step along the approximate nega-
tive ELBO:

N
—£¢(¢7 9) = Z EGNN(O,I)TdJ (mru gy ({En, 6))
n=1
N
- Z Ecn0,1) 108 Do (T0n|gy (70, €)), (6)

n=1

where we re-parametrised sampling from gy, in terms of
a generator function g, and noise e. When gy is explic-
itly defined, this re-parametrisation is the same as the re-
parametrisation in VAEs. When g, is an implicit distribu-
tion, it often already defined in terms of a non-linear func-
tion g, and a noise variable ¢ which it transforms.

Equations and are analogous to the discriminator and
generator losses in generative adversarial networks, with
1/(1+4exp(—ry)) taking the role of the discriminator. Op-
timising the two losses in tandem gives rise to the prior-
contrastive adversarial algorithm (PC—Adv, Algorithm 1)
for variational inference. This algorithm is equivalent to
the independently developed adversarial variational Bayes
(Mescheder et al., 2017, AVB).

As the likelihood py(x|z) appears in Eqn. (3.1), in Algo-
rithm 1 the forward model has to be explicitly defined, but
the prior pg(z) and approximate posterior g, can be im-
plicit. Algorithm 1 only describes variational inference -
finding ¢ given 6 - but the approximate ELBO in Eqn. can

Algorithm 1 PC—Adv: prior-contrastive adversarial VI

Input: data D, model py, batchsize B, iter. count K
repeat
for k =1to K do
{z},,b=1... B} < sample B items from py
{2k, b=1... B} + sample B items from D
for all =, ;, do
zjl, « sample from gy (2]xp)

end for
update ¢ by gradient descent step on
B
Z [§+ (w(xk,b,zli',b)) -& (r¢(xk,bvzg,b)>]
b=1
end for

{zp,b=1... B} + sample B items from D
{€p,b=1... B} « sample B items from N(0, I)
update 1) by gradient descent step on
B
> ro(@s, g (s, ) — 10g po(wn,blgw (s, 1))
b=1
until change in 1) is negligible

be used for variational learning of 6 as well, with the ex-
ception for parameters of the prior py(2).

Learning prior parameters involves minimising the KL-
divergence KL {2521 qp(z]zn)
to fitting pp to samples from the aggregate posterior
22;1 @y (z|xy) via maximum likelihood. If the prior has
a tractable density, this may be an easy task to do. A more
interesting case is though when the prior pg(2) itself is a
latent variable model, in which case we can lower bound
the said KL divergence with another ELBO, thereby stack-
ing multiple models on top of each other in a hierarchical
fashion (Kingma & Welling, 2014; Rezende & Mohamed,
2015; Sgnderby et al., 2016).

pe(z)} which is akin

A similar adversarial algorithm (JC-Adv, Algorithm 2)
can be constructed to target sg ,, in the joint-contrastive for-
mulation of ELBO (Eqn. 2.1). JC-Adv is very similar to
ALI (Dumoulin et al., 2017) and BiGAN (Donahue et al.,
2017) in that it learns to discriminate between the joint dis-
tributions pp (2)gy (z|z) and pg(x, z). Unlike these meth-
ods, however, JC—Adv uses the correct loss functions so
it maximises an approximation to the ELBO. Unlike in
PC-Adv, which required a tractable likelihood py(z|z),
JC-Adv also works with completely implicitly defined
models. As a downside, JC-Adv provides no direct way
for variational learning of . ALI and BiGAN exploit the
symmetry of the Jensen-Shannon divergence to optimise
for 6, but as JC—-Adv uses the asymmetric KL-divergence,
this is not an option. Section 7 explores an idea for fixing
this drawback of JC-Adv.
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Algorithm 2 JC-Adv: joint-contrastive adversarial VI

Algorithm 3 PC—-Den: prior-contrastive denoising VI

Input: data D, model py, batchsize B, iter. count K
repeat
for k =1to K do
{2} 4,0 =1... B} < sample B items from D
for all = , do
zjl, < sample from gy (2]} ;)
end for
{2140 =1... B} < sample B items from pg
for all 2} , do
xy, 5, < sample from py (|2, ;)

end for
update ¢ by gradient descent step on
B
D6 (so(af 2 0)) =€ (solatp2iy)]
b=1
end for

{zp,b=1... B} < sample B items from D

{e,b=1...B} + sample B items from N(0, I)
update v by gradient descent step on
B

> so(@n, gu (@, )

b=1
until change in 1) is negligible

4. Denoiser-guided learning

Although most versions of GAN use an adversarial dis-
criminator based on logistic regression, there are other
ways one can tackle learning and inference with implicit
distributions. One interesting tool that has emerged in re-
cent papers (Sgnderby et al., 2017; Warde-Farley & Ben-
gio, 2017) is the use of denoising autoencoders (DAEs,
Vincent et al., 2008) or reconstruction-contractive autoen-
coders (RCAEs, Alain & Bengio, 2014).

The key observation for using denoising is that the Bayes-
optimal denoiser function captures gradients of the log den-
sity of the data generating distribution:

v(, 2 +n) — 2|

. - .
v*(z,2) = argmin, ELZNQ(%Z)W"’Nan

2 0log q(2|7)

~z+ o, aso, — 0 7
0z

This allows us to construct an estimator to the score of a
distribution by fitting a DAE to samples. We note that it is
possible to obtain a more precise analytical expression for
for the optimal denoising function (Valpola et al., 2016).

Let’s see how one can use this in the prior-contrastive sce-
nario to deal with an implicit gg. First, we fit a denoising

Input: data D, py, batchsize B, iter. count K, o,
repeat
for k =1to K do
{zkp,b=1... B} < B samples from D
for all =, ;, do
2k b < sample from gy (z|xg p)
end for
Ne.p,b = 1... B} + B samples from N (0, 0, 1)

update ¢ by gradient descent step on
B

D " llug (0 + 1) = 2ipll”

b=1
end for
{zp,b=1... B} + sample B items from D
{€p,b=1... B} + sample B items from N(0, I)
for all x;, do

2y gw(l’ln €p)

end for
update ¢ by gradient descent using gradient
EB: Ogu (b, €v) | Opo(zn, 2) 4 2= ug(2)
oY 0z _ o2
b=1 2=Z2p
until change in 1) is negligible
function ug by minimising the following loss:
N
O™ (9) = D By el oo, 100 (21, 20) = 212,
n=1

®)
which can then be used to approximate the gradient of
ELBO (Eqn. (4)) with respect to ) as follows:

OLO, %) < gy (xn,€)) Dlogps(an,2)
—_ E Eeon

oy = oy 92 =9y (@)
N
a ny ny - s
+S B gwgcw €)) gy (Tn, € :5(91&(35 €) ©)

n=1

Several SGD methods only require gradients of the objec-
tive function as input, this gradient estimate can be readily
used to optimise an approximate ELBO. The resulting iter-
ative algorithm, prior-contrastive denoising VI (PC-Den,
Algorithm 3) updates the denoiser and the variational dis-
tribution in tandem. Following similar derivation one can
construct several other variants of the algorithm. The de-
noiser approach is more flexible than the adversarial ap-
proach as one can pick and choose which individual dis-
tributions are modelled explitly, and which ones are im-
plicit. For example, when the prior py is implicit, we can
train a denoiser to represent its score function. Or, one can
start from the joint-contrastive formulation of the ELBO
and train a DAE over joint distribution of x and z, giving
rise to the joint-contrastive denoising VI (JC—-Den). In the
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interest of space the detailed description of these variants
is omitted here.

As the denoising criterion estimates the gradients of ELBO
but not the value itself, the denoising approach does not
provide a direct way to learn model parameters 6. The de-
noising method may be best utilised in conjunction with an
adversarial algorithm such as a combination of PC-Den
and PC-Adv. The denoising method works better early
on in the training when gy, and py are very different, and
therefore the discrimination task is too easy. Conversely,
as ¢, approaches pg, the discriminator can focus its ef-
forts on modelling the residual differences between them
rather than trying to model everything about gy in isola-
tion as the denoiser in Algorithm 3 does. Warde-Farley &
Bengio (2017) already used such combination of adversar-
ial training with a denoising criterion for generative mod-
elling. However, the additional nonlinear transformation
before denoising introduced in that work breaks the math-
ematical connections to KL divergence minimisation.

S. Summary

To summarise, we have presented two main ways to formu-
late ELBO in terms of logarithmic density ratios r and s.
We called these prior-contrastive (PC) and joint-contrastive
(JC). We have then described two techniques by which
these density ratios, or their gradients, can be estimated if
the distributions involved are implicit: adversarial methods
(PC-Adv and JC-Adv, Algorithms 1&2) directly estimate
density ratios via logistic regression, denoising methods
(DC-Den and JC-Den, Algorithm 3) estimate gradients
of the log densities via denoising autoencoders. We have
mentioned that these methods can be combined, and that
such combination may improve convergence.

While all of these algorithms can perform variational infer-
ence - fitting the variational parameters v - not all of them
can perform full variational learning of model parameters 0
if the model itself is implicitly defined. In Section 7 we out-
line an idea based on reverse mode differentiation (RMD)
idea by Maclaurin et al. (2015) which, giving rise to an al-
gorithm we refer to as JC-Adv—RMD, which can in theory
perform fully variational inference and learning in a model
where all distributions involved are implicit.

The capabilities of algorithms presented here and in related
work are summarised in Table 1. The adversarial varia-
tional Bayes (Mescheder et al., 2017) is equivalent to PC-
Adv, while ALI (Dumoulin et al., 2017) and BiGAN (Don-
ahue et al., 2017) are closely related to JC-Adv. (Sgnderby
etal., 2017) and (Dosovitskiy & Brox, 2016) are closely re-
lated to PC-Ady, although the former solves a limited spe-
cial case and the latter uses the Jensen-Shannon formula-
tion and hence is not fully variational.

6. Experiments

Several related papers have already demonstrated the suc-
cess of methods surveyed here on real world datasets, see
for example (Mescheder et al., 2017; Dosovitskiy & Brox,
2016) for PC-Adv, (Dumoulin et al., 2017; Donahue et al.,
2017) for JC-Adv and (Sgnderby et al., 2017; Warde-
Farley & Bengio, 2017) for denoiser-based techniques. Ex-
periments in these papers typically focus on the models’
ability to learn 6, and the quality of samples from the learnt
generative model py(x).

As the focus here is on inference rather than learning, the
goal of this section is to validate the algorithms’ ability to
perform inference. To this end, we have devised a simple
toy problem loosely based on the “sprinkle” example which
exhibits explaining away (Pearl, 1988). In our “continuous
sprinkler” model, two independent scalar hidden variables
z1 and 29 are combined nonlinearly to produce a univariate
observation x:

(21,22) ~ N(0,0%Irx2)
x ~ EXP(3 4+ max(0, z1)® + max(0, 29)%)

Although z; and z; are a priori independent, the like-
lihood introduces dependence between the two variables
once conditioned on data: either latent variable taking a
large value can explain a large observed x. This is an exam-
ple of explaining away which is an important phenomenon
in latent variable models that is known to be hard to model
with simple, unimodal distributions.

Column A in Figure 5 illustrates the joint posterior den-
sity of z; and z» for various values of z. The subsequent
columns show the posterior approximations by PC-Adv,
JC-Adv and PC-Den, respectively. qg is implemented
as a stochastic generative network where the observation
z and Gaussian noise variables € are fed as input to a multi-
layer perceptron g,,. The discriminators and denoisers were
implemented as multilayer perceptrons as well. Columns C
and D illustrate the limiting behaviour of the discriminator
in the PC—-Adv algorithm: as gy, converges to the true pos-
terior, r, is expected resemble the likelihood pg(z|z) up to
an additive constant. In JC-Adv the discriminator eventu-
ally converges to the flat s, = 0 solution.

7. Discussion and future work

Are adversaries really needed? When using adversarial
techniques for VI, we model the distribution of latent vari-
ables rather than observations. The distributions we en-
counter in VI are usually thought of as simpler than the
distribution of observed data, so the question arises whether
the flexibility of the adversarial framework is really needed.

Is the prior-contrastive too much like noise-contrastive?
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Figure 1. Approximate inference in the “continuous sprinkler” toy model from Section 6. Rows correspond to different values of x.
Column A shows contours of the real posterior pg(z|x). With increasing values of z the conditional dependence between z1 and z2
increases. Columns B, E and F show the approximate posterior g, obtained by PC-Adv (Alg. 1), JC-Adv (Alg. 2) and PC-Den
(Alg. 3), respectively. We could not observe any systematic difference in the algorithms’ final estimates. The quality of approximation
seems to be predominantly influenced by the choice of architecture used to implement g,,. Column D shows the final estimate r4 in
the PC—Adv algorithm. If the approximate posterior was perfect, 74 should match the likelihood pg(z|z), shown in column C, up to an

additive constant.

In the PC-Adv algorithm, the discriminator compares sam-
ples from the approximate posterior to the prior, and the
prior is often high-dimensional Gaussian noise. Even at
convergence, the two distributions the discriminator sees
never overlap, and this may slow down training. This
can be remedied by observing that as g, converges to the
true posterior, the discriminator will converge to the log-
likelihood plus constant 74 (x, z) =~ log p(z|y) + c. Hence,
the task of the discriminator can be made easier by form-
ing an ensemble between a neural network and the actual
log-likelihood.

Aren’t denoising methods imprecise? The main criticism
of denoiser-based methods is that the gradient estimates
are imprecise. As (Valpola et al., 2016) pointed out, the
optimal denoising function represents the gradients of the
noise-corrupted distribution rather than the original, and in
practical cases the noise level o,, may not be small enough
for this effect to be negligible. Sgnderby et al. (2017) ob-
served that denoiser-based methods can not produce results
as sharp as adversarial counterparts. Finally, for the outer
loop SGD to work consistently, the gradient estimates pro-
vided by the inner loop have to form a conservative vector
field. While the Bayes-optimal denoiser function satisfies
this, it is unclear to what degree this property is preserved

when using suboptimal denoisers (Im et al., 2016). We be-
lieve that an alternative approach based on score matching
(Hyviérinen, 2005) - a task intimately related to denoising
(Vincent, 2011) - might overcome both of these issues.

How to learn 6? The focus of this note is on variational in-
ference, which is finding ¥. However, it is equally impor-
tant to think about learning 6. Unfortunately, none of the al-
gorithms presented here allow for fully variational learning
of model parameters § when pg(z|z) is implicit. ALI and
BiGAN do provide an algorithm, but as we mentioned, they
are not fully variational. We close by highlighting one pos-
sible avenue for future work to enable this: differentiating
the inner loop of the JC~-Adv algorithm via reverse mode
differentiation (RMD, Maclaurin et al., 2015). To learn 6
via SGD, one only needs an estimate of the gradient %.
We can’t compute sy ¢, only an approximation s which
is reached via SGD. Each step of SGD depends implicitly
on 6. Following Maclaurin et al. (2015) we can algorithmi-
cally differentiate the SGD algorithm in a memory-efficient
way to obtain an estimate of the gradient we need for learn-
ing 6. We have not validated this approach experimentally,
but included it as JC-Adv—RMD in Table 1.
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A. Ignoring implicit dependence on 1

Proof of Eqn. (4):

0
£ KL [gy|po]

= %Ezww log q;‘zi;)
- gyt
= QEZWMGM (2)

o

where the third line is obtained by noting that v is a lo-
cal minimum of KL [g| ¢y, ], hence the second term in the
second line is 0.

0
+ 57 KL gyl ay,]
P=1o 61/} V=10

P=1o
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