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Abstract

We introduce stochastic variational inference
for Gaussian process models. This enables
the application of Gaussian process (GP)
models to data sets containing millions of
data points. We show how GPs can be vari-
ationally decomposed to depend on a set
of globally relevant inducing variables which
factorize the model in the necessary manner
to perform variational inference. Our ap-
proach is readily extended to models with
non-Gaussian likelihoods and latent variable
models based around Gaussian processes. We
demonstrate the approach on a simple toy
problem and two real world data sets.

1 Introduction

Gaussian processes [GPs, Rasmussen and Williams,
2006] are perhaps the dominant approach for inference
on functions. They underpin a range of algorithms
for regression, classification and unsupervised learn-
ing. Unfortunately, when applying a Gaussian process
to a data set of size n exact inference has complexity
O(n3) with storage demands of O(n2). This hinders
the application of these models for many domains. In
particular, large spatiotemporal data sets, video, large
social network data (e.g. from Facebook), population
scale medical data sets, models that correlate across
multiple outputs or tasks (for these models complex-
ity is O(n3p3) and storage is O(n2p2) where p is the
number of outputs or tasks). Collectively we can think
of these applications as belonging to the domain of ‘big
data’.

Traditionally in Gaussian process a large data set is
one that contains over a few thousand data points.
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Even to accommodate these data sets, various approx-
imate techniques are required. One approach is to par-
tition the data set into separate groups [e.g. Snelson
and Ghahramani, 2007, Urtasun and Darrell, 2008].
An alternative is to build a low rank approximation
to the covariance matrix based around ‘inducing vari-
ables’ [see e.g. Csató and Opper, 2002, Seeger et al.,
2003, Quiñonero Candela and Rasmussen, 2005, Tit-
sias, 2009]. These approaches lead to a computational
complexity of O(nm2) and storage demands of O(nm)
where m is a user selected parameter governing the
number of inducing variables. However, even these
reduced storage are prohibitive for big data, where
n can be many millions or billions. For parametric
models, stochastic gradient descent is often applied to
resolve this storage issue, but in the GP domain, it
hasn’t been clear how this should be performed. In
this paper we show how recent advances in variational
inference [Hensman et al., 2012, Hoffman et al., 2012]
can be combined with the idea of inducing variables
to develop a practical algorithm for fitting GPs using
stochastic variational inference (SVI).

2 Sparse GPs Revisited

We start with a succinct rederivation of the variational
approach to inducing variables of Titsias [2009]. This
allows us to introduce notation and derive expressions
which allow for the formulation of a SVI algorithm.

Consider a data vector1 y, where each entry yi is a
noisy observation of the function f(xi), for all the
points X = {xi}ni=1. We consider the noise to be in-
dependent Gaussian with precision β. Introducing a
Gaussian process prior over f(·), let the vector f con-
tain values of the function at the points X. We shall
also introduce a set of inducing variables: let the vec-
tor u contain values of the function f at the points
Z = {zi}mi=1 which live in the same space as X. Us-

1Our derivation trivially extends to multiple indepen-
dent output dimensions, but we omit them here for clarity.



ing standard Gaussian process methodologies, we can
write

p(y | f) =N
(
y|f , β−1I

)
,

p(f |u) =N
(
f |KnmK−1mmu, K̃

)
,

p(u) =N (u|0,Kmm) ,

where Kmm is the covariance function evaluated be-
tween all the inducing points and Knm is the covari-
ance function between all inducing points and train-
ing points and we have defined with K̃ = Knn −
KnmK−1mmKmn.

We first apply Jensen’s inequality on the conditional
probability p(y |u):

log p(y |u) = log 〈p(y | f)〉p(f |u)
≥〈log p(y | f)〉p(f |u) , L1. (1)

where 〈·〉p(x) denotes an expectation under p(x). For
Gaussian noise taking the expectation inside the log
is tractable, but it results in an expression containing
K−1nn , which has a computational complexity of O(n3).
Bringing the expectation outside the log gives a lower
bound, L1, which can be computed with has complex-
ity O(m3). Further, when p(y|f) factorises across the
data,

p(y|f) =

n∏
i=1

p(yi|fi),

then this lower bound can be shown to be separable
across y giving

exp(L1) =

n∏
i=1

N
(
yi|µi, β

−1) exp

(
−1

2
βk̃i,i

)
(2)

where µ = KnmK−1mmu and k̃i,i is the ith diagonal

element of K̃. Note that the difference between our
bound and the original log likelihood is given by the
Kullback Leibler (KL) divergence between the poste-
rior over the mapping function given the data and the
inducing variables and the posterior of the mapping
function given the inducing variables only,

KL (p(f |u) ‖ p(f |u,y)) .

This KL divergence is minimized when there are
m = n inducing variables and they are placed at
the training data locations. This means that u = f ,
Kmm=Knm=Knn meaning that K̃=0. In this case
we recover exp(L1) = p(y|f) and the bound becomes
equality because p(f |u) is degenerate. However, since
m = n and that there would be no computational
or storage advantage from the representation. When
m < n the bound can be maximised with respect to
Z (which are variational parameters). This minimises

the KL divergence and ensures that Z are distributed
amongst the training data X such that all k̃i,i are
small. In practice this means that the expectations in
(1) are only taken across a narrow domain (k̃i,i is the
marginal variance of p(fi|u)), keeping Jensen’s bound
tight.

Before deriving the expressions for stochastic varia-
tional inference using L1, we recover the bound of Tit-
sias [2009] by marginalising the inducing variables,

log p(y |X) = log

∫
p(y |u)p(u) du

≥ log

∫
exp {L1} p(u) du , L2, (3)

which with some linear algebraic manipulation leads
to

L2 = logN
(
y|0,KnmK−1mmKmn + β−1I

)
−1

2
βtr
(
K̃
)
,

matching the result of Titsias, with the implicit ap-
proximating distribution q(u) having precision

Λ = βK−1mmKmnKnmK−1mm + K−1mm

and mean
û = βΛ−1K−1mmKmny.

3 SVI for GPs

One of the novelties of the Titsias bound was that,
rather than explicitly representing a variational distri-
bution for q(u), these variables are ‘collapsed’ [Hens-
man et al., 2012]. However, for stochastic variational
inference to work on Gaussian processes, it turns out
we need to maintain an explicit representation of these
inducing variables.

Stochastic variational inference (SVI) allows varia-
tional inference for very large data sets, but it can
only be applied to probabilistic models which have a
set of global variables, and which factorise in the ob-
servations and latent variables as Figure 1(a). Gaus-
sian Processes do not have global variables and exhibit
no such factorisation (Figure 1(b)). By introducing
inducing variables u, we have an appropriate model
for SVI (Figure 1(c)). Unfortunately, marginalising u
re-introduces dependencies between the observations,
and eliminates the global parameters. In the following,
we derive a lower bound on L2 which includes an ex-
plicit variational distribution q(u), enabling SVI. We
then derive the required natural gradients and discuss
how latent variables might be used.

Because there are a fixed number of inducing variables
(specified by the user at algorithm design time) we
can perform stochastic variational inference, greatly
increasing the size of data sets to which we can apply
Gaussian processes.



(a) Requirements for SVI (b) Gaussian Process regression (c) Variational GP regression

Figure 1: Graphical models showing (a) the reqired form for a probabilistic model for SVI (reproduced from
[Hoffman et al., 2012]), with global variables g and latent variables z. (b) The graphical model corresponding to
Gaussian process regression, where connectivity between the values of the function fi is denoted by a loop around
the plate. (c) The graphical model corresponding to the sparse GP model, with inducing variables u working as
global variables, and the term L1 acting as log p(yi |u,xi). Marginalisation of u leads to the variational DTC
formulation, introducing dependencies between the observations.

3.1 Global Variables

To apply stochastic variational inference to a Gaussian
process model, we must have a set of global variables.
The variables u will perform this role, and we intro-
duce a variational distribution q(u), and use it to lower
bound the quantity p(y |X).

log p(y |X) ≥ 〈L1 + log p(u)− log q(u)〉q(u) , L3.

From the above we know that the optimal distribu-
tion is Gaussian, and we parametrise it as q(u) =
N (u |m,S). The bound L3 becomes

L3 =

n∑
i=1

{
logN

(
yi|k>i K−1mmm, β−1

)
− 1

2
βk̃i,i −

1

2
tr (SΛi)

}
−KL (q(u) ‖ p(u)) (4)

with ki being a vector of the ith column of Kmn and
Λi = βK−1mmkik

>
i K−1mm. The gradients of L3 with re-

spect to the parameters of q(u) are

∂L3

∂m
= βK−1mmKmny −Λm,

∂L3

∂S
=

1

2
S−1 − 1

2
Λ. (5)

Setting the derivatives to zero recovers the optimal
solution found in the previous section, namely S=Λ−1,
m=û. It follows that L2 ≥ L3, with equality at this
unique maximum.

The key propery of L3 is that is can be written as
a sum of n terms, each corresponding to one input-
output pair {xi, yi}: we have induced the necessary
factorisation to perform stochastic gradient methods
on the distribution q(u).

3.2 Natural Gradients

Stochastic variational inference works by taking steps
in the direction of the approximate natural gradient
g̃(θ), which is given by the usual gradient re-scaled
by the inverse Fisher information: g̃(θ)=G(θ)−1 ∂L

∂θ .
To work with the natural gradients of the distribution
q(u), we first recall the canonical and expectation pa-
rameters

θ1=S−1m, θ2=−1

2
S−1

and

η1=m, η2=mm>+S.

In the exponential family, properties of the Fisher in-
formation reveal the following simplification of the nat-
ural gradient [Hensman et al., 2012],

g̃(θ) = G(θ)−1
∂L3

∂θ
=
∂L3

∂η
. (6)

A step of length ` in the natural gradient direction,
using θ(t+1) = θ(t) + `dL3

dη , yields

θ2(t+1) = −1

2
S−1(t+1)

= −1

2
S−1(t) + `

(
−1

2
Λ +

1

2
S−1(t)

)
,

θ1(t+1) = S−1(t+1)m(t+1)

= S−1(t)m(t) + `
(
βK−1mmKmny − S−1(t)m(t)

)
,

and taking a step of unit length then recovers the same
solution as above by either (3) or (5). This confirms
the result discussed in Hensman et al. [2012], Hoffman
et al. [2012], that taking this unit step is the same as



performing a VB update. We can now obtain stochas-
tic approximations to the natural gradient by consid-
ering the data either individually or in mini-batches.

We note the convenient result that the natural gradi-
ent for θ2 is positive definite (note Λ = K−1mm+

∑
i Λi).

This means that taking a step in that direction always
leads to a positive definite matrix, and our implemen-
tation need not parameterise S in any way so as to
ensure positive-definiteness, cf. standard gradient ap-
proaches on covariance matrices.

To optimise the kernel hyper-parameters and noise
precision β, we take derivatives of the bound L3 and
perform standard stochastic gradient descent along-
side the variational parameters. An illustration is pre-
sented in Figure 2.

3.3 Latent Variables

The above derivations enable online learning for Gaus-
sian process regression using SVI. Several GP based
models involve inference of X, such as the GP latent
variable model [Lawrence, 2005, Titsias and Lawrence,
2010] and its extensions [e.g. Damianou et al., 2011,
2012].

To perform stochastic variational inference with latent
variables, we require a factorisation as illustrated by
Figure 1(a): this factorisation is provided by (4). To
get a model like the Bayesian GPLVM, we need a lower
bound on log p(y). In Titsias and Lawrence [2010] this
was achieved through approximate marginalisation of
L2, w.r.t. X, which leads to an expression depending
only on the parameters of q(X). However this formu-
lation scales poorly, and the variables of the optimisa-
tion are closely connected due to the marginalisation
of u. The above enables a lower bound to which SVI
is immediately applicable:

log p(y) = log

∫
p(y |X)p(X) dX

≥
∫
q(X)

{
L3 + log p(X)− log q(X)

}
dX.

It is straightforward to introduce p output dimensions
for the data Y, and following Titsias and Lawrence
[2010], we use a factorising normal distribution q(X) =∏n

i=1 q(xi). The relevant expectations of L3 are
tractable for various choices of covariance function.

To perform SVI in this model, we now alternate be-
tween selecting a minibatch of data, and optimisting
the relevant variables of q(X) with q(u) fixed, and up-
dating q(u) using the approximate natural gradient.
We note that the form of (4) means that each of the
latent variable distributions may be updated individ-
ually, enabling parallelisation across the minibatch.

3.4 Non-Gaussian likelihoods

Another advantage of the factorisation of (4) is that
it enables a simple routine for inference with non-
Gaussian likelihoods. The usual procedure for fitting
GPs with non-Gaussian likelihoods is to approximate
the likelihood using either a local variational lower
bound [Gibbs and MacKay, 2000], or by expectation
propagation [Kuss and Rasmussen, 2005]. These ap-
proximations to the likelihood are required because of
the connections between the variables f .

In L3, the bound factorises in such a way that some
non-Gaussian likelihoods may be marginalised exactly,
given the existing approximations. To see this, con-
sider that we are presented not with the vector y, but
by a binary vector t with ti ∈ {0, 1}, and the likelihood
p(t |y) =

∏n
i=1 σ(yi)

ti(1−σ(yi))
(1−ti), as in the case of

classification. We can bound the marginal likelihood
using p(t |X) ≥

∫
p(t |y) exp{L3}dy which involves n

independent one dimensional integrals due to the fac-
torising nature of L3. For the probit likelihood each
of these integrals is tractable.

This kind of approximation, where the likelihood is in-
tegrated exactly is amenable to SVI in the same man-
ner as the regression case above through computation
of the natural gradient.

4 Experiments

4.1 Toy Data

To demonstrate our algorithm we begin with two sim-
ple toy datasets based on sinusoidal functions. In the
first experiment we show how the approximation con-
verges towards the true solution as mini-batches are
included. Figure 2 shows the nature of our approxi-
mation: the variational approximation to the inducing
function variables is shown.

The second toy problem (Figure 3) illustrates the con-
vergence of the algorithm on a two dimensional prob-
lem, again based on sinusoids. Here, we start with
a random initialisation for q(u), and the model con-
verges after 2000 iterations. We found empirically that
holding the covariance parameters fixed for the first
epoch results in more reliable convergence, as can be
seen in Figure 4

4.2 UK Apartment Price Data

Our first large scale Gaussian process mod-
els the changing cost of apartments in the
UK. We downloaded the monthly price paid
data for the period February to October
2012 from http://data.gov.uk/dataset/



Figure 2: Stochastic variational inference on a trivial GP regression problem. Each pane shows the posterior of
the GP after a batch of data, marked as solid points. Previoulsy seen (and discarded) data are marked as empty
points, the distribution q(u) is represented by vertical errorbars.

(a) Initial condition (b) Condition at 2000 iterations

Figure 3: A two dimensional toy demo, showing the initial condition and final condition of the model. Data are
marked as colored points, and the model’s prediction is shown as (similarly colored) contour lines. The positions
of the inducing variables are marked as empty circles.



Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with different length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1× 10−5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due



Figure 6: Posterior variance of apartment prices.

to the sheer size of the dataset. We randomly selected
800,000 datapoints 2, using a random subset of 700,000
samples to train the model and 100,000 to test it. We
chose to include into our model 8 of the many variables
available for this dataset: the age of the aircraft (num-
ber of years since deployment), distance that needs to
be covered, airtime, departure time, arrival time, day
of the week, day of the month and month.

We built a Gaussian process with a squared exponen-
tial covariance function with a bias and noise term.
In order to discard irrelevant input dimensions, we al-
lowed a separate lengthscale for each input. For our
experiments, we used m = 1000 inducing inputs and
a mini-batch size of 5000. The learning rate for the
variational parameters of q(u) was set to 0.01, while
the learning rate for the covariance function parame-
ters was set to 1 × 10−5. We also used a momentum
term of 0.9 for the covariance parameters.

For the purpose of comparison, we fitted several GPs
with an identical covariance function on subsets of the
data. We split the data into sets of 800, 1000 and 1200
samples and optimised the parameters using type-II
maximum likelihood. We repeated this procedure 10
times.

The left pane of Figure 7 shows the root mean squared
error (RMSE) obtained by fitting GPs on subsets of
the data. The right pane of figure 7 shows the RMSE
obtained by fitting 10 SVI GPs as a function of the
iteration. The individual runs are shown in light gray,
while the blue line shows the average RMSE across

2Subsampling wasn’t technically necessary, but we
didn’t want to overburden the memory of a shared compute
node just before a submission deadline.

Figure 8: Root mean square errors for models with
different numbers of inducing variables.

Figure 9: Automatic relevance determination param-
eters for the features used for predicting flight delays.

runs.

One of the main advantages of the approach presented
here is that the computational complexity is indepen-
dent from the number of samples n. This allowed us
to use a much larger number of inducing inputs than
has traditionally been possible. Conventional sparse
GPs have a computational complexity of O(nm2), so
for large n the typical upper bound for m is between 50
and 100. The impact on the prediction performance is
quite significant, as highlighted in Figure 8, where we
fit several SVI GPs using different numbers of inducing
inputs.

Looking at the inverse lengthscales in Figure 9, it’s
possible to get a better idea of the relevance of the
different features available in this dataset. The most
relevant variable turned out to be the time of departure
of the flight, closely followed by the distance that needs



Figure 7: Root mean squared errors in predicting flight delays using information about the flight.

to be covered. Distance and airtime should in theory
be correlated, but they have very different relevances.
This can be intuitively explained by considering that
on longer flights it’s easier to make up for delays at
departure.

5 Discussion

We have presented a method for inference in Gaussian
process models using stochastic variational inference.
These expressions allow for the transfer of a multitude
of Gaussian process techniques to big data.

We note several interesting results. First, the our
derivation disusses the bound on p(y |u) in detail,
showing that it becomes tight when Z = X.

Also, we have that there is a unique solution for the pa-
rameters of q(u) such that the bound associated with
the standard variational sparse GP [Titsias, 2009] is
recovered.

Further, since the complexity of our model is now
O(m3) rather than O(nm2), we are free to increase
m to much greater values than the sparse GP repre-
sentation. The effect of this is that we can have much
richer models: for a squared exponential covariance
function, we have far more basis-functions with which
to model the data. In our UK apartment price exam-
ple, we had no difficulty setting m to 800, much higher
than experience tells us is feasible with the sparse GP.

The ability to increase the number of inducing vari-
ables and the applicability to unlimited data make our
method suitable for multiple output GPs [Álvarez and
Lawrence, 2011]. We have also briefly discussed how

this framework fits with other Gaussian process based
models such as the GPLVM and GP classification. We
leave the details of these implementations to future
work.

In all our experiments our algorithm was run on a
single CPU using the GPy Gaussian process toolkit
https://github.com/SheffieldML/GPy.
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