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Abstract

The composition of multiple Gaussian Pro-
cesses as a Deep Gaussian Process (DGP) en-
ables a deep probabilistic approach to flexi-
bly quantify uncertainty and carry out model
selection in various learning scenarios. In
this work, we introduce a novel formula-
tion of DGPs based on random Fourier fea-
tures that we train using stochastic varia-
tional inference. Our proposal yields an effi-
cient way of training DGP architectures with-
out compromising on predictive performance.
Through a series of experiments, we illus-
trate how our model compares favorably to
other state-of-the-art inference methods for
DGPs for both regression and classification
tasks. We also demonstrate how an asyn-
chronous implementation of stochastic gra-
dient optimization can exploit the computa-
tional power of distributed systems for large-
scale DGP learning.

1 INTRODUCTION

Given their impressive performance on machine learn-
ing and pattern recognition tasks, Deep Neural Net-
works (DNNs) have recently attracted a considerable
deal of attention in several applied domains such as
computer vision and natural language processing; see,
e.g., LeCun et al. (2015) and references therein.

Deep Gaussian Processes (DGPs; Damianou and
Lawrence, 2013) are deep probabilistic models where
the mapping between inputs and labels is constructed
by composing functions specified in a nonparametric
fashion. From a generative perspective, DGPs trans-
form the inputs using a cascade of Gaussian Processes
(GPs; Rasmussen and Williams, 2006) such that the
output of each layer of GPs forms the input to the GPs
at the next layer. An attractive feature of DGPs is

that, unlike DNNs, their probabilistic formulation al-
lows for a principled way to tackle quantification of un-
certainty and model selection, which is desirable when
employing deep models in practice.

The flexibility and expressive power of DGPs, however,
comes at the expense of having to deal with a model
for which inference and predictions are inherently dif-
ficult. The reason is that the nonlinearity introduced
by each layer makes it difficult to tractably propagate
the uncertainty throughout the layers. An additional
complication stems from the strong coupling of the
GPs at all layers, which are further parameterized by
covariance parameters to be optimized or inferred.

In this paper, we develop a practical learning frame-
work for DGP models. In particular, our proposal in-
troduces two sources of approximation. The first is
a model approximation, whereby the GPs at all lay-
ers are approximated using random Fourier features
(Rahimi and Recht, 2008; Lázaro-Gredilla et al., 2010).
The second approximation relies upon stochastic vari-
ational inference to retain a probabilistic treatment of
the approximate DGP model.

The appeal of our proposal is that the model approxi-
mation can be tuned by selecting an appropriate num-
ber of random Fourier features, and this is dictated by
constraints on running time or hardware. The impact
of the variational approximation, as opposed to char-
acterizing the full posterior distribution over all model
parameters, is the most difficult to assess. We illus-
trate the quality of our approximation by comparing
the variational approximation of the proposed model
with the inference resulting from the application of
Markov chain Monte Carlo (MCMC) methods that we
develop for two-layer DGP regression models.

Although our approach is amenable to any station-
ary covariance function, we develop it in detail for
the squared exponential covariance function, which
leads to a truncated trigonometric expansion. As a
result, the approximate DGP model becomes a DNN
with trigonometric activation functions and low-rank
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weight matrices. By virtue of the connection to DNNs,
we are able to employ scalable optimization and infer-
ence techniques that have been developed in the litera-
ture to train DNNs, allowing the proposed DGP model
to scale to large data in the same way as DNNs.

In order to retain a probabilistic treatment of the
model when scaling to large datasets, we employ
stochastic variational inference techniques. In par-
ticular, we adapt the work on variational inference
for DNNs (Kingma and Welling, 2014) using mini-
batch-based stochastic gradient optimization for the
proposed DGP model. We implement the model in
TensorFlow (Abadi et al., 2015), which allows us to
rely on automatic differentiation during the optimiza-
tion procedure.

We demonstrate the effectiveness of our proposal in
a variety of regression and classification problems by
comparing it with other state-of-the-art approaches to
infer DGPs (Damianou and Lawrence, 2013; Dai et al.,
2016; Bui et al., 2016). The results indicate that for
a given DGP architecture, our proposal is consistently
faster at achieving lower errors compared to the com-
petitors. We also obtain impressive results when ap-
plying the model to the MNIST and MNIST-8M digit
classification problems, the latter of which contains
over 8 million high-dimensional observations. Such an
undertaking would not have been computationally fea-
sible using a regular GP model, while other DGP ap-
proaches do not converge as quickly as our technique.

Furthermore, the inclusion of an asynchronous im-
plementation of stochastic gradient optimization al-
lows us to exploit large-scale computing facilities using
distributed updates, showing that we can truly scale
DGPs to tractably tackle unprecedently large amounts
of data.

To summarize, the contributions of this work are as
follows: (i) we propose random Fourier feature ap-
proximations for DGPs; (ii) we discuss the connec-
tions between the proposed approximate DGP model
and DNNs; (iii) we compare the quality of the pro-
posed approximation/inference framework by visual-
izing the approximate functions at all layers against
those obtained with MCMC techniques for a full two-
layer DGP regression model; (iv) we demonstrate the
ability of our proposal to outperform state-of-the-art
methods to carry out inference in DGP models; (v)
we describe and release a TensorFlow implementation
of the proposed DGP model; (vi) we propose an asyn-
chronous distributed version of the code that allows us
to tackle unprecedented DGP modeling problems.

The paper is organized as follows. The rest of this
section reports the related work and some background
on GPs. Sec. 2 proposes random Fourier features for

DGPs, and shows how DGPs with squared exponential
covariance functions are approximated by trigonomet-
ric DNNs that can be learned using stochastic varia-
tional inference. Sec. 3 reports an extensive evaluation
of our proposal and a thorough comparison with state-
of-the-art approaches to learn DGPs, while Sec. 4 con-
cludes the paper.

1.1 Related work

Following the original proposal of DGP models in
Damianou and Lawrence (2013), there have been sev-
eral attempts to extend GP inference techniques to
DGPs. Notable examples include the extension of in-
ducing point approximations (Hensman and Lawrence,
2014; Dai et al., 2016) and Expectation Propagation
(Bui et al., 2016). A recent example of a DGP “na-
tively” formulated as a variational model appears in
Tran et al. (2016). Our work is the first to employ ran-
dom Fourier features to approximate DGPs as DNNs
with trigonometric activation functions, whose prop-
erties were studied in Sopena et al. (1999).

The connection between DGPs and DNNs has been
pointed out in several papers, such as Neal (1996)
and Duvenaud et al. (2014), where pathologies with
deep nets are investigated. The approximate DGP
model described in our work becomes a DNN with
low-rank weight matrices, which have been used in,
e.g., Novikov et al. (2015); Sainath et al. (2013); Denil
et al. (2013) as a regularization mechanism. Dropout
is another technique to speed-up training and improve
generalization of DNNs that has recently been linked
to variational inference (Gal and Ghahramani, 2016).

Random Fourier features for large scale kernel ma-
chines were proposed in Rahimi and Recht (2008), and
their application to GPs appears in Lázaro-Gredilla
et al. (2010). Variational learning of the posterior over
the frequencies was then proposed in Gal and Turner
(2015) to avoid potential overfitting caused by opti-
mizing these variables. These approaches are special
cases of our DGP model when using no hidden layers.

In our work, we learn the proposed approximate DGP
model using stochastic variational inference. Varia-
tional learning for DNNs was first proposed in Graves
(2011), and later extended to include the so-called
reparameterization trick to clamp randomness in the
computation of the gradient with respect to the poste-
rior over the weights (Kingma and Welling, 2014), and
to include a Gaussian mixture prior over the weights
(Blundell et al., 2015). Inference of Bayesian DNNs
with MCMC was studied in Neal (1996).
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1.2 Gaussian Processes

Consider a supervised learning scenario where a set of
input vectors X = [x1, . . . ,xn]> is associated with a
set of (possibly multivariate) labels Y = [y1, . . . ,yn]>,
where xi ∈ RDin and yi ∈ RDout . We assume that
there is an underlying function fo(xi) characterizing
a mapping from the inputs to a latent (unobserved)
representation, and that the labels are a realization of
some probabilistic process p(yio|fo(xi)) which is based
on this latent representation.

GP models assume a nonparametric form for the la-
tent functions. Formally, GPs are a collection of ran-
dom variables such that any subset of these are jointly
Gaussian distributed (Rasmussen and Williams, 2006).
In GPs, the covariance between variables at different
locations, say fo(xi) and fo(xj), is modeled using a co-
variance function k(xi,xj |θ) parameterized via a set of
parameters θ. A typical example of a covariance func-
tion, which we use throughout the paper, is the Radial
Basis Function (RBF) covariance with Automatic Rel-
evance Determination (ARD) (Mackay, 1994)

k(x,x′|θ) = σ2 exp

[
−1

2
(x− x′)>Λ−1(x− x′)

]
. (1)

The parameter set θ comprises the marginal variance
of the GP σ2, and Λ = diag(l21, . . . , l

2
d), with the li’s

interpreted as lengthscale parameters along each of the
dimensions of the input domain.

Denote by F the set of latent variables with entries
fio = fo(xi), and let p(Y |F ) be the conditional like-
lihood. Given a dataset of n observations, we aim
to optimize or infer covariance parameters that re-
quires repeated evaluation of the marginal likelihood
p(Y |X,θ). After that, we wish to carry out predictions
for a new test point x∗ by evaluating p(y∗|Y,X,x∗,θ).
There are two main difficulties in dealing with these
tasks. First, in the case of a non-Gaussian likeli-
hood p(Y |F ), the marginal likelihood and the predic-
tive probability are analytically intractable. Secondly,
even in the case of a Gaussian likelihood where these
are computable, the GP prior introduces the need to
solve algebraic operations with a computational cost
of O(n3). This poses a scalability issue for GPs that
requires resorting to approximations.

2 DGPs WITH RANDOM FOURIER
FEATURES

For the sake of clarity, we report the conventions used
in the following sections. Variables in layer l are de-
noted by the (l) superscript. We assume Nh layers,
each composed of aDF (l) dimensional multivariate GP,
as depicted in Figure 1.

Φ(0)X F (1) Φ(1) F (2) Y

Ω(0) W (0) Ω(1) W (1)

Figure 1: Diagram of the proposed DGP with random
Fourier features.

2.1 Deep Gaussian Processes

In Deep Gaussian Processes (DGPs; Damianou and
Lawrence, 2013), the mapping between inputs and la-
bels is expressed as a composition of functions

f(x) =
(
h(Nh−1)

(
θ(Nh−1)

)
◦ . . . ◦ h(0)

(
θ(0)

))
(x),

where each of the functions h(l)(θ(l)) are modeled us-
ing (possibly transformed) multivariate Gaussian pro-
cesses. Given that GPs are single layered neural net-
works with an infinite number of hidden units (Neal,
1996), the DGP model has an obvious connection with
Deep Neural Networks (DNNs). In contrast to DNNs,
where each of the hidden layers implements a func-
tion h(l)(θ(l)) that is a transformation of linear com-
binations of its inputs, in DGPs these functions are
assigned a GP prior, and are therefore nonparametric.
This has a considerable advantage over DNNs in that
the architecture of the DGP does not require tedious
cross-validation to find the best configuration of num-
ber of neurons for each layer. Furthermore, by virtue
of the probabilistic formulation of DGPs, it is in prin-
ciple possible to use the model evidence to determine
the optimal number of hidden layers.

While DGPs are attractive from a theoretical stand-
point, inference is extremely challenging. Learning
DGPs requires computing the probability of the la-
bels given the input and all covariance parameters
p(Y |X,θ). The integrals involved to evaluate this ex-
pression are generally intractable for any interesting
nonlinear covariance functions.

2.2 DGPs with random Fourier features
become DNNs

In this section, we present our approximate formula-
tion of DGPs that, as we illustrate in the experiments,
leads to a practical learning algorithm for these deep
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probabilistic models. Appealing to Bochner’s theorem,
any continuous shift-invariant normalized covariance
function k(xi,xj) = k(xi − xj) is positive definite if
and only if it can be rewritten as the Fourier transform
of a non-negative measure p(ω) (Rahimi and Recht,
2008). Denoting the spectral frequencies by ω, while
assigning ι =

√
−1 and δ = xi − xj , in the case of the

RBF covariance detailed in equation 1, this yields:

k(δ|θ) = σ2

∫
p(ω) exp

(
ιδ>ω

)
dω, (2)

with a corresponding non-negative measure p(ω) =
N
(
0,Λ−1

)
. Because the covariance function and the

non-negative measures are real, we can drop the unnec-
essary complex part of the argument of the expecta-
tion, keeping cos(δ>ω) = cos((xi−xj)

>ω) that can be
rewritten as cos(x>i ω) cos(x>j ω)+sin(x>i ω) sin(x>j ω).

The importance of the expansion above is that it al-
lows us to interpret the covariance function as an ex-
pectation that can be estimated using Monte Carlo.
Defining z(x|ω) = [cos(x>ω), sin(x>ω)]>, the covari-
ance function can be approximated by the following
(unbiased) Monte Carlo estimate

k(xi,xj |θ) ≈ σ2

NRFF

NRFF∑
r=1

z(xi|ω̃r)>z(xj |ω̃r), (3)

with ω̃r ∼ p(ω).

This has an important practical implication, as it pro-
vides the means to access an approximate explicit
representation of the mapping induced by the covari-
ance function that, in the RBF case, we know is infi-
nite dimensional (Shawe-Taylor and Cristianini, 2004).
Various results have been established on the accu-
racy of the random Fourier feature approximation; see
e.g. Rahimi and Recht (2008)).

We propose to employ this approximation at each
layer. Assume that the GPs have zero mean, and de-
fine F (0) := X. By taking a “weight-space view” of
the GPs at each layer, we have that

Φ(l) =

√
σ2

N
(l)
RFF

[
cos
(
F (l)Ω(l)

)
, sin

(
F (l)Ω(l)

)]
, (4)

and
F (l+1) = Φ(l)W (l). (5)

At each layer, the priors over the weights are

p
(

Ω
(l)
·j

)
= N

(
0,
(
Λ(l)

)−1
)

and p
(
W

(l)
·i

)
= N (0, I).

Each matrix Ω(l) is defined as a matrix with dimen-
sions DF (l) × N (l)

RFF. On the other hand, the weight
matrices W (l) are defined as matrices with dimensions
2N

(l)
RFF × DF (l+1) , with the constraint that DF (Nh) =

Dout. The accuracy of the approximation of these
transformations with respect to the actual GPs is con-

trolled by the parameters N
(l)
RFF, that determine how

many random Fourier features are used to approximate
the GPs at each layer.

Our formulation of an approximate DGP using ran-
dom Fourier features reveals a close connection with
DNNs. In our formulation, the design matrices at each
layer are Φ(l+1) = γ

(
Φ(l)W (l)Ω(l+1)

)
, where γ(·) de-

notes the element-wise application of sine and cosine.
In the DNN case, instead, the design matrices are com-
puted as Φ(l+1) = g(Φ(l)Ω(l)), where g(·) is an activa-
tion function (e.g., sigmoid, ReLU). In light of this,
we can view our approximate DGP model as a DNN.
In particular, the resulting model is a Trigonomet-
ric DNN (Sopena et al., 1999) interlayed with linear
transformations. From a probabilistic standpoint, we
can interpret our approximate DGP model as a DNN
with specific Gaussian priors over the Ω(l) weights con-
trolled by the covariance parameters, and Gaussian
priors over the W (l) weights with unit variance. Co-
variance parameters act as some sort of hyper-priors
over the covariance of Ω(l), and the objective is to op-
timize these during training.

Another observation about the resulting DGP approx-
imation is that, for a given layer l, the transformations
given by W (l) and Ω(l+1) are both linear. If we col-
lapsed the two transformations into a single one, by
introducing weights Ξ(l) = W (l)Ω(l+1), we would have

to learn 2N
(l)
RFF×N

(l+1)
RFF weights at each layer, which is

considerably more than learning the two separate sets
of weights. As a result, we can view the proposed ap-
proximate DGP model as a way to impose a low-rank
structure on the weights of DNNs, which is a form of
regularization that has been proposed in the literature
of DNNs (Novikov et al., 2015; Sainath et al., 2013;
Denil et al., 2013).

2.3 Variational inference

In order to keep the notation uncluttered, let Ψ be the
collection of all weight matrices Ω(l) and W (l) at all
layers, and θ the collection of all covariance parameters
θ(l) at all layers. Subsequently, given the following
prior:

p(Ψ|θ) =

Nh−1∏
l=0

p(Ω(l)|θ(l))p(W (l)), (6)

we train the proposed approximate DGP using varia-
tional inference following Kingma and Welling (2014),
and Graves (2011).

Note that we have different options for how to treat
model parameters. We could fix Ω by drawing from
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the prior induced by the covariance expansion and be
variational about W . Alternatively, we could also be
variational about Ω as well, which was proposed for
shallow GPs in Gal and Turner (2015). We report
the general formulation here, but in the appendix we
report a derivation of the case where Ω is fixed. We
also note that one could be variational about θ, but
leave this for future work.

We are interested in computing p(Y |θ), as this would
represent an objective function to learn the param-
eters θ. Computing p(Y |θ) involves intractable in-
tegrals, so we aim for an approximation. Defining
L = log [p(Y |θ)], we obtain a lower bound using vari-
ational techniques as follows:

L ≥ Eq(Ψ) (log [p (Y |Ψ)])−DKL [q(Ψ)‖p (Ψ|θ)] , (7)

where q(Ψ) acts as an approximation to the posterior
over all the weights p(Ψ|Y,θ).

We are interested in optimizing q(Ψ), i.e. finding an
optimal approximate distribution over the parameters
according to the bound above. The first term can be
interpreted as a model fitting term, whereas the sec-
ond as a regularization term. In the case of a Gaus-
sian distribution q(Ψ) and a Gaussian prior p(Ψ|θ), it
is possible to compute the DKL term analytically (see
supplementary material), whereas the remaining term
needs to be estimated. Assuming that the approxi-
mating distribution factorizes across layers, spectral
frequencies and weights:

q(Ψ) =
∏
ijl

q
(

Ω
(l)
ij

)∏
ijl

q
(
W

(l)
ij

)
. (8)

The variational parameters then become the mean and
the variance of each of the approximating factors

q
(
W

(l)
ij

)
= N

(
µ

(l)
ij , (σ

2)
(l)
ij

)
, (9)

q
(

Ω
(l)
ij

)
= N

(
m

(l)
ij , (s

2)
(l)
ij

)
, (10)

and we aim to optimize the lower bound with respect

to the variational parameters µ
(l)
ij , (σ

2)
(l)
ij ,m

(l)
ij , (s

2)
(l)
ij .

In the case of a likelihood that factorizes across obser-
vations, an interesting feature of the expression of the
lower bound above is that it is amenable to stochastic
optimization. In particular,

Eq(Ψ)

(
log

[∏
i

p(yk|Ψ)

])
=
∑
k

Eq(Ψ) (log [p(yk|Ψ)]) ,

where each term Eq(Ψ) (log [p(yk|Ψ)]) requires to be
estimated, and we can do this using the Monte Carlo
estimator

Eq(Ψ) (log [p(yk|Ψ)]) ≈ 1

NMC

NMC∑
r=1

log[p(yk|Ψ̃r)], (11)

with Ψ̃r ∼ q(Ψ). In order to facilitate the optimiza-
tion, we employ a reparameterization of the weight
matrices as follows:

(W̃ (l)
r )ij = σ

(l)
ij ε

(l)
rij + µ

(l)
ij , (12)

and
(Ω̃(l)

r )ij = s
(l)
ij ε

(l)
rij +m

(l)
ij , (13)

with ε
(l)
rij ∼ N (0, 1) and ε

(l)
rij ∼ N (0, 1). In this way,

at each iteration of the optimization over the parame-
ters, we can fix the randomness in the computation of
the expectation, and apply stochastic gradient ascent
moves to the mean and variance of the approximat-
ing distribution over model parameters (Kingma and
Welling, 2014).

We can also incorporate mini-batch learning by con-
sidering a mini-batch of data points having size m,
and obtain an unbiased estimate of the lower bound
as follows:

n

m

∑
k∈Ω

Eq(Ψ)(log[p(yk|Ψ)])−DKL[q(Ψ)‖p(Ψ|θ)]. (14)

By differentiating this expression wrt mean and vari-
ance of the approximate posterior over Ψ, we obtain an
unbiased estimate of the gradient of the lower bound.
We can therefore apply stochastic gradient optimiza-
tion to learn the optimal variational distribution q(Ψ).
Automatic differentiation tools allow us to carry out
the computation of the stochastic gradient automati-
cally, which is why we opt to implement our model in
TensorFlow (Abadi et al., 2015).

2.4 Comparison with MCMC

Figure 2 shows a comparison between the varia-
tional approximation and MCMC for a two-layer DGP
model applied to a regression dataset. The dataset
has been generated by drawing 50 data points from
N (y|h(h(x)), 0.01), with h(x) = 2x exp(−x2). We ex-
periment with two different levels of precision in the
DGP approximation by using 10 and 50 spectral fre-
quencies respectively, so as to assess the impact of this
parameter on the results. For MCMC, covariance pa-
rameters are fixed to the values obtained by optimizing
the variational lower bound on the marginal likelihood
in the case of 50 spectral frequencies.

We obtained samples from the posterior over the la-
tent variables at each layer using MCMC techniques.
In the case of a Gaussian likelihood, it is possible to
integrate out the GP at the last layer, thus obtaining
a model that only depends on the GP at the first. As
a result, the collapsed DGP model becomes a stan-
dard GP model whose latent variables can be sampled
using various MCMC samplers developed in the liter-
ature of MCMC for GPs. Here we employ Elliptical
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Figure 2: Comparison of MCMC and variational in-
ference of a two-layer DGP with a single GP in the
hidden layer and a Gaussian likelihood. The posterior
over the latent functions is based on 100 MCMC sam-
ples and 100 samples from the variational posterior.

Slice Sampling (Murray et al., 2010) to draw samples
from the posterior over the latent variables at the first
layer, whereas latent variables at the second can be
sampled directly from a multivariate Gaussian distri-
bution. More details on the MCMC sampler may be
found in the supplementary material.

The plots depicted in the figure illustrate how the
MCMC approach explores two modes of the poste-
rior of opposite sign. This is due to the invariance
stemming from the possibility to obtain the same func-
tions at the last layer by simply flipping the sign of the
weight matrices at the two layers. Conversely, the vari-
ational approximation accurately identifies one of the
two modes of the posterior. The overall approxima-
tion is accurate in the case of more random Fourier
features, whereas in the case of less, the approxima-
tion is unsurprisingly characterized by out-of-sample
oscillations. The variational approximation seems to
result in larger uncertainty in predictions compared to
MCMC; we attribute this to the factorization of the
posterior over all the weights.

3 EXPERIMENTS

The main motivation for this work is the potential to
train DGP models in an efficient and scalable man-
ner without compromising on predictive performance.
In view of these criteria, we thoroughly evaluate our
model by comparing it against other recent DGP
methods for both regression and classification, and as-
sess its performance when applied to particularly com-
plex and large datasets. We also experiment with an
asynchronous version of the model in a distributed en-
vironment to enable the model to properly scale to
large datasets.

3.1 Model Comparison

We compare our model to three of the most re-
cent DGP methods presented in the literature,

namely DGPs using approximate expectation propa-
gation (DGP-EP; Bui et al., 2016), variational auto-
encoded DGPs (DGP-VAR; Dai et al., 2016), and the
standard DGP by Damianou and Lawrence (2013).
We use the same experimental set-up for both regres-
sion and classification tasks using datasets from the
UCI repository (Asuncion and Newman, 2007), and
repeat the experiments using two and three hidden lay-
ers, respectively. The specific configurations for each
model are detailed below:

DGP-RFF : In proposed DGP with random Fourier
features, we use 100 spectral frequencies at every
hidden layer, and set the dimensionality to 3. So
as to avoid large variance in our results, we set the
number of Monte Carlo samples to 100 for both
the training and test scenarios, and the batch size
to 100. We employ the Adam optimizer provided
in TensorFlow with a learning rate of 0.01, and in
order to stabilize the optimization procedure, we
fix the hyperparameters and the spectral frequen-
cies for 4, 000 iterations before jointly optimizing
all parameters;

DGP-EP 1: For this technique, we use a batch size of
100 and 100 inducing points at each hidden layer,
and we also set the dimensionality of the hidden
layer to 3. The Adam optimizer is initialized with
the standard learning rate, although this is then
adapted within the model itself during optimiza-
tion. For the classification case, we use 100 samples
for approximating the Softmax likelihood;

DGP-VAR 2: As above, 100 inducing points and a
dimensionality of 3 is employed at every hidden
layer. For the multi-layer perceptron in the recogni-
tion model, we use the provided standard settings.
Feed-forwarding of the original inputs is disabled;

DGP 2: The set-up of this model is identical to that
of DGP-VAR, with the exception that the recog-
nition model is absent.

We assess the performance of each model by running
the optimization procedure for a set period of time,
and periodically evaluate the error rate and mean neg-
ative log-likelihood (MNLL) on withheld test data.
The results are averaged over 3 folds for every dataset.
The experiments were launched on a cluster of servers
with Intel Xeon E5-2630 CPUs having 32 cores and
128GB RAM, while ensuring that the runs for all
methods are allocated a fair amount of resources.

1Code obtained from:
github.com/thangbui/deepGP_approxEP

2Code obtained from:
github.com/zhenwendai/DeepGP/tree/master/deepgp
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Figure 3: Progression of RMSE over time for competing DGP models over two datasets for regression (Powerplant
and Protein), and two for classification (Spam and EEG). Results are shown for configurations having 1 and 2
hidden layers, respectively. Dashed line indicates the accuracy obtained by a Variational GP (Titsias, 2009).

The results illustrated in Figure 3 demonstrate that
DGP-RFF outperforms other DGP techniques both in
terms of convergence speed and overall predictive accu-
racy. This is particularly significant for larger datasets
where other techniques take considerably longer to
converge to a reasonable error rate. It is also of note
that the model performs well even when two hidden
layers are considered, whereas the competing tech-
niques do not adapt as well. The results are also com-
petitive (and sometimes superior) to those obtained by
the variational GP in Titsias (2009).

Whereas the performance of DGP-EP seems to fol-
low a similar (albeit slower) trajectory to our method,
the results obtained for DGP-VAR and the standard
DGP methods are notably more erratic. This can be
partly attributed to the fact that the available imple-
mentation of this model caters mostly for Gaussian
likelihoods, which are known to be poorly suited to
classification tasks. Even so, the performance of these
two models on the Protein dataset is also inferior, and
altering the default parameter configurations did not
seem to make much of a difference.

As highlighted in the introduction to this work, one
of the most appealing features of DGPs over DNNs is
the ability to quantify the uncertainty of predictions.
In Table 1, we tabulate the MNLL obtained by DGP-
RFF and its closest competitor, DGP-EP, after opti-
mization is terminated. DGP-RFF performs better in
all but one dataset, which happens to have the great-
est dimensionality (57 features). This reveals that

more spectral frequencies may be required in large-
dimensional cases.

Table 1: Comparison of MNLL for DGP-RFF and
DGP-EP using 1 hidden layer with fixed time budget.

DATSASET DGP-EP DGP-RFF

Powerplant 0.059 -0.067
Protein 1.062 1.032
Spam 0.137 0.193
EEG 0.415 0.374

3.2 Multi-class Classification

As a demonstrative example, we evaluate the model
using the standard 10-class MNIST dataset, which in-
volves classifying a database of hand-written digits.

In Table 2, we frame our results in the context of alter-
native learning models, and show how different config-
urations of DGP-RFF perform on this dataset. In par-
ticular, we evaluate our model using no hidden layers
(whereby it is reduced to a standard variational GP),
and also using 1 and 2 hidden layers. Across all vari-
ations, we use 500 spectral frequencies, 40 GPs in the
hidden layers, Adam with standard learning rate, and
fix the hyperparameters and the spectral frequencies
for 4, 000 iterations.

The results indicate that using more hidden layers does
not necessarily imply superior performance, and al-
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though the results for the DGP-RFF variations pre-
sented here plateau around the 98.2% region, the
model performance degrades noticeably when more
than 2 hidden layers are used. This is in line with
what is reported in the literature on DNNs (Neal, 1996;
Duvenaud et al., 2014). Nonetheless, especially when
considering previous results obtained by GP models,
the predictive accuracy achieved by this model is very
competitive to other well-known learning techniques.

Table 2: Comparison of accuracy for the proposed
DGP-RFF approach with previous results on MNIST.
The comparison focuses on approaches without pre-
processing, and excludes convolutional neural nets.

ALGORITHM ACC.

Sparse GP-LVM (Gal et al., 2014) 94.00%
GP Hashing (Ozdemir and Davis, 2016) ∼ 95.00%
MCMC VAR-GP (Hensman et al., 2015) 98.04%
DNN (Simard et al., 2003) 98.50%
SVM (Schölkopf, 1997) 98.60%
DGP-RFF 0HL 98.36%
DGP-RFF 1HL 98.10%
DGP-RFF 2HL 97.44%

We also evaluated the performance of our model on
MNIST-8M, which artificially extends the original
MNIST dataset to over 8 million observations, and we
obtained 99.11% accuracy on the test set using 1 hid-
den layer. This goes far beyond the scale of datasets
to which Gaussian processes (and their Deep varia-
tions) are usually applied, giving further credence to
the tractability and robustness of our model.

3.3 Distributed Implementation

Our model is easily amenable to a distributed imple-
mentation using asynchronous distributed stochastic
gradient descent (Chilimbi et al., 2014; Abadi et al.,
2015). Our distributed setting3, based on Tensor-
Flow, includes one or more Parameter servers (PS),
and a number of Workers. The latter proceed asyn-
chronously using randomly selected batches of data:
they fetch fresh model parameters from the PS, com-
pute the gradients of the loss function with respect to
these parameters, and push those gradients back to
the PS, which update the model accordingly. Given
that workers compute gradients and send updates to
PS asynchronously, the discrepancy between the model
used to compute gradients and the model actually up-
dated can degrade training quality. This is exacer-
bated by a large number of asynchronous workers, as

3Currently, we use a CPU-only compute cluster.

noted in Chen et al. (2016).

We focus our experiments on the MNIST dataset, and
study how training time and error rates evolve with the
number of workers introduced in our system. The pa-
rameters for the model are identical to those reported
for the previous experiment.
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Figure 4: Comparison of training time and error rate
for asynchronous DGP-RFF with 1, 5 and 10 workers.

We report the results in Figure 4, and as expected, the
training time decreases in proportion to the number
of workers, albeit sub-linearly. On the other hand,
the increasing error rate confirms our intuition that
imprecise updates of the gradients negatively impact
the optimization procedure. The work in Chen et al.
(2016) corroborates our findings.

4 CONCLUSIONS

In this work, we have proposed a novel formulation of
DGPs which exploits the approximation of the ker-
nel function using random Fourier features, as well
as stochastic variational inference for preserving the
probabilistic representation of a regular GP. As evi-
denced by the results obtained in our experiments, our
approach works noticeably better than recent state-
of-the-art DGP models for both regression and clas-
sification tasks. Moreover, we obtained highly com-
petitive results for both the MNIST and MNIST-8M
digit recognition problems, the latter of which has
been generally considered to be beyond the compu-
tational scope of GPs. The asynchronous implemen-
tation of the model also permits us to scale to even
larger datasets than those considered in this paper.

We are currently investigating ways to mitigate the
oscillatory behavior observed in our comparison with
MCMC sampling, and architectures where the original
input is connected to all layers, which could potentially
improve performance (Duvenaud et al., 2014). The
obtained results also encourage the extension of DGP-
RFF to include convolutional layers suitable for com-
puter vision applications. The implementation of a
distributed synchronous version is also in the pipeline.
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A Derivation of the lower bound

For the sake of completeness, here is a detailed derivation of the lower bound that we use in variational inference
to learn the posterior over all weights in the model, i.e. both the spectral frequencies Ω and the weights W .
Taking Ψ = {W,Ω}:

log [p(Y |θ)] = log

[∫
p(Y |Ψ)p(Ψ|θ)dΨ

]
= log

[∫
p(Y |Ψ)p(Ψ|θ)

q(Ψ)
q(Ψ)dΨ

]
= log

[
Eq(Ψ)

p(Y |Ψ)p(Ψ|θ)

q(Ψ)

]
≥ Eq(Ψ)

(
log

[
p(Y |Ψ)p(Ψ|θ)

q(Ψ)

])
= Eq(Ψ) (log[p(Y |Ψ)]) + Eq(Ψ)

(
log

[
p(Ψ|θ)

q(Ψ)

])
= Eq(Ψ) (log[p(Y |Ψ)])−DKL[q(Ψ)||p(Ψ|θ)]

Alternatively, we can also choose that the spectral frequencies, ω, are fixed. This results in:

log[p(Y |Ω)] = log

[∫
p(Y |W,Ω)p(W )dW

]
= log

[∫
p(Y |W,Ω)p(W )

q(W )
q(W )dW

]
= log

[
Eq(W )

p(Y |W,Ω)p(W )

q(W )

]
≥ Eq(W )

(
log

[
p(Y |W,Ω)p(W )

q(W )

])
= Eq(W ) (log[p(Y |W,Ω)]) + Eq(W )

(
log

[
p(W )

q(W )

])
= Eq(W ) (log[p(Y |W,Ω)])−DKL[q(W )||p(W )]

B Expression for the DKL divergence between Gaussians

Given p1(x) = N (µ1, σ
2
1) and p2(x) = N (µ2, σ

2
2), the KL divergence between the two is:

DKL (p1(x)‖p2(x)) =
1

2

[
log

(
σ2

2

σ2
1

)
− 1 +

σ2
1

σ2
2

+
(µ1 − µ2)2

σ2
2

]

C Details of MCMC sampler for a two-layer DGP with a Gaussian likelihood

We give details of the MCMC sampler that we used to draw samples from the posterior over latent variables
in DGPs. In the experiments, we regard this as the gold-standard against which we compare the quality of the
proposed DGP approximation and inference. For the sake of tractability, we assume a two-layer DGP with a
Gaussian likelihood, and we fix the hyper-parameters of the GPs. Without loss of generality, we assume Y to be
univariate and the hidden layer to be composed of a single GP. The model is therefore as follows:

p
(
Y
∣∣∣F (2), λ

)
= N

(
Y
∣∣∣F (2), λI

)
p
(
F (2)

∣∣∣F (1),θ(1)
)

= N
(
F (2)

∣∣∣0,K (F (1),θ(1)
))

p
(
F (1)

∣∣∣X,θ(0)
)

= N
(
F (1)

∣∣∣0,K (X,θ(0)
))
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with λ, θ(1), and θ(0) fixed. In the model specification above, we denoted by K
(
F (1),θ(1)

)
and K

(
X,θ(0)

)
the

covariance matrices obtained by applying the covariance function with parameters θ(1), and θ(0) to all pairs of
F (1) and X, respectively.

Given that the likelihood is Gaussian, it is possible to integrate out F (2) analytically

p
(
Y
∣∣∣F (1), λ,θ(1)

)
=

∫
p
(
Y
∣∣∣F (2), λ

)
p
(
F (2)

∣∣∣F (1),θ(1)
)
dF (2)

obtaining the more compact model specification:

p
(
Y
∣∣∣F (1), λ,θ(1)

)
= N

(
Y
∣∣∣0,K (F (1),θ(1)

)
+ λI

)
p
(
F (1)

∣∣∣X,θ(0)
)

= N
(
F (1)

∣∣∣0,K (X,θ(0)
))

For fixed hyper-parameters, these expressions reveal that the observations are distributed as in the standard GP
regression case, with the only difference that the covariance is now parameterized by GP distributed random
variables F (1). We can interpret these variables as some sort of hyper-parameters, and we can attempt to use
standard MCMC methods to samples from their posterior.

In order to develop a sampler for all latent variables, we factorize their full posterior as follows:

p
(
F (2), F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)

= p
(
F (2)

∣∣∣Y, F (1), λ,θ(1)
)
p
(
F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)

which suggest a Gibbs sampling strategy to draw samples from the posterior where we iterate

1. sample from p
(
F (1)

∣∣Y,X, λ,θ(1),θ(0)
)

2. sample from p
(
F (2)

∣∣Y, F (1), λ,θ(1)
)

Step 1. can be done by setting up a Markov chain with invariant distribution given by:

p
(
F (1)

∣∣∣Y,X, λ,θ(1),θ(0)
)
∝ p

(
Y
∣∣∣F (1), λ,θ(1)

)
p
(
F (1)

∣∣∣X,θ(0)
)

We can interpret this as a GP model, where the likelihood now assumes a complex form because of the nonlinear
way in which the likelihood depends on F (1). Because of this interpretation, we can attempt to use any of the
samplers developed in the literature of GPs to obtain samples from the posterior over latent variables in GP
models.

Step 2. can be done directly given that the posterior over F (2) is available in closed form and it is Gaussian:

p
(
F (2)

∣∣∣Y, F (1), λ,θ(1)
)

= N
(
F (2)

∣∣∣∣K(1)
(
K(1) + λI

)−1

Y,K(1) −K(1)
(
K(1) + λI

)−1

K(1)

)
where we have defined

K(1) := K
(
F (1),θ(1)

)


