arXiv:1906.02506v2 [stat.ML] 30 Oct 2019

Practical Deep Learning with Bayesian Principles

Kazuki Osawa,' Siddharth Swaroop,?>* Anirudh Jain,>*' Runa Eschenhagen,*
Richard E. Turner,” Rio Yokota,' Mohammad Emtiyaz Khan’-*.

! Tokyo Institute of Technology, Tokyo, Japan
2 University of Cambridge, Cambridge, UK
3 Indian Institute of Technology (ISM), Dhanbad, India
4 University of Osnabriick, Osnabriick, Germany
5 RIKEN Center for Al Project, Tokyo, Japan

Abstract

Bayesian methods promise to fix many shortcomings of deep learning, but they
are impractical and rarely match the performance of standard methods, let alone
improve them. In this paper, we demonstrate practical training of deep networks
with natural-gradient variational inference. By applying techniques such as batch
normalisation, data augmentation, and distributed training, we achieve similar
performance in about the same number of epochs as the Adam optimiser, even on
large datasets such as ImageNet. Importantly, the benefits of Bayesian principles
are preserved: predictive probabilities are well-calibrated, uncertainties on out-
of-distribution data are improved, and continual-learning performance is boosted.
This work enables practical deep learning while preserving benefits of Bayesian
principles. A PyTorch implementatiorﬂis available as a plug-and-play optimiser.

1 Introduction

Deep learning has been extremely successful in many fields such as computer vision [29], speech
processing [17], and natural-language processing [39], but it is also plagued with several issues
that make its application difficult in many other fields. For example, it requires a large amount of
high-quality data and it can overfit when dataset size is small. Similarly, sequential learning can cause
forgetting of past knowledge [27]], and lack of reliable confidence estimates and other robustness
issues can make it vulnerable to adversarial attacks [6]. Ultimately, due to such issues, application of
deep learning remains challenging, especially for applications where human lives are at risk.

Bayesian principles have the potential to address such issues. For example, we can represent un-
certainty using the posterior distribution, enable sequential learning using Bayes’ rule, and reduce
overfitting with Bayesian model averaging [19]. The use of such Bayesian principles for neural
networks has been advocated from very early on. Bayesian inference on neural networks were all pro-
posed in the 90s, e.g., by using MCMC methods [41]], Laplace’s method [35]], and variational inference
(VD) 118, 21149} [1]. Benefits of Bayesian principles are even discussed in machine-learning textbooks
[36, 3]]. Despite this, they are rarely employed in practice. This is mainly due to computational
concerns, unfortunately overshadowing their theoretical advantages.

The difficulty lies in the computation of the posterior distribution, which is especially challenging for
deep learning. Even approximation methods, such as VI and MCMC, have historically been difficult

* These two authors contributed equally.

1 This work is conducted during an internship at RIKEN Center for Al project.

1 Corresponding author: emtiyaz.khan@riken. jp
! The code is available at https://github. com/team-approx-bayes/dl-with-bayes.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://github.com/team-approx-bayes/dl-with-bayes

70 70 — 1.0
= 60 = 60 0.8
> > >
6] 6] =
< S Zo06
5 50 5 50 g0
[9) [9)
(0] © e
S 40 540 204
= = g
s | i =
5 30f —— Adam | 3 30 0.2

—— VOGN
20 20 40 60 80 20025 50 75 100 08% 02 04 06 08 1.0
epoch wall clock time (min) mean predicted probability

Figure 1: Comparing VOGN [24], a natural-gradient VI method, to Adam and SGD, training ResNet-
18 on ImageNet. The two left plots show that VOGN and Adam have similar convergence behaviour
and achieve similar performance in about the same number of epochs. VOGN achieves 67.38% on
validation compared to 66.39% by Adam and 67.79% by SGD. Run-time of VOGN is 76 seconds per
epoch compared to 44 seconds for Adam and SGD. The rightmost figure shows the calibration curve.
VOGN gives calibrated predictive probabilities (the diagonal represents perfect calibration).

to scale to large datasets such as ImageNet [47]. Due to this, it is common to use less principled
approximations, such as MC-dropout [9], even though they are not ideal when it comes to fixing the
issues of deep learning. For example, MC-dropout is unsuitable for continual learning [27] since its
posterior approximation does not have mass over the whole weight space. It is also found to perform
poorly for sequential decision making [45]. The form of the approximation used by such methods
is usually rigid and cannot be easily improved, e.g., to other forms such as a mixture of Gaussians.
The goal of this paper is to make more principled Bayesian methods, such as VI, practical for deep
learning, thereby helping researchers tackle its key limitations.

We demonstrate practical training of deep networks by using recently proposed natural-gradient VI
methods. These methods resemble the Adam optimiser, enabling us to leverage existing techniques
for initialisation, momentum, batch normalisation, data augmentation, and distributed training. As a
result, we obtain similar performance in about the same number of epochs as Adam when training
many popular deep networks (e.g., LeNet, AlexNet, ResNet) on datasets such as CIFAR-10 and
ImageNet (see Fig. [I). The results show that, despite using an approximate posterior, the training
methods preserve the benefits coming from Bayesian principles. Compared to standard deep-learning
methods, the predictive probabilities are well-calibrated, uncertainties on out-of-distribution inputs
are improved, and performance for continual-learning tasks is boosted. Our work shows that practical
deep learning is possible with Bayesian methods and aims to support further research in this area.

Related work. Previous VI methods, notably by Graves [14] and Blundell et al. [4]], require signifi-
cant implementation and tuning effort to perform well, e.g., on convolution neural networks (CNN).
Slow convergence is found to be especially problematic for sequential problems [45]. There appears
to be no reported results with complex networks on large problems, such as ImageNet. Our work
solves these issues by applying deep-learning techniques to natural-gradient VI 24} |56].

In their paper, Zhang et al. [56]] also employed data augmentation and batch normalisation for a
natural-gradient method called Noisy K-FAC (see Appendix |A) and showed results on VGG on
CIFAR-10. However, a mean-field method called Noisy Adam was found to be unstable with batch
normalisation. In contrast, we show that a similar method, called Variational Online Gauss-Newton
(VOGN), proposed by Khan et al. [24], works well with such techniques. We show results for
distributed training with Noisy K-FAC on Imagenet, but do not provide extensive comparisons since
tuning it is time-consuming. Many of our techniques can speed-up Noisy K-FAC, which is promising.

Many other approaches have recently been proposed to compute posterior approximations by training
deterministic networks [46, 137, 38]]. Similarly to MC-dropout, their posterior approximations are not
flexible, making it difficult to improve the accuracy of their approximations. On the other hand, VI
offers a much more flexible alternative to apply Bayesian principles to deep learning.

2 Deep Learning with Bayesian Principles and Its Challenges

The success of deep learning is partly due to the availability of scalable and practical methods for
training deep neural networks (DNNs). Network training is formulated as an optimisation problem
where a loss between the data and the DNN’s predictions is minimised. For example, in a supervised
learning task with a dataset D of N inputs x; and corresponding outputs y, of length K, we minimise
a loss of the following form: £(w) + éw ' w, where {(w) 1= & >, (y;, fu(x:)), fu(x) € R¥
denotes the DNN outputs with weights w, £(y, f) denotes a differentiable loss function between an
output y and the function f, and § > 0 is the Lo regulariserE] Deep learning relies on stochastic-
gradient (SG) methods to minimise such loss functions. The most commonly used optimisers, such
as stochastic-gradient descent (SGD), RMSprop [53]], and Adam [235]], take the following fornﬂ (all
operations below are element-wise):

a g(Wt) +5Wt
¢ v/ St+1 +e€ ’

where ¢ is the iteration, oz > 0 and 0 < 3; < 1 are learning rates, € > 0 is a small scalar, and g(w)
is the stochastic gradients at w defined as follows: g(w) := 17 >, v\ Vl(y;, fu(x;)) using a
minibatch M, of M data examples. This simple update scales extremefy well and can be applied
to very large problems. With techniques such as initialisation protocols, momentum, weight-decay,
batch normalisation, and data augmentation, it also achieves good performance for many problems.

Wip1 & Wy — Ser1 < (1 — Be)se + B (8(wy) + 5Wt)2) (D

In contrast, the full Bayesian approach to deep learning is computationally very expensive. The
posterior distribution can be obtained using Bayes’ rule: p(w|D) = exp (—N{(w)/7) p(w)/p(D)
where 0 < 7 < 1E] This is costly due to the computation of the marginal likelihood p(D), a
high-dimensional integral that is difficult to compute for large networks. Variational inference (VI)
is a principled approach to more scalably estimate an approximation to p(w|D). The main idea
is to employ a parametric approximation, e.g., a Gaussian q(w) := A (w|u, 3) with mean p and
covariance Y. The parameters p and X can then be estimated by maximising the evidence lower
bound (ELBO):

ELBO: L(p, %) := —NE, [{(w)] — 7D [g(w) || p(w)], 2)

where D 1 [-] denotes the Kullback-Leibler divergence. By using more complex approximations, we
can further reduce the approximation error, but at a computational cost. By formulating Bayesian
inference as an optimisation problem, VI enables a practical application of Bayesian principles.

Despite this, VI has remained impractical for training large deep networks on large datasets. Existing
methods, such as Graves [14] and Blundell et al. [4]], directly apply popular SG methods to optimise
the variational parameters in the ELBO, yet they fail to get a reasonable performance on large prob-
lems, usually converging very slowly. The failure of such direct applications of deep-learning methods
to VI is not surprising. The techniques used in one field may not directly lead to improvements in the
other, but it will be useful if they do, e.g., if we can optimise the ELBO in a way that allows us to
exploit the tricks and techniques of deep learning and boost the performance of VI. The goal of this
work is to do just that. We now describe our methods in detail.

3 Practical Deep Learning with Natural-Gradient Variational Inference

In this paper, we propose natural-gradient VI methods for practical deep learning with Bayesian
principles. The natural-gradient update takes a simple form when estimating exponential-family
approximations [23| 22]]. When p(w) := N(w|0,1/4), the update of the natural-parameter A\ is
performed by using the stochastic gradient of the expected regularised-loss:

A1 =1 =7p)A — pV, Eq [Z(w) + %T(SWTW} , (3)

*This regulariser is sometimes set to 0 or a very small value.

3 Alternate versions with weight-decay and momentum differ from this update [34]]. We present a form useful
to establish the connection between SG methods and natural-gradient VI.

“This is a tempered posterior [54]] setup where T is set # 1 when we expect model misspecification and/or
adversarial examples [10]. Setting 7 = 1 recovers standard Bayesian inference.

where p > 0 is the learning rate, and we note that the stochastic gradients are computed with respect
to p, the expectation parameters of q. The moving average above helps to deal with the stochasticity
of the gradient estimates, and is very similar to the moving average used in deep learning (see (I))).
When 7 is set to 0, the update essentially minimises the regularised loss (see Section 5 in Khan et al.
[24])). These properties of natural-gradient VI makes it an ideal candidate for deep learning.

Recent work by Khan et al. [24] and Zhang et al. [56]] further show that, when ¢ is Gaussian, the
update (@) assumes a form that is strikingly similar to the update (T)). For example, the Variational
Online Gauss-Newton (VOGN) method of Khan et al. [24] estimates a Gaussian with mean g, and a
diagonal covariance matrix X; using the following update:

g(w) + Sl"’t

Piiq — My — Oy =
t+ t S

o St (L= 7B)se + @5% Z (:(W1))?, “4)

1EM;y

where g, (w;) == Vul(yi, fu, (%:)), Wi ~ N (w|p,, B¢) with I, := diag(1/(N(s; +9))), 0 :=
7d/N, and oy, B; > 0 are learning rates. Operations are performed element-wise. Similarly to (),
the vector s; adapts the learning rate and is updated using a moving average.

A major difference in VOGN is that the update of s; is now based on a Gauss-Newton approximation
[14] which uses 77 >°,c M, (g;(w))?. This is fundamentally different from the SG update in

which instead uses the gradient-magnitude (77 >, ¢ M, &i(Wi) 4 0w;)? [3]]. The first approach uses
the sum outside the square while the second approach uses it inside. VOGN is therefore a second-
order method and, similarly to Newton’s method, does not need a square-root over s;. Implementation
of this step requires an additional calculation (see Appendix [B) which makes VOGN a bit slower than
Adam, but VOGN is expected to give better variance estimates (see Theorem 1 in Khan et al. [24]).

The main contribution of this paper is to demonstrate practical training of deep networks using
VOGN. Since VOGN takes a similar form to SG methods, we can easily borrow existing deep-
learning techniques to improve performance. We will now describe these techniques in detail.
Pseudo-code for VOGN is shown in Algorithm|[I}

Batch normalisation: Batch normalisation [20] has been found to significantly speed up and stabilise
training of neural networks, and is widely used in deep learning. BatchNorm layers are inserted
between neural network layers. They help stabilise each layer’s input distribution by normalising the
running average of the inputs’ mean and variance. In our VOGN implementation, we simply use the
existing implementation with default hyperparameter settings. We do not apply L2 regularisation and
weight decay to BatchNorm parameters, like in Goyal et al. [13]], or maintain uncertainty over the
BatchNorm parameters. This straightforward application of batch normalisation works for VOGN.

Data Augmentation: When training on image datasets, data augmentation (DA) techniques can
improve performance drastically [13]. We consider two common real-time data augmentation
techniques: random cropping and horizontal flipping. After randomly selecting a minibatch at each
iteration, we use a randomly selected cropped version of all images. Each image in the minibatch has
a 50% chance of being horizontally flipped.

We find that directly applying DA gives slightly worse performance than expected, and also affects
the calibration of the resulting uncertainty. However, DA increases the effective sample size. We
therefore modify it to be pN where p > 1, improving performance (see step [2]in Algorithm|T). The
reason for this performance boost might be due to the complex relationship between the regularisation
0 and N. For the regularised loss ¢(w) + Sw "w, the two are unidentifiable, i.e., we can multiply
0 by a constant and reduce IV by the same constant without changing the minimum. However, in a
Bayesian setting (like in (2)), the two quantities are separate, and therefore changing the data might
also change the optimal prior variance hyperparameter in a complicated way. This needs further
theoretical investigations, but our simple fix of scaling N seems to work well in the experiments.

We set p by considering the specific DA techniques used. When training on CIFAR-10, the random
cropping DA step involves first padding the 32x32 images to become of size 40x40, and then taking
randomly selected 28x28 cropped images. We consider this as effectively increasing the dataset size
by a factor of 5 (4 images for each corner, and one central image). The horizontal flipping DA step
doubles the dataset size (one dataset of unflipped images, one for flipped images). Combined, this
gives p = 10. Similar arguments for ImageNet DA techniques give p = 5. Even though p is another
hyperparameter to set, we find that its precise value does not matter much. Typically, after setting an
estimate for p, tuning § a little seems to work well (see Appendix [E).

Algorithm 1: Variational Online Gauss Newton (VOGN)

@) ~
1: Initialise 11y, So, Mo. w q(w)
2: N« pN,§ <« 70/N. | M |
3: repeat
4 Sample a minibatch M of size M.
5 Split M into each GPU (local minibatch M,cq1). |Mlocal |Mlocal | Miocal | Miocal
6 for each GPU in parallel do n n 0 0
7: fork=1,2,...,K do w| w®) w0 ()
8: Sample € ~ N(0,T). wOl w® | w® || w®
9 w® p+eowitheo « (1/(N(s+6+7))"2 h L iy i
10: Compute ggk) — Vul(y,;, 00 (%)), Vi € Miocar | g | | gh | €hi|8h |
using the method described in Appendix [B] ™M Y R v
. 5 1 (k) =
11: & — MZZEMWM g .
" k
12: by < & Sienn, @)
L3: end for K " K 1 Learning rate o
. A 1 S 1
14: < x 2k 8 andh e 550, hy Momen;gum rate B
15: end for A E ;) !
16: AllReduce g, h. XP- MOVINE average rate P2
17: m< Bim 1 (8 1§) Prior precision 0
’ L & OH). External damping factor ¥
18: s« (1—7B2)s+ Bzh. Tempering parameter T
190 p+—p—am/(s+9+7). # MC samples for training K
20: until stopping criterion is met Data augmentation factor p

Figure 2: A pseudo-code for our distributed VOGN algorithm is shown in Algorithm |1} and the
distributed scheme is shown in the right figure. The computation in line 10 requires an extra
calculation (see Appendix [B), making VOGN slower than Adam. The bottom table gives a list of
algorithmic hyperparameters needed for VOGN.

Momentum and initialisation: It is well known that both momentum and good initialisation can
improve the speed of convergence for SG methods in deep learning [51]. Since VOGN is similar
to Adam, we can implement momentum in a similar way. This is shown in step [I7] of Algorithm [T}
where [is the momentum rate. We initialise the mean p in the same way the weights are initialised
in Adam (we use init.xavier_normal in PyTorch [[11]). For the momentum term m, we use the
same initialisation as Adam (initialised to 0). VOGN requires an additional initialisation for the
variance o2. For this, we first run a forward pass through the first minibatch, calculate the average of
the squared gradients and initialise the scale sy with it (see step[I]in Algorithm[I). This implies that
the variance is initialised to o3 = 7/(N(sq + ¢)). For the tempering parameter 7, we use a schedule
where it is increased from a small value (e.g., 0.1) to 1. With these initialisation protocols, VOGN is
able to mimic the convergence behaviour of Adam in the beginning.

Learning rate scheduling: A common approach to quickly achieve high validation accuracies is to
use a specific learning rate schedule [13]. The learning rate (denoted by « in Algorithm|[I)) is regularly
decayed by a factor (typically a factor of 10). The frequency and timings of this decay are usually
pre-specified. In VOGN, we use the same schedule used for Adam, which works well.

Distributed training: We also employ distributed training for VOGN to perform large experiments
quickly. We can parallelise computation both over data and Monte-Carlo (MC) samples. Data
parallelism is useful to split up large minibatch sizes. This is followed by averaging over multiple
MC samples and their losses on a single GPU. MC sample parallelism is useful when minibatch size
is small, and we can copy the entire minibatch and process it on a single GPU. Algorithm [T]and
Figure 2]illustrate our distributed scheme. We use a combination of these two parallelism techniques
with different MC samples for different inputs. This theoretically reduces the variance during training
(see Equation 5 in Kingma et al. [26]]), but sometimes requires averaging over multiple MC samples
to get a sufficiently low variance in the early iterations. Overall, we find that this type of distributed
training is essential for fast training on large problems such as ImageNet.

Implementation of the Gauss-Newton update in VOGN: As discussed earlier, VOGN uses the
Gauss-Newton approximation, which is fundamentally different from Adam. In this approximation,
the gradients on individual data examples are first squared and then averaged afterwards (see step

[12)in Algorithm [T which implements the update for s; shown in @)). We need extra computation
to get access to individual gradients, due to which, VOGN is slower Adam or SGD (e.g., in Fig. [I).
However, this is not a theoretical limitation and this can be improved if a framework enables an easy
computation of the individual gradients. Details of our implementation are described in Appendix
[B] This implementation is much more efficient than a naive one where gradients over examples are
stored and the sum over the square is computed sequentially. Our implementation usually brings the
running time of VOGN to within 2-5 times of the time that Adam takes.

Tuning VOGN: Currently, there is no common recipe for tuning the algorithmic hyperparameters
for VI, especially for large-scale tasks like ImageNet classification. One key idea we use in our
experiments is to start with Adam hyperparameters and then make sure that VOGN training closely
follows an Adam-like trajectory in the beginning of training. To achieve this, we divide the tuning
into an optimisation part and a regularisation part. In the optimisation part, we first tune the
hyperparameters of a deterministic version of VOGN, called the online Gauss-Newton (OGN)
method. This method, described in Appendix [C} is more stable than VOGN since it does not require
MC sampling, and can be used as a stepping stone when moving from Adam/SGD to VOGN. After
reaching a competitive performance to Adam/SGD by OGN, we move to the regularisation part,
where we tune the prior precision J, the tempering parameter 7, and the number of MC samples K for
VOGN. We initialise our search by setting the prior precision § using the L2-regularisation parameter
used for OGN, as well as the dataset size N. Another technique is to warm-up the parameter 7
towards 7 = 1 (also see the “momentum and initialisation" part). Setting 7 to smaller values usually
stabilises the training, and increasing it slowly also helps during tuning. We also add an external
damping factor v > 0 to the moving average s;. This increases the lower bound of the eigenvalues of
the diagonal covariance X; and prevents the noise and the step size from becoming too large. We
find that a mix of these techniques works well for the problems we considered.

4 Experiments

In this section, we present experiments on fitting several deep networks on CIFAR-10 and Ima-
geNet. Our experiments demonstrate practical training using VOGN on these benchmarks and show
performance that is competitive with Adam and SGD. We also assess the quality of the posterior
approximation, finding that benefits of Bayesian principles are preserved.

CIFAR-10 [28] contains 10 classes with 50,000 images for training and 10,000 images for validation.
For ImageNet, we train with 1.28 million training examples and validate on 50,000 examples,
classifying between 1,000 classes. We used a large minibatch size M = 4,096 and parallelise them
across 128 GPUs (NVIDIA Tesla P100). We compare the following methods on CIFAR-10: Adam,
MC-dropout [9]]. For ImageNet, we also compare to SGD, K-FAC, and Noisy K-FAC. We do not
consider Noisy K-FAC for other comparisons since tuning is difficult. We compare 3 architectures:
LeNet-5, AlexNet, ResNet-18. We only compare to Bayes by Backprop (BBB) [4] for CIFAR-10
with LeNet-5 since it is very slow to converge for larger-scale experiments. We carefully set the
hyperparameters of all methods, following the best practice of large distributed training [[13]] as the
initial point of our hyperparameter tuning. The full set of hyperparameters is in Appendix

4.1 Performance on CIFAR-10 and ImageNet

We start by showing the effectiveness of momentum and batch normalisation for boosting the
performance of VOGN. Figure [3a shows that these methods significantly speed up convergence and
performance (in terms of both accuracy and log likelihoods).

Figures [T] and] compare the convergence of VOGN to Adam (for all experiments), SGD (on
ImageNet), and MC-dropout (on the rest). VOGN shows similar convergence and its performance
is competitive with these methods. We also try BBB on LeNet-5, where it converges prohibitively
slowly, performing very poorly. We are not able to successfully train other architectures using this
approach. We found it far simpler to tune VOGN because we can borrow all the techniques used for
Adam. Figure]also shows the importance of DA in improving performance.

Table |1| gives a final comparison of train/validation accuracies, negative log likelihoods, epochs
required for convergence, and run-time per epoch. We can see that the accuracy, log likelihoods,
and the number of epochs are comparable. VOGN is 2-5 times slower than Adam and SGD. This

X100
80 "
3
- _70 g e
g 60 g \;\
B g £ 90 \
= 5 50 e i\
g g -~ VOGN 2 ™~
-+ VOGN+BN & gs5] —0— VOGN ~
== VOGN+momentum § —o— VCL ~
i = VOGN+momentum+BN S —A— EWC
20 Z 80
0 60 80 20 70 60 80 i1 2 3 4 5 6 7 8 5 10
epoch epoch Task number
(a) Effect of momentum and batch normalisation. (b) Continual Learning

Figure 3: Figure (a) shows that momentum and batch normalisation improve the performance of
VOGN. The results are for training ResNet-18 on CIFAR-10. Figure (b) shows comparison for a
continual-learning task on the Permuted MNIST dataset. VOGN performs at least as well (average
accuracy) as VCL over 10 tasks. We also find that, for each task, VOGN converges much faster,
taking only 100 epochs per task as opposed to 800 epochs taken by VCL (plots not shown).

20 LeNet-5 on CIFAR-10 (no DA) AlexNet on CIFAR-10 (no DA) AlexNet on CIFAR-10 ResNet-18 on CIFAR-10

o
vl

I
S 60
o
® 55
5
O 50f 1 ==+ MC-dropout sof =~ MC-dropout ==+ MC-dropout ==+ MC-dropout
© 5 ,' —— Adam —— Adam 50 — Adam 50 = Adam
! — VOGN 45] — VOGN —— VOGN — VOGN
40 50 100 150 200 “° 50 100 180 40 50 100 150 40 50 100 150
epoch epoch epoch epoch

Figure 4: Validation accuracy for various architectures trained on CIFAR-10 (DA: Data Augmenta-
tion). VOGN’s convergence and validation accuracies are comparable to Adam and MC-dropout.

is mainly due to the computation of individual gradients required in VOGN (see the discussion in
Section[3). We clearly see that by using deep-learning techniques on VOGN, we can perform practical
deep learning. This is not possible with methods such as BBB.

Due to the Bayesian nature of VOGN, there are some trade-offs to consider. Reducing the prior
precision (4 in Algorithm [T results in higher validation accuracy, but also larger train-test gap (more
overfitting). This is shown in Appendix [E] for VOGN on ResNet-18 on ImageNet. As expected,
when the prior precision is small, performance is similar to non-Bayesian methods. We also show
the effect of changing the effective dataset size p in Appendix [E} note that, since we are going to
tune the prior variance ¢ anyway, it is sufficient to set p to its correct order of magnitude. Another
trade-off concerns the number of Monte-Carlo (MC) samples, shown in Appendix [F] Increasing the
number of training MC samples (up to a limit) improves VOGN’s convergence rate and stability,
but also increases the computation. Increasing the number of MC samples during testing improves
generalisation, as expected due to averaging.

Finally, a few comments on the performance of the other methods. Adam regularly overfits the
training set in most settings, with large train-test differences in both validation accuracy and log
likelihood. One exception is LeNet-5, which is most likely due to the small architecture which results
in underfitting (this is consistent with the low validation accuracies obtained). In contrast to Adam,
MC-dropout has small train-test gap, usually smaller than VOGN’s. However, we will see in Section
A7) that this is because of underfitting. Moreover, the performance of MC-dropout is highly sensitive
to the dropout rate (see Appendix[G|for a comparison of different dropout rates). On ImageNet, Noisy
K-FAC performs well too. It is slower than VOGN, but it takes fewer epochs. Overall, wall clock
time is about the same as VOGN.

4.2 Quality of the Predictive Probabilities

In this section, we compare the quality of the predictive probabilities for various methods. For
Bayesian methods, we compute these probabilities by averaging over the samples from the posterior
approximations (see Appendix [H]for details). For non-Bayesian methods, these are obtained using the

Dataset/ .. Train/Validation Validation Time/
Architecture Optimiser Accuracy (%) NLL Epochs epoch (s) ECE AUROC
Adam 71.98/67.67 0.937 210 6.96 0.021 0.794
CIFAR-10/
LeNet-5 BBB 66.84 /64.61 1.018 800 11.437 0.045 0.784
(no DA) MC-dropout 68.41/67.65 0.99 210 6.95 0.087 0.797
VOGN 70.79/ 67.32 0.938 210 18.33 0.046 0.8
CIFAR-10/ Adam 100.0/67.94 2.83 161 3.12 0262 0.793
AlexNet MC-dropout 97.56 /72.20 1.077 160 3.25 0.140 0.818
(no DA) VOGN 79.07 /69.03 0.93 160 9.98 0.024 0.796
CIFAR-10/ Adam 97.92/73.59 1.480 161 3.08 0.262 0.793
AlexNet MC-dropout 80.65/77.04 0.667 160 3.20 0.114 0.828
VOGN 81.15/75.48 0.703 160 10.02 0.016 0.832
CIFAR-10/ Adam 97.74 1 86.00 0.55 160 11.97 0.082 0.877
ResNet-18 MC-dropout 88.23/82.85 0.51 161 12.51 0.166 0.768
VOGN 91.62/84.27 0.477 161 53.14 0.040 0.876
SGD 82.63/67.79 1.38 90 44.13 0.067 0.856
Adam 80.96 / 66.39 1.44 90 44.40 0.064 0.855
ImageNet/ MC-dropout 72.96 / 65.64 1.43 90 45.86 0.012 0.856
ResNet-18 OGN 85.33/65.76 1.60 90 63.13 0.128 0.854
VOGN 73.87/67.38 1.37 90 76.04 0.029 0.854
K-FAC 83.73/66.58 1.493 60 133.69 0.158 0.842
Noisy K-FAC 72.28 / 66.44 1.44 60 179.27 0.080 0.852

Table 1: Performance comparisons on different dataset/architecture combinations. Out of the 15
metrics (NLL, ECE, and AUROC on 5 dataset/architecture combinations), VOGN performs the best
or tied best on 10 ,and is second-best on the other 5. Here DA means ‘Data Augmentation’, NLL
refers to ‘Negative Log Likelihood’ (lower is better), ECE refers to ‘Expected Calibration Error’
(lower is better), AUROC refers to ‘Area Under ROC curve’ (higher is better). BBB is the Bayes
By Backprop method. For ImageNet, the reported accuracy and negative log likelihood are the
median value from the final 5 epochs. All hyperparameter settings are in Appendix D} See Table 3| for
standard deviations. T BBB is not parallelised (other methods have 4 processes), with 1 MC sample
used for the convolutional layers (VOGN uses 6 samples per process).

point estimate of the weights. We compare the probabilities using the following metrics: validation
negative log-likelihood (NLL), area under ROC (AUROC) and expected calibration curves (ECE)
[40L [15]. For the first and third metric, a lower number is better, while for the second, a higher
number is better. See Appendix [H]for an explanation of these metrics. Results are summarised in
Table[l] VOGN’s uncertainty performance is more consistent and marginally better than the other
methods, as expected from a more principled Bayesian method. Out of the 15 metrics (NLL, ECE
and AUROC on 5 dataset/architecture combinations), VOGN performs the best or tied best on 10,
and is second-best on the other 5. In contrast, both MC-dropout’s and Adam’s performance varies
significantly, sometimes performing poorly, sometimes performing decently. MC-dropout is best on 4,
and Adam is best on 1 (on LeNet-5; as argued earlier, the small architecture may result in underfitting).
We also show calibration curves [7] in Figures[I]and[I4] Adam is consistently over-confident, with
its calibration curve below the diagonal. Conversely, MC-dropout is usually under-confident. On
ImageNet, MC-dropout performs well on ECE (all methods are very similar on AUROC), but this
required an excessively tuned dropout rate (see Appendix [G).

We also compare performance on out-of-distribution datasets. When testing on datasets that are
different from the training datasets, predictions should be more uncertain. We use experimental
protocol from the literature [[16} 31} |8, [32] to compare VOGN, Adam and MC-dropout on CIFAR-10.
We also borrow metrics from other works [[16}30], showing predictive entropy histograms and also
reporting AUROC and FPR at 95% TPR. See Appendix|[|for further details on the datasets and metrics.
Ideally, we want predictive entropy to be high on out-of-distribution data and low on in-distribution
data. Our results are summarised in Figure[5|and Appendix [, On ResNet-18 and AlexNet, VOGN’s
predictive entropy histograms show the desired behaviour: a spread of entropies for the in-distribution
data, and high entropies for out-of-distribution data. Adam has many predictive entropies at zero,

In-distribution Out-of-distribution Out-of-distribution Out-of-distribution
T T

5 2.0 2.0 T 2.0
—— VOGN —— FPR:0.82 AUC:0.80 —— FPR:0.78 AUC:0.82 —— FPR:0.79 AUC:0.81
Adam FPR:0.88 AUC:0.70 FPR:0.91 AUC:0.63 FPR:0.90 AUC:0.67
4 —— MC-Dropout 15 —— FPR:0.88 AUC:0.80 15 —— FPR:0.76 AUC:0.83 15 —— FPR:0.69 AUC:0.84
3
1.0 1.0 1.0
2
0.5 / 0.5 0.5
1
0 / 0.0 0.0 0.0
0 1 2 0 1 2 0 1 2 0 1 2
Predictive Entropy Predictive Entropy Predictive Entropy Predictive Entropy

Figure 5: Histograms of predictive entropy for out-of-distribution tests for ResNet-18 trained on
CIFAR-10. Going from left to right, the inputs are: the in-distribution dataset (CIFAR-10), followed
by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize). Also shown are the FPR at 95%
TPR metric (lower is better) and the AUROC metric (higher is better), averaged over 3 runs. We
clearly see that VOGN’s predictive entropy is generally low for in-distribution and high for out-of-
distribution data, but this is not the case for other methods. Solid vertical lines indicate the mean
predictive entropy. The standard deviations are small and therefore not reported.

indicating Adam tends to classify out-of-distribution data too confidently. Conversely, MC-dropout’s
predictive entropies are generally high (particularly in-distribution), indicating MC-dropout has too
much noise. On LeNet-5, we observe the same result as before: Adam and MC-dropout both perform
well. The metrics (AUROC and FPR at 95% TPR) do not provide a clear story across architectures.

4.2.1 Performance on a Continual-learning task

The goal of continual learning is to avoid forgetting of old tasks while sequentially observing new
tasks. The past tasks are never visited again, making it difficult to remember them. The field
of continual learning has recently grown, with many approaches proposed to tackle this problem
(27,133,143, 48] 150]]. Most approaches consider a simple setting where the tasks (such as classifying a
subset of classes) arrive sequentially, and all the data from that task is available. We consider the
same setup in our experiments.

We compare to Elastic Weight Consolidation (EWC) [27] and a VI-based approach called Variational
Continual Learning (VCL) [43]]. VCL employs BBB for each task, and we expect to boost its
performance by replacing BBB by VOGN. Figure [3b|shows results on a common benchmark called
Permuted MNIST. We use the same experimental setup as in Swaroop et al. [52]. In Permuted
MNIST, each task consists of the entire MNIST dataset (10-way classification) with a different fixed
random permutation applied to the input images’ pixels. We run each method 20 times, with different
random seeds for both the benchmark’s permutations and model training. See Appendix [D.2]for
hyperparameter settings and further details. We see that VOGN performs at least as well as VCL,
and far better than a popular approach called EWC [27]. Additionally, as found in the batch learning
setting, VOGN is much quicker than BBB: we run VOGN for only 100 epochs per task, whereas
VCL requires 800 epochs per task to achieve best results [52].

5 Conclusions

We successfully train deep networks with a natural-gradient variational inference method, VOGN,
on a variety of architectures and datasets, even scaling up to ImageNet. This is made possible due
to the similarity of VOGN to Adam, enabling us to boost performance by borrowing deep-learning
techniques. Our accuracies and convergence rates are comparable to SGD and Adam. Unlike them,
however, VOGN retains the benefits of Bayesian principles, with well-calibrated uncertainty and
good performance on out-of-distribution data. Better uncertainty estimates open up a whole range
of potential future experiments, for example, small data experiments, active learning, adversarial
experiments, and sequential decision making. Our results on a continual-learning task confirm this.
Another potential avenue for research is to consider structured covariance approximations.

Acknowledgements

We would like to thank Hikaru Nakata (Tokyo Institute of Technology) and Ikuro Sato (Denso IT
Laboratory, Inc.) for their help on the PyTorch implementation. We are also thankful for the RAIDEN
computing system and its support team at the RIKEN Center for Al Project which we used extensively
for our experiments. This research used computational resources of the HPCI system provided by
Tokyo Institute of Technology (TSUBAME23.0) through the HPCI System Research Project (Project
ID:hp190122). K. O. is a Research Fellow of JSPS and is supported by JSPS KAKENHI Grant
Number JP19J13477.

References

[1] James R Anderson and Carsten Peterson. A mean field theory learning algorithm for neural
networks. Complex Systems, 1:995-1019, 1987.

[2] David Barber and Christopher M Bishop. Ensemble learning in Bayesian neural networks.
Generalization in Neural Networks and Machine Learning, 168:215-238, 1998.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

[4] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. In International Conference on Machine Learning, pages 1613-1622, 2015.

[5] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. arXiv preprint arXiv:1606.04838, 2016.

[6] John Bradshaw, Alexander G de G Matthews, and Zoubin Ghahramani. Adversarial examples,
uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks. arXiv
preprint arXiv:1707.02476, 2017.

[7] Morris H. DeGroot and Stephen E. Fienberg. The comparison and evaluation of forecasters.
The Statistician: Journal of the Institute of Statisticians, 32:12-22, 1983.

[8] Terrance DeVries and Graham W. Taylor. Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865, 2018.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning, pages
1050-1059, 2016.

[10] S. Ghosal and A. Van der Vaart. Fundamentals of nonparametric Bayesian inference, volume 44.
Cambridge University Press, 2017.

[11] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249-256, 2010.

[12] Tan Goodfellow. Efficient Per-Example Gradient Computations. ArXiv e-prints, October 2015.

[13] Priya Goyal, Piotr Dollédr, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo
Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD:
training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.

[14] Alex Graves. Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems, pages 2348-2356, 2011.

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1321-1330. JIMLR. org, 2017.

[16] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

10

[17] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural
networks for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29,
2012.

[18] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Annual Conference on Computational Learning Theory,
pages 5—13, 1993.

[19] Jennifer A Hoeting, David Madigan, Adrian E Raftery, and Chris T Volinsky. Bayesian model
averaging: a tutorial. Statistical science, pages 382—401, 1999.

[20] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

[21] Mohammad Khan. Variational learning for latent Gaussian model of discrete data. PhD thesis,
University of British Columbia, 2012.

[22] Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational inference: con-
verting variational inference in non-conjugate models to inferences in conjugate models. In
International Conference on Artificial Intelligence and Statistics, pages 878-887, 2017.

[23] Mohammad Emtiyaz Khan and Didrik Nielsen. Fast yet simple natural-gradient descent for
variational inference in complex models. In 2018 International Symposium on Information
Theory and Its Applications (ISITA), pages 31-35. IEEE, 2018.

[24] Mohammad Emtiyaz Khan, Didrik Nielsen, Voot Tangkaratt, Wu Lin, Yarin Gal, and Akash
Srivastava. Fast and scalable Bayesian deep learning by weight-perturbation in Adam. In
International Conference on Machine Learning, pages 2616-2625, 2018.

[25] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

[26] Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems, pages 2575—
2583, 2015.

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 114(13):3521-3526, 2017.

[28] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097-1105, 2012.

[30] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems 30, pages 6402—6413. Curran Associates, Inc., 2017.

[31] Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated clas-
sifiers for detecting out-of-distribution samples. In International Conference on Learning
Representations, 2018.

[32] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations, 2018.

[33] David Lopez-Paz and Marc Aurelio Ranzato. Gradient episodic memory for continual learning.
In NIPS, 2017.

11

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167

[34] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[35] David Mackay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute of
Technology, 1991.

[36] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

[37] Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wilson.
A simple baseline for Bayesian uncertainty in deep learning. arXiv preprint arXiv:1902.02476,
2019.

[38] Stephan Mandt, Matthew D Hoffman, and David M Blei. Stochastic gradient descent as
approximate Bayesian inference. Journal of Machine Learning Research, 18:1-35, 2017.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[40] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using Bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAT’ 15, pages 2901-2907. AAAI Press, 2015.

[41] Redford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto,
1995.

[42] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

[43] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual
learning. arXiv preprint arXiv:1710.10628, 2017.

[44] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Second-order optimization method for large mini-batch: Training resnet-50 on imagenet in 35
epochs. CoRR, abs/1811.12019, 2018.

[45] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian bandits showdown: An
empirical comparison of Bayesian deep networks for Thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[46] Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation for
neural networks. In International Conference on Learning Representations, 2018.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211-252, 2015.

[48] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[49] Lawrence K Saul, Tommi Jaakkola, and Michael I Jordan. Mean field theory for sigmoid belief
networks. Journal of Artificial Intelligence Research, 4:61-76, 1996.

[50] Jonathan Schwarz, Jelena Luketina, Wojciech M. Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning, 2018.

[51] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International conference on machine learning,
pages 1139-1147, 2013.

[52] Siddharth Swaroop, Cuong V. Nguyen, Thang D. Bui, and Richard E. Turner. Improving and
understanding variational continual learning. arXiv preprint arXiv:1905.02099, 2019.

12

[53] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4, 2012.

[54] V. G. Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop on Computa-
tional Learning Theory, COLT ’90, pages 371-386, San Francisco, CA, USA, 1990. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-146-5.

[55] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a
large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365,
2015.

[56] Guodong Zhang, Shengyang Sun, David K. Duvenaud, and Roger B. Grosse. Noisy natural
gradient as variational inference. arXiv preprint arXiv:1712.02390, 2018.

13

A Noisy K-FAC algorithm

Noisy K-FAC [56]] attempts to approximate the structure of the full covariance matrix, and therefore
the updates are a bit more involved than VOGN (see Equationd). Assuming a fully-connected layer,
we denote the weight matrix of layer by W. The Noisy K-FAC method estimates the parameters of a
matrix-variate Gaussian distribution ¢;(W) = MN (W|M;, 22 ; ® X1 ;) by using the following
updates:

M1 < M, —a[A]] - (VWE [y, fw (x:))] + SWt) [S;y-i—ljl_l) (5)

Aip1 — (1-B)A + BE [ata;r] . Ser1 ¢ (1—B)Si + BE [gtg‘:]) (6)

where W; ~ (W), g, := Vl(y;, fw(x;)) with s = 84 := W:at, a; is the input vector (the
activation of the previous layer), F [-] is the average over the minibatch. B:= Bt /N,and vy := Y+er
with some exzernal damping factor ... The covariance parameters are set to 3, % :=7A] /N and
El_% =8/, where A} := A+ m/Aland S} := S, + 7T%\ﬁI 72(m, > 0) is the average
eigenvalue of A, divided by that of S;. Similarly to the VOGN update in Equation[d] the gradients
are scaled by matrices A; and S, which are related to the precision matrix of the approximation.

B Details on fast implementation of the Gauss-Newton approximation

Current codebases are only optimised to directly return the average of gradients over the minibatch. In
order to efficiently compute the Gauss-Newton (GN) approximation, we modify the backward-pass to
efficiently calculate the gradient per example in the minibatch, and extend the solution in Goodfellow
[12] to both convolutional and batch normalisation layers.

B.1 Convolutional layer

Consider a convolutional layer with a weight matrix W € RCout xCink? (ignore bias for simplicity)
and an input tensor A € RCin*xHinxXWin \where C,,;, C;,, are the number of output, input channels,
respectively, H;y,, Wi, are the spatial dimensions, and k is the kernel size. For any stride and padding,
by applying torch.nn.functional.unfold function in PyTorclﬂ we get the extended matrix

M4 € RCink*xHousWour g0 that the output tensor S is calculated by a matrix multiplication:

M, « unfold (A) € ROm# X HouWour (7
Mg < WM, € RCuXHouWour (8)
S + reshape (Mg) € RCut*HouexWour 9)

where H,,:, W, are the spatial dimensions of the output feature map. Using the matrix M 4, we
can also get the gradient per example by a matrix multiplication:

Vi l(yi, fw (x;)) = reshape (Vsl(y:, fw (x;))) € REout*HoutWour (10)
Vi l(yi, fw (i) < Vs (s, fwr (x:))M) € RCeut X Cink? (1D

Note that in PyTorch, we can access to the inputs A and the gradient Vg£(y;, fw (x;)) per example
in the computational graph during a forward-pass and a backward-pass, respectively, by using the
Function Hooks ﬂ Hence, to get the gradient Vy £(y;, fw (x;)) per example, we only need to
perform (7), (1I0), and (TT) after the backward-pass for this layer.

B.2 Batch normalisation layer

Consider a batch normalisation layer follows a fully-connected layer, which activation is a € R?,
with the scale parameter v € R and the shift parameter 3 € R?, we get the output of this layer

>https://pytorch.org/docs/stable/nn.functional . html#torch.nn.functional .unfold

https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#
forward-and-backward-function-hooks

14

https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.unfold
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks

x H = E [Vlogp(y|x)Vlog p(y|z)"]
< 1 ¢ L
H;

H, ~ H,

L Kronecker-factored I:I ® [

diagonal

L HL

Figure 6: Layer-wise block-diagonal Gauss-Newton approximation

s € R? by,
p < Ela] € RY, (12)
o’ F [(a—u)ﬂ €R?, (13)
o a—pnu d
a+ € R%, 14)
Vo? (
s«—~va+pBecR?, (15)

where F [-] is the average over the minibatch and & is the normalised input. We can find the gradient
with respect to parameters « and 3 per example by,

Vo l(yi, fw (xi) < Vl(ys, fw(x;) o a, (16)
Val(yi, fw (x3) < Vl(ys, fw (xi) - (17

We can obtain the input a and the gradient V £(y;, fw (x;) per example from the computational
graph in PyTorch in the same way as a convolutional layer.

B.3 Layer-wise block-diagonal Gauss-Newton approximation

Despite using the method above, it is still intractable to compute the Gauss-Newton matrix (and
its inverse) with respect to the weights of large-scale deep neural networks. We therefore apply
two further approximations (Figure [f). First, we view the Gauss-Newton matrix as a layer-wise
block-diagonal matrix. This corresponds to ignoring the correlation between the weights of different
layers. Hence for a network with L layers, there are L diagonal blocks, and Hy is the diagonal block
corresponding to the ¢-th layer (¢ = 1,..., L). Second, we approximate each diagonal block H,
with H,, which is either a Kronecker-factored or diagonal matrix. Using a Kronecker-factored matrix
as H, corresponds to K-FAC; a diagonal matrix corresponds to a mean-field approximation in that
layer. By applying these two approximations, the update rule of the Gauss-Newton method can be
written in a layer-wise fashion:

. -1
W@,t+1 = W@,t - atHE(Bt) gf(et) (f = 17) L)) (18)

where W is the weights in ¢-th layer, and
0= vec(W)T - vec(Wp)T -+ vec(Wp)T)T . (19)

Since the cost of computing ﬁ[l is much cheaper compared to that of computing H~!, our approxi-
mations make Gauss-Newton much more practical in deep learning.

In the distributed setting (see Figure 2)), each parallel process (corresponding to 1 GPU) calculates
the GN matrix for its local minibatch. Then, one GPU adds them together and calculates the inverse.
This inversion step can also be parallelised after making the block-diagonal approximation to the GN
matrix. After inverting the GN matrix, the standard deviation o is updated (line 9 in Algorithm[T),
and sent to each parallel process, allowing each process to draw independently from the posterior.

15

In the Noisy K-FAC case, a similar distributed scheme is used, except each parallel process now has
both matrices S and A (see Appendix [A). When using K-FAC approximations to the Gauss-Newton
blocks for other layers, Osawa et al. [44] empirically showed that the BatchNorm layer can be
approximated with a diagonal matrix without loss of accuracy, and we find the same. We therefore
use diagonal H, with K-FAC and Noisy K-FAC in BatchNorm layers (see Table ' For further
details on how to efficiently parallelise K-FAC in the distributed setting, please see Osawa et al. [44].

optimiser convolution fully-connected Batch Normalisation
OGN diagonal diagonal diagonal
VOGN diagonal diagonal diagonal
K-FAC Kronecker-factored Kronecker-factored diagonal
Noisy K-FAC Kronecker-factored Kronecker-factored diagonal

Table 2: The approximation used for each layer type’s diagonal block H, for the different optimisers
tested this paper.

C OGN: A deterministic version of VOGN

To easily apply the tricks and techniques of deep-learning methods, we recommend to first test them
on a deterministic version of VOGN, which we call the online Gauss-Newton (OGN) method. In this
method, we approximate the gradients at the mean of the Gaussian, rather than using MC samplesﬂ
This results in an update without any sampling, as shown below (we have replaced p, by w; since
there is no distinction between them):

5(wy) + 0w 1
Wit %wt—atM7 Sl (1—7‘5t)st+6tﬂ Z (gz(wt))2 (20)
St+1 +9 €My

At each iteration, we still get a Gaussian N (w|wy, ;) with 3, := diag(1/(N(s; + 9))). It is easy
to see that, like SG methods, this algorithm converges to a local minima of the loss function, thereby
obtaining a Laplace approximation instead of a variational approximation. The advantage of OGN is
that this can be used as a stepping stone, when switching from Adam to VOGN. Since it does not
involve sampling, the tricks and techniques applied to Adam are easier to apply to OGN than VOGN.
However, due to the lack of averaging over samples, this algorithm is less effective to preserve the
benefits of Bayesian principles, and gives slightly worse uncertainty estimates.

D Hyperparameter settings

Hyperparameters for all results shown in Table|I|are given in Table 4] The settings for distributed VI
training are given in Table[5] Please see Goyal et al. [13] and Osawa et al. [44] for best practice on
these hyperparameter values.

D.1 Bayes by Backprop for CIFAR-10/LeNet-5 training

We use hyperparameter settings and training procedure for Bayes by Backprop (BBB) [4] as suggested
by Swaroop et al. [52]. This includes using the local reparameterisation trick, initialising means and
variances at small values, using 10 MC samples per minibatch during training for linear layers (1 MC
sample per minibatch for convolutional layers) and 100 MC samples per minibatch during testing for
linear layers (10 MC samples per minibatch for convolutional layers). Note that BBB has twice as
many parameters to optimise than Adam or SGD (means and variances for each weight in the deep
neural network). The fewer MC samples per minibatch for convolutional layers speed up training
time per epoch while empirically not reducing convergence rate.

"This gradient approximation used here is referred to as the zeroth-order delta approximation where
Eq[g(w)] =~ g(p) (see Appendix A.6 in Khan [21] for details).

16

‘syooda ¢ [euy ay3 WOIJ AneA UBIPAW Y} I8 pOOYI[YI] 30] 2AnE3aU pue AdeIndde paytodar ay ‘synsar JoN3ew] 1o ‘doxdyoeg Ag seheq :gdg ‘(191199 st 1oy31y)

9AIND DOY I9pU() BAIY :DOUNV ‘(191199 ST 10Mm0]) Joxrg uoneiqre)) paroadxy :gDH ‘(19112q ST 10M0[) pooyI[ayr] S0 aane3oN TN ‘(1919q St 10y31y) AoeInooy
00y ‘uoneuowsny el [V "SUNI 991U} JIOAO SUONBIASD PIEPUR)S PUB SUBIW ‘SUONBUIQUIOD 2IN)O)IYdIe/1aselep Jualoip uo siostundo Suuredwo) :¢ 9[qe],

LT6LI 09 758°0 080°0 el vr'99 SLO'T 8TTL OV~ AsION

69°€€1 09 S000 FTH80 SO00 F8ST'0 9000 F €6v'T 9LI'0 F 8599 9100 F ILS0 8500 F €L°€8 OV

P0'9L 06 0F€PS80 1000 F €6200 T00FLET €9T0FSELY 100F 20T 1900 F L8'€EL NOOA o1 o soy
€1°€9 06 10000 F€¥S80 000 F 8TI'0 000 F 09T SITOFILSY S000F TS0 LSOO F €€°S8 NDO 0\ oS
98'St 06 958°0 7100 €1 ¥9'59 48! 96°TL modoip-DN

ey 06 580 £90°0 100 F#7'1 8910 F 6£99 SI00F €2L0 8600 F 96708 wepy

€Iy 06 958°0 £90°0 0F 8T LIO0O T 6L°'L9 LIOOF SL90 8S0°0 F €9°C8 ans

P1°€S 191 T00°0 F9L80 TOO0F OK0'0 90070 F LLVO S61'0F LTHS 1SOOF€9T0 LOOFT916 NDOA o1 o soy
1Sl 191 $000F 89L0 STOOF 991°0 0F 150 80TOF S8T8 SYOOFLIEO €pTOF €288 wmodopdN L on S
L611 091 1000 F LL80 TO00FT800 T00FSSO LSTOF 0098 TIO0F 6500 OYI0F ¥LL6 wepy

2001 091 7000 F €80 100°0 F 9100 9000 F €0L'0 SLY'OF 8F'SL 6£0°0 F 11S0 6ST0 F SI'18 NDOA NV
0T'€ 091 T000F 880 TOOOFPIIO TLOOFL990 €PE0FHOLL TSOOF LyO SI90F 908 modop-DW B
80°€ 191 1000 F €6L°0 S000 FT9T0 SI00FOSY'T 96T0F 6SEL 9000 F LSOO OYI'0 F T6'L6 wepy
866 091 0F 96L°0 0100 T $20°0 LI0'0 T I€6°0 61%0 F €069 0T0°0 F 9690 8+T0 F LO6L NDOA (v ou)
sTe 091 T000F 8IS0 +000F OFI'0 TIOOF LLOT LLIOFOTTL #100F 800 8LTOF 95'L6 nodorp-DN PNXOIY
e 191 1000 F €6L°0 S000FT9C0 TO0F €8T LESOF¥6L9 0 F 1000 0F 0001 wepy /Q1-4VHID
€81 012 7000 F80 TO00FOH00 $T0°0 F8E60 OIETFTIELY TOOF 0880 €9L0F 6L0L NDOA (v o)
69 01T 9000 F L6L'0 6000 F LS00 9200 F 660 LISTFS9L9 1010 FOL80 1850 F I+'89 Inodorp-D PN
Al 008 €000F¥8L0 SO00F SHO'0O 9000 F8I0T I€C0F 19F9 9000 F LS6'0 €000 F #8°99 CEL: IR
96'9 01T 1000 F ¥6L0 TO0'0 F 120°0 CI00 F LE6'0 €ISOF L9L9 1T00F €EL0 LITOF 861L wepy

(s)yoodo TIN (%) 2ov TIN (%) 2ov ! aImodIyaIY

/oy, syoodg 00dNv H40od uonepIeA uonepIfeA ureiy, urely, wosrundo nesereq

17

Dataset/ L N Weight
Architecture Optimiser Qinit « Epochs to decay « b1 B2 decay L2 reg
Adam - le-3 - 0.1 0.001 le-2 -
Cil;?\]l:;_ISO/ BBB - le-3 - 0.1 0.001 - -
(no DA) MC-dropout - le-3 - 0.9 - - le-4
VOGN - le-2 - 0.9 0.999 - -
CIFAR-10/ Adam - le-3 [80, 120] 0.1 0.001 le-4 -
AlexNet MC-dropout - le-1 [80, 120] 0.9 - - le-4
(no DA) VOGN - le-4 [80, 120] 0.9 0.999 - -
Adam - le-3 [80, 120] 0.1 0.001 le-4 -
Cﬁ’gg\}é?/ MC-dropout] le-1 80, 120] 0.9 ; ; le-4
VOGN - le-4 [80, 120] 0.9 0.999 - -
Adam - le-3 [80, 120] 0.1 0.001 Se-4 -
PRI MC-dropout - el (80, 120] 09 - - le-d
VOGN - le-4 [80, 120] 0.9 0.999 - -
SGD 1.25e-2 1.6 [30, 60, 80] 0.9 - - le-4
Adam 1.25e-5 1.6e-3 [30, 60, 80] 0.1 0.001 le-4 -
ImageNet/ MC-dropout 1.25e-2 1.6 [30, 60, 80] 0.9 - - le-4
Resl%fet-IS OGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.9 - le-5
VOGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.999 - -
K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - le-4
Noisy K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - -
Table 4: Hyperparameters for all results in Table
- Dataset/ =
Optimiser Architecture M # GPUs K T P Norig § k) ot
CIFAR-10/
LeNet-5 128 4 6 0.1—1 1 50,000 100 2e-4—2e3 le3
(no DA)
VOGN CIFAR-10/
AlexNet 128 8 3 005—1 1 50,000 05 5e7—1le5 le3
(no DA)
CLFIAR’IO/ 128 8 3 05—1 10 50,000 05 5e7—1le5 le3
exNet
CIFAR-10/
ResNet-18 256 8 5 1 10 50,000 50 le-3 le-3
ImageNet/
ResNet-18 4096 128 1 1 5 1,281,167 1333 2e-5 le-4
Noisy K-FAC ~ mageNet/ 4096 128 1 1 5 1281167 1333 2e-5 le-4
Y ResNet-18 =oh 2

Table 5: Settings for distributed VI training

D.2 Continual learning experiment

Following the setup of Swaroop et al. [52]], all models are run with two hidden layers, of 100 hidden
units each, with ReLU activation functions. VCL is run with the same hyperparameter settings as in
Swaroop et al. [52]. We perform a grid search over EWC’s A hyperparameter, finding that A = 100
performs the best, exactly like in Nguyen et al. [43]].

VOGN is run for 100 epochs per task. Parameters are initialised before training with the default
PyTorch initialisation for linear layers. The initial precision is 1e6. A standard normal initial prior is
used, just like in VCL. Between tasks, the mean and precision are initialised in the same way as for
the first task. The learning rate « = le — 3, the batch size M = 256, 5; = 0, f2 = le — 3, 10 MC
samples are used during training and 100 for testing. We run each method 20 times, with different
random seeds for both the benchmark’s permutation and for model training.

E Effect of prior variance and dataset size reweighting factor

We show the effect of changing the prior variance (6! in Algorithm in Figures|8|and E} We can
see that increasing the prior variance improves validation performance (accuracy and log likelihood).
However, increasing prior variance also always increases the train-test gap, without exceptions, when

18

the other hyperparameters are held constant. As an example, training VOGN on ResNet-18 on
ImageNet with a prior variance of 7.5e — 4 has train-test accuracy and log likelihood gaps of 2.29
and 0.12 respectively. When the prior variance is increased to 7.5e — 3, the respective train-test gaps
increase to 6.38 and 0.34 (validation accuracy and validation log likelihood also increase, see Figure

[8).
With increased prior variance, VOGN (and Noisy K-FAC) reach converged solutions more like

their non-Bayesian counterparts, where overfitting is an issue. This is as expected from Bayesian
principles.

Figure [I0]shows the combined effect of the dataset reweighting factor p and prior variance. When p
is set to a value in the correct order of magnitude, it does not affect performance so much: instead,
we should tune §. This is our methodology when dealing with p. Note that we set p for ImageNet to
be smaller than that for CIFAR-10 because the data augmentation cropping step uses a higher portion
of the initial image than in CIFAR-10: we crop images of size 224x224 from images of size 256x256.

F Effect of number of Monte Carlo samples on ImageNet

In the paper, we report results for training ResNet-18 on ImageNet using 128 GPUs, with 1 inde-
pendent Monte-Carlo (MC) sample per process during training (mc=128x1), and 10 MC samples
per validation image (val_mc= 10). We now show that increasing either of training or testing MC
samples improves performance (validation accuracy and log likelihood) at the cost of increased
computation time. See Figure[T1]

Increasing the number of training MC samples per process reduces noise during training. This effect
is observed when training on CIFAR-10, where multiple MC samples per process are required to
stabilise training. On ImageNet, we have much larger minibatch size (4,096 instead of 256) and more
parallel processes (128 not 8), and so training with 1 MC sample per process is still stable. However,
as shown in Figure [TT] increasing the number of training MC samples per process to from 1 to 2
speeds up convergence per epoch, and reaches a better converged solution. The time per epoch (and
hence total runtime) also increases by approximately a factor of 1.5. Increasing the number of train
MC samples per process to 3 does not increase final test performance significantly.

Increasing the number of testing MC samples from 10 to 100 (on the same trained model) also results
in better generalisation: the train accuracy and log likelihood are unchanged, but the validation
accuracy and log likelihood increase. However, as we run an entire validation on each epoch,
increasing validation MC samples also increases run-time.

These results show that, if more compute is available to the user, they can improve VOGN’s per-
formance by improving the MC approximation at either (or both) train-time or test-time (up to a
limit).

G MC-dropout’s sensitivity to dropout rate

We show MC-dropout’s sensitivity to dropout rate, p, in this Appendix. We tune MC-dropout as best
as we can, finding that p = 0.1 works best for all architectures trained on CIFAR-10 (see Figure
for the dropout rate’s sensitivity on LeNet-5 as an example). On ResNet-18 trained on ImageNet, we
find that MC-dropout is extremely sensitive to dropout rate, with even p = 0.1 performing badly. We
therefore use p = 0.05 for MC-dropout experiments on ImageNet. This high sensitivity to dropout
rate is an issue with MC-dropout as a method.

19

701

—

)
- a e NN
B e

60|

|
=
wn

°)
3 S
< > 50t
e (8)
S 20 g
> o 40}
8 Q ---- dropout_rate=0.3
== dropout_rate=0.2
-2.5
30¢ —— dropout_rate=0.1
—— dropout_rate=0.01
=30 20 40 60 80 0 20 40 60 80

epoch epoch

Figure 12: Effect of changing the dropout rate in MC-dropout, training LeNet-5 on CIFAR-10. When
p = 0.01, the train-test gap on accuracy and log likelihood is very high (10.3% and 0.34 respectively).
When p = 0.1, gaps are 1.4% and 0.04 respectively. When p = 0.2, the gaps are -7.71% and -0.02
respectively. We therefore choose p = 0.1 as it has high accuracy and log likelihood, and small
train-test gap.

] S U o
_8 E ,ININT e eNa A
o) Z 50
< >
g S
= o 40
g 1
---- dropout_rate=0.1
30 = dropout_rate=0.05
== dropout_rate=0.01
—4.05 20 40 60 80 20 20 40 60 80
epoch epoch

Figure 13: Effect of changing the dropout rate in MC-dropout, training Resnet-18 on ImageNet. We
use p = 0.05 for our results.

H Uncertainty metrics

We use several approaches to compare uncertainty estimates obtained by each optimiser. We follow
the same methodology for all optimisers: first, tune hyperparameters to obtain good accuracy on
the validation set. Then, test on uncertainty metrics. For multi-class classification problems, all
of these are based on the predictive probabilities. For non-Bayesian approaches, we compute the
probabilities for a validation input x; as ;i := p(y; = k|x;, w.), Where w, is the weight vector of
the DNN whose uncertainty we are estimating. For Bayesian methods, we can compute the predictive
probabilities for each validation example x; as follows:

C
Dik 1= /p(yi = k|x;, w)p(w|D)dw ~ /p(yi = k|x;, w)g(w)dw ~ — Zp(yi = k|xi,w(c)),

c=1

where w(®) ~ ¢(w) are samples from the Gaussian approximation returned by a variational method.
We use 10 MC samples at validation-time for VOGN and MC-dropout (the effect of changing number
of validation MC samples is shown in Appendix [F]). This increases the computational cost during
testing for these methods when compared to Adam or SGD.

20

Using the estimates p;, we use three methods to compare uncertainties: validation log loss, AUROC
and calibration curves. We also compare uncertainty performance by looking at model outputs when
exposed to out-of-distribution data.

Validation log likelihood. Log likelihood (or log loss) is a common uncertainty metric. We consider
a validation set of Ny, examples. For an input x;, denote the true label by y;, a 1-of-K encoded
vector with 1 at the true label and 0 elsewhere. Denote the full vector of all validation outputs by y.

Similarly, denote the vector of all probabilities p;;, by p, where k € {1, ..., K}. The validation log
Nva

likelihood is defined as £(y, p) := 51— >, SO yik log i

Tables [I] and [3] show final validation (negative) log likelihood. VOGN performs very well on this
metric (aside from on CIFAR-10/AlexNet, with or without DA, where MC-dropout performs the
best). All final validation log likelihoods are very similar, with VOGN usually performing similarly
to the other best-performing optimisers (usually MC-dropout).

Area Under ROC curves (AUROC). We consider Receiver Operating Characteristic (ROC) curves
for our multi-way classification tasks. A potential way that we may care about uncertainty mea-
surements would be to discard uncertain examples by thresholding each validation input’s predicted
class’ softmax output, marking them as too ambiguous to belong to a class. We can then consider
the remaining validation inputs to either be correctly or incorrectly classified, and calculate the True
Positive Rate (TPR) and False Positive Rate (FPR) accordingly. The ROC curve is summarised
by its Area Under Curve (AUROC), reported in Table [T} This metric is useful to compare uncer-
tainty performance in conjunction with the other metrics we use. The AUROC results are very
similar between optimisers, particularly on ImageNet, although MC-dropout performs marginally
better than the others, including VOGN. On all but one CIFAR-10 experiment (AlexNet, without
DA), VOGN performs the best, or tied best. Adam performs the worst, but is surprisingly good in
CIFAR-10/ResNet-18.

Calibration Curves. Calibration curves [7] test how well-calibrated a model is by plotting true
accuracy as a function of the model’s predicted accuracy p;; (we only consider the predicted class’
Dix)- Perfectly calibrated models would follow the y = x diagonal line on a calibration curve. We
approximate this curve by binning the model’s predictions into M = 20 bins, as is often done.
We show calibration curves in Figures [[]and [T4 We can also consider the Expected Calibration
Error (ECE) metric [40, [15]], reported in Table|I| ECE calculates the expected error between the
true accuracy and the model’s predicted accuracy, averaged over all validation examples, again
approximated by using M bins. Across all datasets and architectures, with the exception of LeNet-5
(which we have argued causes underfitting), VOGN usually has better calibration curves and better
ECE than competing optimisers. Adam is consistently over-confident, with the calibration curve
below the diagonal. Conversely, MC-dropout is usually under-confident, with too much noise, as
mentioned earlier. The exception to this is on ImageNet, where MC-dropout performs well: we
excessively tuned the MC-dropout rate to achieve this (see Appendix [G).

I Out-of-distribution experimental setup and additional results

We use experiments from the out-of-distribution tests literature [16} 31418}, 132]], comparing VOGN to
Adam and MC-dropout. Using trained architectures (LeNet-5, AlexNet and ResNet-18) on CIFAR-
10, we test on SVHN, LSUN (crop) and LSUN (re-size) as out-of-distribution datasets, with the
in-distribution data given by the validation set of CIFAR-10 (10,000 images). The entire training
set of SVHN (73,257 examples, 10 classes) [42] is used. The test set of LSUN (Large-scale Scene
UNderstanding dataset [S5], 10,000 images from 10 different scenes) is randomly cropped to obtain
LSUN (crop), and is down-sampled to obtain LSUN (re-size). These out-of-distribution datasets have
no similar classes to CIFAR-10.

Similar to the literature [[16} [30], we use 3 metrics to test performance on out-of-distribution data.
Firstly, we plot histograms of predictive entropy for the in-distribution and out-of-distribution datasets,
seen in Figure and Predictive entropy is given by Zszl —pPik log p;x. Ideally, on out-
of-distribution data, a model would have high predictive entropy, indicating it is unsure of which
class the input image belongs to. In contrast, for in-distribution data, good models should have many
examples with low entropy, as they should be confident of many input examples’ (correct) class. We
also compare AUROC and FPR at 95% TPR, also reported in the figures. By thresholding the most

21

likely class’ softmax output, we assign high uncertainty images to belong to an unknown class. This
allows us to calculate the FPR and TPR, allowing the ROC curve to be plotted, and the AUROC to be
calculated.

We show results on AlexNet in Figure [I5]and [I6] (trained on CIFAR-10 with DA and without DA
respectively) and on LeNet-5 in Figure Results on ResNet-18 is in Figure[5] These results are
discussed in Section [4.2]

J Author contributions statement

List of Authors: Kazuki Osawa, Siddharth Swaroop, Anirudh Jain, Runa Eschenhagen, Richard E.
Turner, Rio Yokota, Mohammad Emtiyaz Khan.

M.E.K., A.J., and R.E. conceived the original idea. This was also discussed with R.Y. and K.O. and
then with S.S. and R.T. Eventually, all authors discussed and agreed with the main focus and ideas of
this paper.

The first proof-of-concept was done by A.J. using LeNet-5 on CIFAR-10. This was then extended
by K.O. who wrote the main PyTorch implementation, including the distributed version. R.E.
fixed multiple issues in the implementation, and also pointed out an important issue regarding data
augmentation. S.S., A.J., K.O., and R.E. together fixed this issue. K.O. conducted most of the large
experiments (shown in Fig. [Tjand [d). The results shown in Fig. [3a] was done by both K.O. and A.J.
The BBB implementation was written by S.S.

The experiments in Section4.2] were performed by A.J. and S.S. The main ideas behind the exper-
iments were conceived by S.S., A.J., and M.E.K. with many helpful suggestions from R.T. R.E.
performed the permuted MNIST experiment using VOGN for the continual-learning experiments,
and S.S. obtained the baseline results for the same.

The main text of the paper was written by M.E.K. and S.S. The section on experiments was first
written by S.S. and subsequently improved by A.J., K.O., and M.E.K. R.T. helped edit the manuscript.
R.E. also helped in writing parts of the paper.

M.E.K. led the project with a significant help from S.S.. Computing resources and access to the HPCI
systems were provided by R.Y.

K Changes in the camera-ready version compared to the submitted version
e We added an additional experiment on a continual learning task to show the effectiveness of
VOGN (Figure [3b).
e In our experiments, we were using a damping factor . This was unfortunately missed in
the submitted version, and we have now added it in Section[3]
o We modified the notation for Noisy K-FAC algorithm at Appendix

e We updated the description of our implementation of the Gauss-Newton approximation at
Appendix [B] Previous description had some missing parts and was a bit unclear.

e We added a description on a new method OGN which we were using to tune hyperparameters
of VOGN. We have added its results in Table [Tland Table Bl The method details are in

Appendix [C]
o We added a description on how to tune VOGN to get good performance.

e We listed all training curves (epoch/time vs accuracy), including K-FAC, Noisy K-FAC, and
OGN, along with the corresponding calibration curves in Figure 7}

22

=
=)

70

60

|

true probability

50

40

<
IS

—— Adam
—— MC-dropout
= VOGN

50 100 150 200 2O 20 70 60 980 02 04 06 08 10
epoch wall clock time (min) mean predicted probability

w
o

validation accuracy [%]
B w (=) ~
o o o o
validation accuracy [%]

30

o
)

N
o

=]

(a) LeNet-5 on CIFAR-10 (no DA)

1.0

70

validation accuracy [%]
w B w (=) ~
o o o o o
validation accuracy [%]
w B (%] (=

S o o o

true probability
I I I3 I
N B o o]

—— Adam
—— MC-dropout
—— VOGN p
20 50 100 150 200 10 20 085 02 04 06 08 10
epoch wall clock time (min) mean predicted probability
(b) AlexNet on CIFAR-10 (no DA)
80 80 1.0

—— Adam
—— MC-dropout
— VOGN

50 100 150 10 20 ‘0.0 02 04 06 08 1.0
epoch wall clock time (min) mean predicted probability

validation accuracy [%]
w B w (=] ~
o o o o o
validation accuracy [%]
w B w o ~
S o o o o
true probability
o o o o
N H o o«

N
o

N
o
o

o
a

(c) AlexNet on CIFAR-10

g
o

validation accuracy [%]
B w (=) ~ ©
o o o o o
validation accuracy [%]
ey w [~ 0
S ©o o o o
true probability
o o o
S o ©

—— Adam
J— x 0.2
30 MC-dropout 30
— VOGN ,
20 50 100 0 9% 50 100 080 02 02 06 08 1.0
epoch wall clock time (min) mean predicted probability

(d) ResNet-18 on CIFAR-10

70 70
Iy I
S 60 = 60
> > >
o =] =
o o 3
3 50 3 50 .
I 1 —— Adam S .{gu
© ©
c —— MC Dropout c a
g %0 === OGN S 40 g
s —— VOGN 3 5
c 304 ---- K-FAC s 30

I —— Noisy K-FAC
20750 40 60 80 205 50 100 150 08002 04 06 08 10
epoch wall clock time (min) mean predicted probability

(e) ResNet-18 on ImageNet
Figure 7: All results in Table

23

70
-1.5
60
ho] -2.0 -
8 2 50
< >
g%
= >
2 -3.0 g 40
- ©
— = prior_variance=7.5e-4
-3.5 30 - prior_variance=1.5e-3
= prior_variance=7.5e-3
—4% 20 40 60 80 20 20 40 60 80
epoch epoch
Figure 8: Effect of prior variance on VOGN training ResNet-18 on ImageNet.
70
-1.5
A, T AN - 60
°)
<3 X
o —
£ -2.0 >
3_4) g 50
9 S
o ©
—-2.5 40 = = prior_variance=7.5e-4
= prior_variance=1.5e-3
= prior_variance=7.5e-3
3% 10 20 30 40 50 60 3% 10 20 30 40 50 60
epoch epoch
Figure 9: Effect of prior variance on Noisy K-FAC training ResNet-18 on ImageNet.
70F
-1.3 60|
° I
g 2 50
£ -2.0 >
< e ,
é, § 40; [f;/ ---- N=10N,, prior_var=1.5e-3
- -25 © ;' = = N =5N,g, prior_var=1.5e-3
30t = N = 10Nyg, prior_var=7.5e-3
= N = 5Ny, prior_var=7.5e-3
=30 20 40 60 80 0 20 40 60 80
epoch epoch

Figure 10: Effect of changing the dataset size reweighting factor p and prior variance on VOGN
training ResNet-18 on ImageNet.

24

log likelihood

log likelihood

-1.3

|
=
>

|
=
u

=
2O

|
=
w

|
=
N

|
=
S}

-1.6

50 100 150
wall time (min)

200 250

accuracy [%]

accuracy [%]

mc=128x3 val_mc=100
== mc=128x2 val_mc=100
= mc=128x2 val_mc=10
= mc=128x1 val_mc=10

50 60 70 80 90
epoch

(o)}
(22}

[e)]
N

mc=128x3 val_mc=100
mc=128x2 val_mc=100
- mc=128x2 val_mc=10
—— mc=128x1 val_mc=10

50 100 150 200 250
wall time (min)

Figure 11: Effect of number of training and testing Monte Carlo samples on validation accuracy and
log loss for VOGN on ResNet-18 on ImageNet.

25

LeNet-5 / CIFAR-10 (no DA)

AlexNet / CIFAR-10 (no

DA)

1.0 1.0
—— MC-dropout /.a/‘ﬁ

0.8 0.8 = Adam
2 —— VOGN
<20.6 0.61
Ne]
(3]
S04 0.41
g —e— MC-dropout

0.2 = Adam 0.21

—— VOGN
0.0—L. : : ~ 0.0+<—L1 : ~ :
%.o 0.2 04 06 08 1.0 %.o 0.2 04 06 0.8 1.0

ResNet-18 / CIFAR-10

AlexNet / CIFAR-10

1.0 1.0
—e— MC-dropout

0.8 0.8] —— Adam
2 —— VOGN
§0.6 0.6
e
0.4 » 0.4
2 f~ —— MC-dropout
“o02{ Y[—— Adam 02{

—— VOGN yd
0%% 02 02 06 o8 10 %0 02 04 o6 o8

mean predicted probability

1.0

mean predicted probability

Figure 14: Calibration curves comparing VOGN, Adam and MC-dropout for final trained models
trained on CIFAR-10. VOGN is extremely well-calibrated compared to the other two optimisers
(except for LeNet-5, where all optimisers peform well). The calibration curve for ResNet-18 trained
on ImageNet is in Figure T}

In-distribution

Out-of-distribution

Out-of-distribution

Out-of-distribution

5 2.0 2.0 2.0
—— VOGN —— FPR:0.89 AUC:0.73 —— FPR:0.85 AUC:0.74 —— FPR:0.80 AUC:0.77
Adam FPR:0.84 AUC:0.75 FPR:0.86 AUC:0.73 FPR:0.89 AUC:0.70
4 —— MC-Dropout 15 —— FPR:0.96 AUC:0.65 15 —— FPR:0.89 AUC:0.70 15 —— FPR:0.79 AUC:0.78
3
1.0 1.0 1.0
2
0.5 0.5 0.5
1 />ﬂ\ / / W
0 0.0 0.0 0.0

0 1 2

Predictive Entropy

1 2
Predictive Entropy

1 2
Predictive Entropy

1 2
Predictive Entropy

Figure 15: Histograms of predictive entropy for out-of-distribution tests for AlexNet trained on
CIFAR-10 with data augmentation. Going from left to right, the inputs are: the in-distribution dataset
(CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize). Also shown
are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better), averaged over
3 runs. The standard deviations are very small and so not reported here.

26

In-distribution

Out-of-distribution

Out-of-distribution

Out-of-distribution

5 2.0 2.0 2.0
—— VOGN —— FPR:0.88 AUC:0.72 —— FPR:0.86 AUC:0.72 —— FPR:0.85 AUC:0.73
Adam FPR:0.84 AUC:0.75 FPR:0.87 AUC:0.73 FPR:0.89 AUC:0.70
4 —— MC-Dropout | —— FPRO94AUCIO.68 | — FPRO90AUCI0.70 | —— FPR:0.80 AUC:0.77
3
1.0 1.0 1.0
2
0.5 0.5 0.5
1
fyl"l\ /
0 0.0 0.0 0.0 L

0 1 2
Predictive Entropy

0 1 2
Predictive Entropy

1 2
Predictive Entropy

0

1 2
Predictive Entropy

Figure 16: Histograms of predictive entropy for out-of-distribution tests for AlexNet trained on
CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-distribution
dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize).
Also shown are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better),
averaged over 3 runs. The standard deviations are very small and so not reported here.

In-distribution

Out-of-distribution
T

Out-of-distribution

Out-of-distribution

5 2.0 2.0 2.0
— VOGN —— FPR:0.86 AUC:0.78 —— FPR:0.87 AUC:0.71 —— FPR:0.85 AUC:0.72
Adam FPR:0.70 AUC:0.86 FPR:0.77 AUC:0.76 FPR:0.85 AUC:0.72
4 —— MC-Dropout —— FPR:0.78 AUC:0.81 —— FPR:0.85 AUC:0.73 —— FPR:0.84 AUC:0.73
15 15 15
3
1.0 1.0 1.0
2
0.5 0.5 0.5
1
0 m 0.0 0.0 0.0

0 1 2
Predictive Entropy

1 2
Predictive Entropy

0

1 2
Predictive Entropy

0

1 2
Predictive Entropy

Figure 17: Histograms of predictive entropy for out-of-distribution tests for LeNet-5 trained on
CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-distribution
dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize).
Also shown are the AUROC metric (higher is better) and FPR at 95% TPR metric (lower is better),
averaged over 3 runs. The standard deviations are very small and so not reported here.

27

	1 Introduction
	2 Deep Learning with Bayesian Principles and Its Challenges
	3 Practical Deep Learning with Natural-Gradient Variational Inference
	4 Experiments
	4.1 Performance on CIFAR-10 and ImageNet
	4.2 Quality of the Predictive Probabilities
	4.2.1 Performance on a Continual-learning task

	5 Conclusions
	A Noisy K-FAC algorithm
	B Details on fast implementation of the Gauss-Newton approximation
	B.1 Convolutional layer
	B.2 Batch normalisation layer
	B.3 Layer-wise block-diagonal Gauss-Newton approximation

	C OGN: A deterministic version of VOGN
	D Hyperparameter settings
	D.1 Bayes by Backprop for CIFAR-10/LeNet-5 training
	D.2 Continual learning experiment

	E Effect of prior variance and dataset size reweighting factor
	F Effect of number of Monte Carlo samples on ImageNet
	G MC-dropout's sensitivity to dropout rate
	H Uncertainty metrics
	I Out-of-distribution experimental setup and additional results
	J Author contributions statement
	K Changes in the camera-ready version compared to the submitted version

