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Abstract

Bayesian Neural Networks (BNNs) have recently received increasing at-
tention for their ability to provide well-calibrated posterior uncertainties.
However, model selection—even choosing the number of nodes—remains
an open question. In this work, we apply a horseshoe prior over node pre-
activations of a Bayesian neural network, which effectively turns off nodes
that do not help explain the data. We demonstrate that our prior pre-
vents the BNN from under-fitting even when the number of nodes required
is grossly over-estimated. Moreover, this model selection over the number
of nodes doesn’t come at the expense of predictive or computational per-
formance; in fact, we learn smaller networks with comparable predictive
performance to current approaches.

1 Introduction

Bayesian Neural Networks (BNNs) are increasingly the de-facto approach for modeling
stochastic functions. By treating the weights in a neural network as random variables, and
performing posterior inference on these weights, BNNs can avoid overfitting in the regime
of small data, provide well-calibrated posterior uncertainty estimates, and model a large
class of stochastic functions with heteroskedastic and multi-modal noise. These properties
have resulted in BNNs being adopted in applications ranging from active learning [11, 8]
and reinforcement learning [3].

While there have been many recent advances in training BNNs [11, 3, 27, 18, 10], model-
selection in BNNs has received relatively less attention. Unfortunately, the consequences
for a poor choice of architecture are severe: too few nodes, and the BNN will not be
flexible enough to model the function of interest; too many nodes, and the BNN predictions
will have large variance because the posterior uncertainty in the weights will remain large.
In other approaches to modeling stochastic functions such as Gaussian Processes (GPs),
such concerns can be addressed via optimizing continuous kernel parameters; In BNNs, the
number of nodes in a layer is a discrete quantity. Practitioners typically perform model-
selection via onerous searches over different layer sizes.

In this work, we demonstrate that we can perform computationally-efficient and statistically-
effective model selection in Bayesian neural networks by placing Horseshoe (HS) priors [5]
over the variance of weights incident to each node in the network. The HS prior has heavy
tails and supports both zero values and large values. Fixing the mean of the incident
weights to be zero, nodes with small variance parameters are effectively turned off—all
incident weights will be close to zero—while nodes with large variance parameters can be
interpreted as active. In this way, we can perform model selection over the number of nodes
required in a Bayesian neural network.
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Figure 1: Graphical models capturing the conditional dependencies assumed by Bayesian Neural
Networks with Horseshoe priors. Left: Centered parameterization, Right: Non-centered parame-
terization necessary for robust inference.

While they mimic a spike-and-slab approach that would assign a discrete on-off variable to
each node, the continuous relaxation provided by the Horseshoe prior keeps the model dif-
ferentiable; with appropriate parameterization, we can take advantage of recent advances in
variational inference (e.g. [16]) for training. We demonstrate that our approach avoids under-
fitting even with the required number of nodes in the network is grossly over-estimated; we
learn compact network structures without sacrificing—and sometimes improving—predictive
performance.

2 Bayesian Neural Networks

A deep neural network with L−1 hidden layers is parameterized by a set of weight matrices
W = {Wl}L1 , with each weight matrix Wl being of size RKl+1×Kl+1 where Kl is the number
of units in layer l. The neural network maps an input x ∈ RD to a response f(W, x) by
recursively applying the transformation h(Wl[zl, 1]T ), where the vector zl is the input into
layer l, the initial input z0 = x, and h is some point-wise non-linearity, for instance the
rectified-linear function, h(a) = max(0, a).

A Bayesian neural network captures uncertainty in the weight parameters W by endowing
them with distributions W ∼ p(W). Given a dataset of N observation-response pairs
D = {xn, yn}Nn=1, we are interested in estimating the posterior distribution,

p(W | D) =

∏N
n=1 p(yn | f(W, xn))p(W)

p(D)
, (1)

and leveraging the learned posterior for predicting responses to unseen data x∗, p(y∗ | x∗) =∫
p(y∗ | f(W, x∗))p(W | D)dW. The prior p(W) allows one to encode problem-specific

beliefs as well as general properties about weights. In the past, authors have used fully
factorized Gaussians [11] on each weight wk′kl, structured Gaussians [18, 7] on each layer
Wl as well as a two component scale mixture of Gaussians [3] on each weight wk′kl. The scale
mixture prior has been shown to encourage weight sparsity. In this paper, we show that by
using carefully constructed infinite scale mixtures of Gaussians, we can induce heavy-tailed
priors over network weights. Unlike previous work, we force all weights incident into a unit
to share a common prior allowing us to induce sparsity at the unit level and prune away
units that do not help explain the data well.

3 Automatic Model Selection through Horseshoe Priors

Let the node weight vector wkl ∈ RKl−1+1 denote the set of all weights incident into unit k
of hidden layer l. We assume that each node weight vector wkl is conditionally independent
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and distributed according to a Gaussian scale mixture,

wkl | τkl, υl ∼ N (0, (τ2klυ
2
l )I), τkl ∼ C+(0, b0), υl ∼ C+(0, bg). (2)

Here, I is an identity matrix, a ∼ C+(0, b) is the Half-Cauchy distribution with density
p(a|b) = 2/πb(1 + (a2/b2)) for a > 0, τkl is a unit specific scale parameter, while the scale
parameter υl is shared by all units in the layer.

The distribution over weights in Equation 2 is called horseshoe prior [5]. It exhibits Cauchy-
like flat, heavy tails while maintaining an infinitely tall spike at zero. Consequently, it has
the desirable property of allowing sufficiently large node weight vectors wkl to escape un-
shrunk—by having a large scale parameter—while providing severe shrinkage to smaller
weights. This is in contrast to Lasso style regularizers and their Bayesian counterparts that
provide uniform shrinkage to all weights. By forcing the weights incident on a unit to share
scale parameters, the prior in Equation 2 induces sparsity at the unit level, turning off units
that are unnecessary for explaining the data well. Intuitively, the shared layer wide scale υl
pulls all units in layer l to zero, while the heavy tailed unit specific τkl scales allow some of
the units to escape the shrinkage.

Parameterizing for More Robust Inference: Decomposing the Cauchy Distri-
bution While a direct parameterization of the Half-Cauchy distribution in Equation 2
is possible, it leads to challenges during variational learning. Standard exponential fam-
ily variational approximations struggle to capture the thick Cauchy tails, while a Cauchy
approximating family leads to high variance gradients. Instead, we use a more convenient
auxiliary variable parameterization [32],

a ∼ C+(0, b)⇐⇒ a | λ ∼ Inv-Gamma(
1

2
,

1

λ
); λ ∼ Inv-Gamma(

1

2
,

1

b2
), (3)

where v ∼ Inv-Gamma(a, b) is the Inverse Gamma distribution with density p(v) ∝
v−a−1exp{−b/v} for v > 0. Since the number of output units is fixed by the problem
at hand, there is no need for sparsity inducing prior for the output layer. We place inde-
pendent Gaussian priors, wkL ∼ N (0, κ2I) with vague hyper-priors κ ∼ C+(0, bκ = 5) on
the output layer weights.

The joint distribution of the Horseshoe Bayesian neural network is then given by,

p(D, θ) = r(κ, ρκ | bκ)

KL∏
k=1

N (wkL | 0, κI)
L∏
l=1

r(υl, ϑl | bg)

Kl∏
k=1

r(τkl, λkl | b0)N (wkl | 0, (τ2klυ2l )I)
N∏
n=1

p(yn | f(W, xn)),

(4)

where p(yn | f(W, xn)) is an appropriate likelihood function, and, r(a, λ | b) =
Inv-Gamma(a | 1/2, 1/λ)Inv-Gamma(λ | 1/2, 1/b2), with θ = {W, T , κ, ρκ}, T =

{{τkl}K,Lk=1,l=1, {υl}Ll=1, {λkl}K,Lk=1,l=1, {ϑl}Ll=1}.

Parameterizing for More Robust Inference: Non-Centered Parameterization
The horseshoe prior of Equation 2 exhibits strong correlations between the weights wkl and
the scales τklυl. Indeed, its favorable sparsity inducing properties stem from this coupling.
However, an unfortunate consequence is a strongly coupled posterior that exhibits patholog-
ical funnel shaped geometries [2, 12] and is difficult to reliably sample or approximate. Fully
factorized approximations are particularly problematic and can lead to non-sparse solutions
erasing the benefits of using the horseshoe prior.

Recent work [2, 12] suggests that the problem can be alleviated by adopting non-centered
parameterizations. Consider a reformulation of Equation 2,

βkl ∼ N (0, I), wkl = τklυlβkl, (5)

where the distribution on the scales are left unchanged. Such a parameterization is referred
to as non-centered since the scales and weights are sampled from independent prior distri-
butions and are marginally uncorrelated. The coupling between the two is now introduced
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by the likelihood, when conditioning on observed data. Non-centered parameterizations are
known to lead to simpler posterior geometries [2]. Empirically, we find that adopting a non-
centered parameterization significantly improves the quality of our posterior approximation
and helps us better find sparse solutions. Figure 1 summarizes the conditional dependencies
assumed by the centered and the non-centered Horseshoe Bayesian neural networks model.

4 Learning Bayesian Neural Networks with Horseshoe priors

We use variational inference to approximate the intractable posterior p(θ | D). By
exploiting recently proposed stochastic extensions we are able to scale to large architectures
and datasets, and deal with non-conjugacy. We proceed by selecting a tractable family
of distributions q(θ | φ), with free variational parameters φ. We then optimize φ such
that the Kullback-Liebler divergence between the approximation and the true posterior,
KL(q(θ | φ)||p(θ | D)) is minimized. This is equivalent to maximizing the lower bound to
the marginal likelihood (or evidence) p(D), p(D) ≥ L(φ) = Eqφ [ln p(D, θ)] + H[q(θ | φ)].

Approximating Family We use a fully factorized variational family,

q(θ | φ) = q(κ | φκ)q(ρκ | φρκ)
∏
i,j,l

q(βij,l | φβij,l)
∏
k,l

q(τkl | φτkl)q(λkl | φλkl)∏
l

q(υl | φυl)q(ϑl | φϑl).
(6)

We restrict the variational distribution for the non-centered weight βij,l between units i in
layer l − 1 and j in layer l, q(βij,l | φβijl) to the Gaussian family N (βij,l | µij,l, σ2

ij,l). We
will use β to denote the set of all non-centered weights in the network. The non-negative
scale parameters τkl and υl and the variance of the output layer weights are constrained
to the log-Normal family, q(ln τkl | φτkl) = N (µτkl , σ

2
τkl

), q(ln υl | φυl) = N (µυl , σ
2
υl

), and

q(ln κ | φκ) = N (µκ, σ
2
κ). We do not impose a distributional constraint on the variational

approximations of the auxiliary variables ϑl, λkl, or ρκ, but we will see that conditioned
on the remaining variables the optimal variational family for these latent variables follow
inverse Gamma distributions.

Evidence Lower Bound The resulting evidence lower bound (ELBO),

L(φ) =
∑
n

E[ln p(yn | f(β, T , κ, xn))] + E[ln p(T , β, κ, ρκ | b0, bg, bκ)] + H[q(θ | φ)], (7)

is challenging to evaluate. The non-linearities introduced by the neural network and the
potential lack of conjugacy between the neural network parameterized likelihoods and the
Horseshoe priors render the first expectation in Equation 7 intractable. Consequently, the
traditional prescription of optimizing the ELBO by cycling through a series of fixed point
updates is no longer available.

4.1 Black Box Variational Inference

Recent progress in black box variational inference [16, 27, 26, 31] provides a recipe for
subverting this difficulty. These techniques provide noisy unbiased estimates of the gradient
∇φL̂(φ), by approximating the offending expectations with unbiased Monte-Carlo estimates
and relying on either score function estimators [34, 26] or reparameterization gradients [16,
27, 31] to differentiate through the sampling process. With the unbiased gradients in hand,
stochastic gradient ascent can be used to optimize the ELBO. In practice, reparameterization
gradients exhibit significantly lower variances than their score function counterparts and
are typically favored for differentiable models. The reparameterization gradients rely on the
existence of a parameterization that separates the source of randomness from the parameters
with respect to which the gradients are sought. For our Gaussian variational approximations,
the well known non-centered parameterization, ζ ∼ N (µ, σ2) ⇔ ε ∼ N (0, 1), ζ = µ + σε,
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allows us to compute Monte-Carlo gradients,

∇µ,σEqw [g(w)]⇔ ∇µ,σEN (ε|0,1)[g(µ+ σε)] = EN (ε|0,1)[∇µ,σg(µ+ σε)]

=
1

S

∑
s

∇µ,σg(µ+ σε(s)),
(8)

for any differentiable function g and ε(s) ∼ N (0, 1). Further, as shown in [15], the variance
of the gradient estimator can be provably lowered by noting that the weights in a layer only
affect L(φ) through the layer’s pre-activations and directly sampling from the relatively
lower-dimensional variational posterior over pre-activations.

Variational distribution on pre-activations Recall that the pre-activation of node k
in layer l, ukl in our non-centered model is ukl = τklυlβ

T
kl[a, 1]T . The variational posterior

for the pre-activations is given by,

q(ukl | µukl , σ2
ukl

) = N (ukl | µukl , σ2
ukl

),

µukl = µTβkla; σ2
ukl

= E[τkl]E[υl]σ
2T

βkl
a2,

(9)

where a is the input to layer l, µβkl and σ2
βkl

are the means and variances of the variational

posterior over weights incident into node k, and a2 denotes a point wise squaring of the input
a. Since, the variational posteriors of τkl and υl are restricted to the log-Normal family, it
follows that, E[τkl] = exp{µτkl + 0.5 ∗ σ2

τkl
}, E[υl] = exp{µυl + 0.5 ∗ σ2

υl
}.

Algorithm We now have all the tools necessary for optimizing Equation 7. By recursively
sampling from the variational posterior of Equation 9 for each layer of the network, we are
able to forward propagate information through the network. Owing to the reparameteriza-
tions (Equation 8), we are also able to differentiate through the sampling process and use
reverse mode automatic differentiation tools [20] to compute the relevant gradients. With
the gradients in hand, we optimize L(φ) with respect to the variational weights φβ , per-unit
scales φτkl , per-layer scales φυl , and the variational scale for the output layer weights, φκ
using Adam [14]. Conditioned on these, the optimal variational posteriors of the auxiliary
variables ϑl, λkl, and ρκ follow Inverse Gamma distributions. Fixed point updates that max-
imize L(φ) with respect to φϑl , φλkl , φρκ , holding the other variational parameters fixed are
available. The overall algorithm, involves cycling between gradient and fixed point updates
to maximize the ELBO in a coordinate ascent fashion.

5 Related Work

Early work on Bayesian neural networks can be traced back to [4, 19, 23]. These early
approaches relied on Laplace approximation or Markov Chain Monte Carlo (MCMC) for
inference. They do not scale well to modern architectures or the large datasets required to
learn them. Recent advances in stochastic variational methods [3, 27], black-box variational
and alpha-divergence minimization [10, 26], and probabilistic backpropagation [11] have
reinvigorated interest in BNNs by allowing inference to scale to larger architectures and
larger datasets.

Work on learning structure in BNNs remains relatively nascent. In [1] the authors use a
cascaded Indian buffet process to learn the structure of sigmoidal belief networks. While
interesting, their approach appears susceptible to poor local optima and their proposed
Markov Chain Monte Carlo based inference does not scale well. More recently, [3] introduce
a mixture-of-Gaussians prior on the weights, with one mixture tightly concentrated around
zero, thus approximating a spike and slab prior over weights. Their goal of turning off edges
is very different than our approach, which performs model selection over the appropriate
number of nodes. Further, our proposed Horseshoe prior can be seen as an extension of
their work, where we employ an infinite scale mixture-of-Gaussians. Beyond providing
stronger sparsity, this is attractive because it obviates the need to directly specify the
mixture component variances or the mixing proportion as is required by the prior proposed
in [3]. Only the prior scales of the variances needs to be specified and in our experiments, we
found results to be relatively robust to the values of these scale hyper-parameters. Recent
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work [25] indicates that further gains may be possible by a more careful tuning of the scale
parameters. Others [15, 6] have noticed connections between Dropout [30] and approximate
variational inference. In particular, [21] show that the interpretation of Gaussian dropout as
performing variational inference in a network with log uniform priors over weights leads to
sparsity in weights. This is an interesting but orthogonal approach, wherein sparsity stems
from variational optimization instead of the prior.

There also exists work on learning structure in non-Bayesian neural networks. Early
work [17, 9] pruned networks by analyzing second-order derivatives of the objectives. More
recently, [33] describe applications of structured sparsity not only for optimizing filters and
layers but also computation time. Closest to our work in spirit, [24], [28] and [22] who
use group sparsity to prune groups of weights—e.g. weights incident to a node. However,
these approaches don’t model the uncertainty in weights and provide uniform shrinkage to
all parameters. Our horseshoe prior approach similarly provides group shrinkage while still
allowing large weights for groups that are active.

6 Experiments

In this section, we present experiments that evaluate various aspects of the proposed
Bayesian neural network with horseshoe priors (HS-BNN). We begin with experiments on
synthetic data that showcase the model’s ability to guard against under fitting and recover
the underlying model. We then proceed to benchmark performance on standard regression
and classification tasks. For the regression problems we use Gaussian likelihoods with an
unknown precision γ, p(yn | f(W,xn), γ) = N (yn | f(W,xn), γ−1). We place a vague prior
on the precision,γ ∼ Gamma(6, 6) and approximate the posterior over γ using a Gamma
distribution. The corresponding variational parameters are learned via a gradient update
during learning. We use a Categorical likelihood for the classification problems. In a prelim-
inary study, we found larger mini-batch sizes improved performance, and in all experiments
we use a batch size of 512. The hyper parameters b0 and bg are both set to one.

6.1 Experiments on simulated data

Robustness to under-fitting We begin with a one-dimensional non linear regression
problem shown in Figure 2. To explore the effect of additional modeling capacity on per-
formance, we sample twenty points uniformly at random in the interval [−4,+4] from the
function yn = x3n + ε, ε ∼ N (0, 9) and train single layer Bayesian neural networks with 50,
100 and 1000 units each. We compare HS-BNN against a BNN with Gaussian priors on
weights, wij,l ∼ N (0, κ), κ ∼ C+(0, 5), training both for a 1000 iterations. The performance
of the BNN with Gaussian priors quickly deteriorates with increasing capacity as a result
of under fitting the limited amount of training data. In contrast, HS-BNN by pruning away
additional capacity is more robust to model misspecification showing only a marginal drop
in predictive performance with increasing number of units.

Non-centered parameterization Next, we explore the benefits of the non-centered pa-
rameterization. We consider a simple two dimensional classification problem generated by
sampling data uniformly at random from [−1,+1] × [−1,+1] and using a 2-2-1 network,
whose parameters are known a-priori to generate the class labels. We train three Bayesian
neural networks with a 15 unit layer on this data, with Gaussian priors, with horseshoe pri-
ors but employing a centered parameterization, and with the non-centered horseshoe prior.
Each model is trained till convergence. We find that all three models are able to easily fit
the data and provide high predictive accuracy. However, the structure learned by the three
models are very different. In Figure 2 we visualize the distribution of weights incident onto
a unit. Unsurprisingly, the BNN with Gaussian priors does not exhibit sparsity. In contrast,
models employing the horseshoe prior are able to prune units away by setting all incident
weights to tiny values. It is interesting to note that even for this highly stylized example the
centered parameterization struggles to recover the true structure of the underlying network.
The non-centered parameterization however does significantly better and prunes away all
but two units. Further experiments provided in the supplement demonstrate the same effect
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Figure 2: TOP: Nonlinear one dimensional regression yn = x3n+ εn, εn ∼ N (0, 9). The green
dots indicate training and test points and the red line visualizes the noise free cubic function and
the black lines indicate the predicted means. Left: BNN mean ±3 standard deviations. Center:
HS-BNN mean ±3 standard deviations. Right: Average predictive log likelihood for single layer
networks with 10, 100 and 1000 units. The standard Gaussian prior BNN’s predictive performance
deteriorates with increasing capacity. HS-BNN is more robust. BOTTOM: Non-centered pa-
rameterization is essential for robust inference. From left to right, A synthetic nearly linear
classification problem generated from sampling a 2-2-1 network, the two classes are displayed in
red and black. Expected weights inferred with a Bayesian neural network with Gaussian priors on
weights. Expected weights recovered with a centered horseshoe parameterization. Non-centered
horseshoe parameterization. The boxplots display the distribution of expected weights incident
onto a hidden unit.

for wider 100 unit networks. The non-centered parameterized model is again able to recover
the two active units.

6.2 Classification and Regression experiments

We benchmark classification performance on the MNIST dataset. Additional experiments on
a gesture recognition task are available in the supplement. We compare HS-BNN against the
variational matrix Gaussian (VMG) [18], a BNN with a two-component scale mixture (SM-
BNN) prior on weights proposed in [3] and a BNN with Gaussian prior (BNN) on weights.
VMG uses a structured variational approximation, while the other approaches all use fully
factorized approximations and differ only in the type of prior used. These approaches
constitute the state-of-the-art in variational learning for Bayesian neural networks.

MNIST We preprocessed the images in the MNIST digits dataset by dividing the pixel
values by 126. We explored networks with varying widths and depths all employing rectified
linear units. For HS-BNN we used Adam with a learning rate of 0.005 and 500 epochs. We
did not use a validation set to monitor validation performance or tune hyper-parameters.
We used the parameter settings recommended in the original papers for the competing
methods. Figure 3 summarizes our findings. We showcase results for three architectures with
two hidden layers each containing 400, 800 and 1200 rectified linear hidden units. Across
architectures, we find our performance to be significantly better than BNN, comparable to
SM-BNN, and worse than VMG. The poor performance with respect to VMG likely stems
from the structured matrix variate variational approximation employed by VMG.
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Figure 3: MNIST experiments. TOP: From left to right, Test error rates for different architectures
and methods. The right two plots compare the sparsity of the solutions found by HS-BNN, SM-
BNN and BNN. For the 1200-1200 network, we compare the expected node weight vectors inferred
under the different models. We sort the recovered weight vectors E[wkl] based on their 2-norm and
compare them via scatter plots. Each circle corresponds to one of the 1200 weight node vectors.
Compared to competing methods a large number of weight node vectors are zeroed out, while a
small number escapes un-shrunk for HS-BNN. The rightmost plot shows the density of the unit
with the lowest norm from the the three architectures. BOTTOM: E[wkl] for the first layer. The
left and right columns visualize the ten units with the largest and the smallest norms.

More interestingly, we clearly see the sparsity inducting effects of the horseshoe prior.
Recall that under the horseshoe prior, wkl ∼ N (0, τ2klυ

2
l I). As the scales τklυl tend to

zero the corresponding units (and all incident weights) are pruned away. SM-BNN also
encourages sparsity, but on weights not nodes. Further, the horseshoe prior with its thicker
tails and taller spike at origin encourages stronger sparsity. To see this we compared
the 2-norms of the inferred expected weight node vectors E[wkl] found by SM-BNN and
HS-BNN (Figure 3). For HS-BNN the inferred scales are tiny for most units, with a few
notable outliers that escape un-shrunk. This causes the corresponding weight vectors to
be zero for the majority of units, suggesting that the model is able to effectively “turn
off” extra capacity. In contrast, the weight node vectors recovered by SM-BNN (and
BNN) are less tightly concentrated at zero. We also plot the density of E[wkl] with the
smallest norm in each of the three architectures. Note that with increasing architecture size
(modeling capacity) the density peaks more strongly at zero, suggesting that the model is
more confident in turning off the unit and not use the extra modeling capacity. To further
explore the implications of node versus weight sparsity, we visualize E[wkl] learned by
SM-BNN and HS-BNN in Figure 3. Weight sparsity in SM-BNN encourages fundamentally
different filters that pick up edges at different orientations. In contrast, HS-BNN’s node
sparsity encourages filters that correspond to digits or superpositions of digits and may
lead to more interpretable networks. Stronger sparsity afforded by the horseshoe is again
evident when visualizing filters with the lowest norms. HS-BNN filters are nearly all black
when scaled with respect to the SM-BNN filters.

Regression We also compare the performance of our model on regression datasets
from the UCI repository. We follow the experimental protocol proposed in [11, 18] and
train a single hidden layer network with 50 rectified linear units for all but the larger
“Protein” and “Year” datasets for which we train a 100 unit network. For the smaller
datasets we train on a randomly subsampled 90% subset and evaluate on the remainder
and repeat this process 20 times. For “Protein” we perform 5 replications and for “Year”
we evaluate on a single split. Here, we only benchmark against VMG, which has previously
been shown to outperform alternatives [18]. Table 1 summarizes our results. Despite our
fully factorized variational approximation we remain competitive with VMG in terms of
both root mean squared error (RMSE) and predictive log likelihoods and even outperform
it on some datasets. A more careful selection of the scale hyper-parameters [25], and the
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Dataset N(d) VMG(RMSE) HS-BNN (RMSE) VMG(Test ll) HS-BNN(Test ll)
Boston 506 (13) 2.72± 0.13 3.32± 0.66 −2.48± 0.66 −2.54± 0.15
Concrete 1030 (8) 4.88± 0.12 5.66± 0.41 −3.01± 0.66 −3.09± 0.06
Energy 768 (8) 0.54± 0.02 1.99± 0.34 −1.06± 0.03 −2.66± 0.13
Kin8nm 8192 (8) 0.08± 0.00 0.08± 0.00 +1.10± 0.01 +1.12± 0.03
Naval 11,934 (16) 0.00± 0.00 0.00± 0.00 +2.46± 0.00 +5.52± 0.10
Power Plant 9568 (4) 4.04± 0.04 4.03± 0.15 −2.82± 0.01 −2.81± 0.03
Protein 45.730 (9) 4.18± 0.02 4.39± 0.04 −2.88± 0.00 −2.89± 0.01
Wine 1599 (11) 0.63± 0.01 0.63± 0.04 −0.95± 0.01 −0.95± 0.05
Yacht 308 (6) 0.70± 0.05 1.58± 0.23 −1.30± 0.02 −2.33± 0.01
Year 515,345 (90) 8.82±NA 9.26±NA −3.60±NA −3.63±NA

Table 1: UCI Regression results. HS-BNN and VMG are compared.

use of structured variational approximations similar to VMG will likely help improve results
further and constitute interesting directions of future work.

7 Discussion and Conclusion

In Section 6, we demonstrated that a properly parameterized horseshoe prior on the scales
of the weights incident to each node is a computationally efficient tool for model selection in
Bayesian neural networks. Decomposing the horseshoe prior into inverse gamma distribu-
tions and using a non-centered representation ensured a degree of robustness to poor local
optima. While we have seen that the horseshoe prior is an effective tool for model selection,
one might wonder about more common alternatives. We lay out a few obvious choices and
contrast their deficiencies. One starting point is to observe that a node can be pruned if
all its incident weights are zero (in this case, it can only pass on the same bias term to
the rest of the network). Such sparsity can be encouraged by a simple exponential prior on
the weight scale, but without heavy tails all scales are forced artificially low and prediction
suffers and has been noted in the context of learning sparse neural networks [21, 33]. In
contrast, simply using a heavy-tail prior on the scale parameter, such as a half-Cauchy, will
not apply any pressure to set small scales to zero, and we will not have sparsity. Both the
shrinkage to zero and the heavy tails of the horseshoe prior are necessary to get the model
selection that we require. And importantly, using a continuous prior with the appropriate
statistical properties is simple to incorporate with existing inference, unlike an explicit spike
and slab model. Another alternative is to observe that a node can be pruned if the product
z · w is nearly constant for all inputs z—having small weights is sufficient to achieve this
property; weights w that are orthogonal to the variation in z is another. Thus, instead of
putting a prior over the scale of w, one could put a prior over the scale of the variation in
z · w. While we believe this is more general, we found that such a formulation has many
more local optima and thus harder to optimize.
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A Fixed point updates

The ELBO corresponding to the non-centered HS model is,

L(φ) = E[ln Inv-Gamma(κ | 1/2, 1/ρκ)] + E[ln Inv-Gamma(ρκ | 1/2, 1/b2κ)]

+
∑
n

E[ln p(yn | β, T , κ, xn)]

+

L−1∑
l=1

KL∑
k=1

E[ln Inv-Gamma(τkl | 1/2, 1/λkl)]E[ln Inv-Gamma(λkl | 1/2, 1/b20)]

+

L−1∑
l=1

E[ln Inv-Gamma(υl | 1/2, 1/ϑl)] + E[ln Inv-Gamma(ϑl | 1/2, 1/b2g)]

+

L−1∑
l=1

Kl∑
k=1

E[ln N (βkl | 0, I)] +

KL∑
k=1

E[ln N (βkL | 0, I)] + H[q(θ | φ)].

(10)

With our choices of the variational approximating families, all the entropies are available in
closed form. We rely on a Monte-Carlo estimates to evaluate the expectation involving the
likelihood E[ln p(yn | β, T , κ, xn)].

The auxiliary variables ρκ, ϑl and ϑl all follow inverse Gamma distributions. Here we derive
for λkl, the others follow analogously. Consider,

ln q(λkl) ∝ E−qλkl [ln Inv-Gamma(τkl | 1/2, 1/λkl)] + E−qλkl [ln Inv-Gamma(λkl | 1/2, 1/b20)],

∝ (−1/2− 1/2− 1)ln λkl − (E[1/τkl] + 1/b20)(1/λkl),
(11)

from which we see that,

q(λkl) = Inv-Gamma(λkl | c, d),

c = 1, d = E[
1

τkl
] +

1

b20
.

(12)

Since, q(τkl) = ln N (µτkl , σ
2
τkl

), it follows that E[ 1
τkl

] = exp{−µτkl + 0.5 ∗ σ2
τkl
}. We can

thus calculate the necessary fixed point updates for λkl conditioned on µτkl and σ2
τkl

. Our

algorithm uses these fixed point updates given estimates of µτkl and σ2
τkl

after each Adam
step.

B Additional Experiments

B.1 Simulated Data

Here we provide an additional experiment with the data setup in Section 6.2. We use the
same linearly separable data, but train larger networks with 100 units each. Figure 4 shows
the inferred weights under the different models. Observe that the non-centered HS-BNN is
again able to prune away extra capacity and recover two active nodes.

B.2 Further Exploration of Model Selection Properties

Here we provide additional results that illustrate the model selection abilities of HS-BNN.
First we visualize the norms of inferred node weight vectors E[wkl] found by BNN, SM-BNN
and HS-BNN for 400− 400, 800− 800 and 1200− 1200 networks. Note that as we increase
capacity the model selection abilities of HS-BNN becomes more obvious and as opposed to
the other approaches illustrate clear inflection points and it is evident that the model is
using only a fraction of its available capacity.

As a reference we compare against SM-BNN. We visualize the density of the inferred node
weight vectors E[wkl] under the two models for networks 400−400, 800−800 and 1200−1200.
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Figure 4: Learned sparsity on a synthetic classification problem. We use a single hidden layer
network with 100 units. Left: Bayesian neural network with Gaussian. Center: Horseshoe,
centered parameterization. Right: Horseshoe, non-centered parameterization.
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Figure 5: Model selection in HS-BNN. From top to bottom, we plot log ||E[wkl]||2 for the
first layer of a network with 400, 800 and 1200 units. The x-axis has been normalized by
the number of units.
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Figure 6: Further exploration of sparse solutions found by HS-BNN. Here we provide density
plots for the smallest node weight vectors wkl found by HS-BNN and SM-BNN for the 400-
400 (top row), 800-800 (middle row), 1200-1200(bottom row) network. The plots are sorted
by 2-norm of wkl, from left to right.

For each network we show the density of the 5 units with the smallest norms from either layer.
Note that in all three cases HS-BNN produces weights that are more tightly concentrated
around zero. Moreover for HS-BNN the concentration around zero becomes sharper with
increasing modeling capacity (larger architectures), again indicating that we are pruning
away additional capacity.

B.3 Gesture Recognition

Gesture recognition We also experimented with a gesture recognition dataset [29] that
consists of 24 unique aircraft handling signals performed by 20 different subjects, each for
20 repetitions. The task consists of recognizing these gestures from kinematic, tracking
and video data. However, we only use kinematic and tracking data. A couple of example
gestures are visualized in Figure 7. The dataset contains 9600 gesture examples.

A 12-dimensional vector of body features (angular joint velocities for the right and left
elbows and wrists), as well as an 8 dimensional vector of hand features (probability values
for hand shapes for the left and right hands) collected by Song et al. [29] are provided as
features for all frames of all videos in the dataset. We additionally used the 20 dimensional
per-frame tracking features made available in [29]. We constructed features to represent each
gesture by first extracting frames by sampling uniformly in time and then concatenating
the per-frame features of the selected frames to produce 600-dimensional feature vectors.

This is a much smaller dataset than MNIST and recent work [13] has demonstrated that a
BNN with Gaussian priors performs well on this task. Figure 7 compares the performance of
HS-BNN with competing methods. We train a two layer HS-BNN with each layer containing
400 units. The error rates reported are a result of averaging over 5 random 75/25 splits of
the dataset. Similar to MNIST, HS-BNN significantly outperforms BNN and is competitive
with VMG and SM-BNN. We also see strong sparsity, just as in MNIST.
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Figure 7: Gesture recognition. Top: Example gestures from the NATOPS dataset. Second
Row: Left : Test error rates averaged over 5 runs achieved by competing methods. Right :
Scatter plots of solutions recovered by HS-BNN and competing methods for the 800-800
architecture on one of the five splits. The bottom three rows provide density plots for the
smallest node weight vectors wkl found by HS-BNN and SM-BNN for the 400-400 (top row),
800-800 (middle row), 1200-1200(bottom row) network. The plots are sorted by 2-norm of
wkl, from left to right.
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