
Bayesian Compression for Deep Learning

Christos Louizos
University of Amsterdam
TNO Intelligent Imaging
c.louizos@uva.nl

Karen Ullrich
University of Amsterdam
k.ullrich@uva.nl

Max Welling
University of Amsterdam

CIFAR∗
m.welling@uva.nl

Abstract

Compression and computational efficiency in deep learning have become a problem
of great significance. In this work, we argue that the most principled and effective
way to attack this problem is by adopting a Bayesian point of view, where through
sparsity inducing priors we prune large parts of the network. We introduce two
novelties in this paper: 1) we use hierarchical priors to prune nodes instead of
individual weights, and 2) we use the posterior uncertainties to determine the
optimal fixed point precision to encode the weights. Both factors significantly
contribute to achieving the state of the art in terms of compression rates, while
still staying competitive with methods designed to optimize for speed or energy
efficiency.

1 Introduction

While deep neural networks have become extremely successful in in a wide range of applications,
often exceeding human performance, they remain difficult to apply in many real world scenarios. For
instance, making billions of predictions per day comes with substantial energy costs given the energy
consumption of common Graphical Processing Units (GPUs). Also, real-time predictions are often
about a factor 100 away in terms of speed from what deep NNs can deliver, and sending NNs with
millions of parameters through band limited channels is still impractical. As a result, running them on
hardware limited devices such as smart phones, robots or cars requires substantial improvements on
all of these issues. For all those reasons, compression and efficiency have become a topic of interest
in the deep learning community.

While all of these issues are certainly related, compression and performance optimizing procedures
might not always be aligned. As an illustration, consider the convolutional layers of Alexnet, which
account for only 4% of the parameters but 91% of the computation [68]. Compressing these layers
will not contribute much to the overall memory footprint.

There is a variety of approaches to address these problem settings. However, most methods have
the common strategy of reducing both the neural network structure and the effective fixed point
precision for each weight. A justification for the former is the finding that NNs suffer from significant
parameter redundancy [14]. Methods in this line of thought are network pruning, where unnecessary
connections are being removed [40, 24, 21], or student-teacher learning where a large network is
used to train a significantly smaller network [5, 27].

From a Bayesian perspective network pruning and reducing bit precision for the weights is aligned
with achieving high accuracy, because Bayesian methods search for the optimal model structure
(which leads to pruning with sparsity inducing priors), and reward uncertain posteriors over parameters
through the bits back argument [28] (which leads to removing insignificant bits). This relation is
made explicit in the MDL principle [20] which is known to be related to Bayesian inference.

∗Canadian Institute For Advanced Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
5.

08
66

5v
4

 [
st

at
.M

L
]

 6
 N

ov
 2

01
7

In this paper we will use the variational Bayesian approximation for Bayesian inference which has
also been explicitly interpreted in terms of model compression [28]. By employing sparsity inducing
priors for hidden units (and not individual weights) we can prune neurons including all their ingoing
and outgoing weights. This avoids more complicated and inefficient coding schemes needed for
pruning or vector quantizing individual weights. As an additional Bayesian bonus we can use the
variational posterior uncertainty to assess which bits are significant and remove the ones which
fluctuate too much under approximate posterior sampling. From this we derive the optimal fixed
point precision per layer, which is still practical on chip.

2 Variational Bayes and Minimum Description Length

A fundamental theorem in information theory is the minimum description length (MDL) principle [20].
It relates to compression directly in that it defines the best hypothesis to be the one that communicates
the sum of the model (complexity cost LC) and the data misfit (error cost LE) with the minimum
number of bits [59, 60]. It is well understood that variational inference can be reinterpreted from an
MDL point of view [56, 72, 28, 30, 19]. More specifically, assume that we are presented with a dataset
D that consists fromN input-output pairs {(x1, y1), . . . , (xn, yn)}. Let p(D|w) =

∏N
i=1 p(yi|xi,w)

be a parametric model, e.g. a deep neural network, that maps inputs x to their corresponding outputs
y using parameters w governed by a prior distribution p(w). In this scenario, we wish to approximate
the intractable posterior distribution p(w|D) = p(D|w)p(w)/p(D) with a fixed form approximate
posterior qφ(w) by optimizing the variational parameters φ according to:

L(φ) = Eqφ(w)[log p(D|w)]︸ ︷︷ ︸
LE

+ Eqφ(w)[log p(w)] +H(qφ(w))︸ ︷︷ ︸
LC

, (1)

whereH(·) denotes the entropy and L(φ) is known as the evidence-lower-bound (ELBO) or negative
variational free energy. As indicated in eq. 1, L(φ) naturally decomposes into a minimum cost for
communicating the targets {yn}Nn=1 under the assumption that the sender and receiver agreed on a
prior p(w) and that the receiver knows the inputs {xn}Nn=1 and form of the parametric model.

By using sparsity inducing priors for groups of weights that feed into a neuron the Bayesian mecha-
nism will start pruning hidden units that are not strictly necessary for prediction and thus achieving
compression. But there is also a second mechanism by which Bayes can help us compress. By
explicitly entertaining noisy weight encodings through qφ(w) we can benefit from the bits-back
argument [28, 30] due to the entropy term; this is in contrast to infinitely precise weights that lead to
H(δ(w)) = −∞2. Nevertheless in practice, the data misfit term LE is intractable for neural network
models under a noisy weight encoding, so as a solution Monte Carlo integration is usually employed.
Continuous qφ(w) allow for the reparametrization trick [36, 58]. Here, we replace sampling from
qφ(w) by a deterministic function of the variational parameters φ and random samples from some
noise variables ε:

L(φ) = Ep(ε)[log p(D|f(φ, ε))] + Eqφ(w)[log p(w)] +H(qφ(w)), (2)

where w = f(φ, ε). By applying this trick, we obtain unbiased stochastic gradients of the ELBO
with respect to the variational parameters φ, thus resulting in a standard optimization problem that is
fit for stochastic gradient ascent. The efficiency of the gradient estimator resulting from eq. 2 can be
further improved for neural networks by utilizing local reparametrizations [37] (which we will use in
our experiments); they provide variance reduction in an efficient way by locally marginalizing the
weights at each layer and instead sampling the distribution of the pre-activations.

3 Related Work

One of the earliest ideas and most direct approaches to tackle efficiency is pruning. Originally
introduced by [40], pruning has recently been demonstrated to be applicable to modern architectures
[25, 21]. It had been demonstrated that an overwhelming amount of up to 99,5% of parameters
can be pruned in common architectures. There have been quite a few encouraging results obtained
by (empirical) Bayesian approaches that employ weight pruning [19, 7, 52, 70, 51]. Nevertheless,

2In practice this term is a large constant determined by the weight precision.

2

weight pruning is in general inefficient for compression since the matrix format of the weights is not
taken into consideration, therefore the Compressed Sparse Column (CSC) format has to be employed.
Moreover, note that in conventional CNNs most flops are used by the convolution operation. Inspired
by this observation, several authors proposed pruning schemes that take these considerations into
account [73, 74] or even go as far as efficiency aware architectures to begin with [32, 15, 31]. From
the Bayesian viewpoint, similar pruning schemes have been explored at [47, 53, 39, 34].

Given optimal architecture, NNs can further be compressed by quantization. More precisely, there
are two common techniques. First, the set of accessible weights can be reduced drastically. As an
extreme example, [13, 48, 57, 76] and [11] trained NN to use only binary or tertiary weights with
floating point gradients. This approach however is in need of significantly more parameters than
their ordinary counterparts. Work by [18] explores various techniques beyond binary quantization:
k-means quantization, product quantization and residual quantization. Later studies extent this set to
optimal fixed point [44] and hashing quantization [10]. [25] apply k-means clustering and consequent
center training. From a practical point of view, however, all these are fairly unpractical during
test time. For the computation of each feature map in a net, the original weight matrix must be
reconstructed from the indexes in the matrix and a codebook that contains all the original weights.
This is an expensive operation and this is why some studies propose a different approach than set
quantization. Precision quantization simply reduces the bit size per weight. This has a great advantage
over set quantization at inference time since feature maps can simply be computed with less precision
weights. Several studies show that this has little to no effect on network accuracy when using 16bit
weights [49, 22, 12, 71, 9]. Somewhat orthogonal to the above discussion but certainly relevant are
approaches that customize the implementation of CNNs for hardware limited devices[31, 4, 62].

4 Bayesian compression with scale mixtures of normals

Consider the following prior over a parameter w where its scale z is governed by a distribution p(z):

z ∼ p(z); w ∼ N (w; 0, z2), (3)

with z2 serving as the variance of the zero-mean normal distribution over w. By treating the scales
of w as random variables we can recover marginal prior distributions over the parameters that have
heavier tails and more mass at zero; this subsequently biases the posterior distribution over w to
be sparse. This family of distributions is known as scale-mixtures of normals [6, 2] and it is quite
general, as a lot of well known sparsity inducing distributions are special cases.

One example of the aforementioned framework is the spike-and-slab distribution [50], the golden
standard for sparse Bayesian inference. Under the spike-and-slab, the mixing density of the scales is a
Bernoulli distribution, thus the marginal p(w) has a delta “spike” at zero and a continuous “slab” over
the real line. Unfortunately, this prior leads to a computationally expensive inference since we have
to explore a space of 2M models, where M is the number of the model parameters. Dropout [29, 67],
one of the most popular regularization techniques for neural networks, can be interpreted as positing a
spike and slab distribution over the weights where the variance of the “slab” is zero [17, 45]. Another
example is the Laplace distribution which arises by considering p(z2) = Exp(λ). The mode of
the posterior distribution under a Laplace prior is known as the Lasso [69] estimator and has been
previously used for sparsifying neural networks at [73, 61]. While computationally simple, the
Lasso estimator is prone to “shrinking" large signals [8] and only provides point estimates about
the parameters. As a result it does not provide uncertainty estimates, it can potentially overfit and,
according to the bits-back argument, is inefficient for compression.

For these reasons, in this paper we will tackle the problem of compression and efficiency in neural
networks by adopting a Bayesian treatment and inferring an approximate posterior distribution over
the parameters under a scale mixture prior. We will consider two choices for the prior over the scales
p(z); the hyperparameter free log-uniform prior [16, 37] and the half-Cauchy prior, which results into
a horseshoe [8] distribution. Both of these distributions correspond to a continuous relaxation of the
spike-and-slab prior and we provide a brief discussion on their shrinkage properties at Appendix C.

3

4.1 Reparametrizing variational dropout for group sparsity

One potential choice for p(z) is the improper log-uniform prior [37]: p(z) ∝ |z|−1. It turns out that
we can recover the log-uniform prior over the weights w if we marginalize over the scales z:

p(w) ∝
∫

1

|z|
N (w|0, z2)dz =

1

|w|
. (4)

This alternative parametrization of the log uniform prior is known in the statistics literature as the
normal-Jeffreys prior and has been introduced by [16]. This formulation allows to “couple" the
scales of weights that belong to the same group (e.g. neuron or feature map), by simply sharing the
corresponding scale variable z in the joint prior3:

p(W, z) ∝
A∏
i

1

|zi|

A,B∏
ij

N (wij |0, z2i), (5)

where W is the weight matrix of a fully connected neural network layer with A being the dimen-
sionality of the input and B the dimensionality of the output. Now consider performing variational
inference with a joint approximate posterior parametrized as follows:

qφ(W, z) =

A∏
i=1

N (zi|µzi , µ2
ziαi)

A,B∏
i,j

N (wij |ziµij , z2i σ2
ij), (6)

where αi is the dropout rate [67, 37, 51] of the given group. As explained at [37, 51], the multiplicative
parametrization of the approximate posterior over z suffers from high variance gradients; therefore
we will follow [51] and re-parametrize it in terms of σ2

zi = µ2
ziαi, hence optimize w.r.t. σ2

zi . The
lower bound under this prior and approximate posterior becomes:

L(φ) = Eqφ(z)qφ(W|z)[log p(D|W)]− Eqφ(z)[KL(qφ(W|z)||p(W|z))]−KL(qφ(z)||p(z)). (7)

Under this particular variational posterior parametrization the negative KL-divergence from the
conditional prior p(W|z) to the approximate posterior qφ(W|z) is independent of z:

KL(qφ(W|z)||p(W|z)) =
1

2

A,B∑
i,j

(
log ��z

2
i

��z
2
i σ

2
ij

+ ��z
2
i σ

2
ij

��z
2
i

+ ��z
2
i µ

2
ij

��z
2
i

− 1

)
. (8)

This independence can be better understood if we consider a non-centered parametrization of the
prior [55]. More specifically, consider reparametrizing the weights as w̃ij =

wij
zi

; this will then result
into p(W|z)p(z) = p(W̃)p(z), where p(W̃) =

∏
i,j N (w̃ij |0, 1) and W = diag(z)W̃. Now if

we perform variational inference under the p(W̃)p(z) prior with an approximate posterior that has
the form of qφ(W̃, z) = qφ(W̃)qφ(z), with qφ(W̃) =

∏
i,j N (w̃ij |µij , σ2

ij), then we see that we
arrive at the same expressions for the negative KL-divergence from the prior to the approximate
posterior. Finally, the negative KL-divergence from the normal-Jeffreys scale prior p(z) to the
Gaussian variational posterior qφ(z) depends only on the “implied” dropout rate, αi = σ2

zi/µ
2
zi , and

takes the following form [51]:

−KL(qφ(z)||p(z)) ≈
A∑
i

(
k1σ(k2 + k3 logαi)− 0.5m(− logαi)− k1

)
, (9)

where σ(·), m(·) are the sigmoid and softplus functions respectively4 and k1 = 0.63576, k2 =
1.87320, k3 = 1.48695. We can now prune entire groups of parameters by simply specifying a thresh-
old for the variational dropout rate of the corresponding group, e.g. logαi = (log σ2

zi − logµ2
zi) ≥ t.

It should be mentioned that this prior parametrization readily allows for a more flexible marginal pos-
terior over the weights as we now have a compound distribution, qφ(W) =

∫
qφ(W|z)qφ(z)dz; this

is in contrast to the original parametrization and the Gaussian approximations employed by [37, 51].
3Stricly speaking the result of eq. 4 only holds when each weight has its own scale and not when that scale is

shared across multiple weights. Nevertheless, in practice we obtain a prior that behaves in a similar way, i.e. it
biases the variational posterior to be sparse.

4σ(x) = (1 + exp(−x))−1, m(x) = log(1 + exp(x))

4

Furthermore, this approach generalizes the low variance additive parametrization of variational
dropout proposed for weight sparsity at [51] to group sparsity (which was left as an open question
at [51]) in a principled way.

At test time, in order to have a single feedforward pass we replace the distribution over W at each
layer with a single weight matrix, the masked variational posterior mean:

Ŵ = diag(m)Eq(z)q(W̃)[diag(z)W̃] = diag
(
m� µz

)
MW , (10)

where m is a binary mask determined according to the group variational dropout rate and MW are
the means of qφ(W̃). We further use the variational posterior marginal variances5 for this particular
posterior approximation:

V(wij)NJ = σ2
zi

(
σ2
ij + µ2

ij

)
+ σ2

ijµ
2
zi , (11)

to asess the bit precision of each weight in the weight matrix. More specifically, we employed the
mean variance across the weight matrix Ŵ to compute the unit round off necessary to represent the
weights. This method will give us the amount significant bits, and by adding 3 exponent and 1 sign
bits we arrive at the final bit precision for the entire weight matrix Ŵ6. We provide more details at
Appendix B.

4.2 Group horseshoe with half-Cauchy scale priors

Another choice for p(z) is a proper half-Cauchy distribution: C+(0, s) = 2(sπ(1 + (z/s)2))−1; it
induces a horseshoe prior [8] distribution over the weights, which is a well known sparsity inducing
prior in the statistics literature. More formally, the prior hierarchy over the weights is expressed as
(in a non-centered parametrization):

s ∼ C+(0, τ0); z̃i ∼ C+(0, 1); w̃ij ∼ N (0, 1); wij = w̃ij z̃is, (12)

where τ0 is the free parameter that can be tuned for specific desiderata. The idea behind the horseshoe
is that of the “global-local" shrinkage; the global scale variable s pulls all of the variables towards
zero whereas the heavy tailed local variables zi can compensate and allow for some weights to escape.
Instead of directly working with the half-Cauchy priors we will employ a decomposition of the
half-Cauchy that relies upon (inverse) gamma distributions [54] as this will allow us to compute
the negative KL-divergence from the scale prior p(z) to an approximate log-normal scale posterior
qφ(z) in closed form (the derivation is given in Appendix D). More specifically, we have that the
half-Cauchy prior can be expressed in a non-centered parametrization as:

p(β̃) = IG(0.5, 1); p(α̃) = G(0.5, k2); z2 = α̃β̃, (13)

where IG(·, ·),G(·, ·) correspond to the inverse Gamma and Gamma distributions in the scale
parametrization, and z follows a half-Cauchy distribution with scale k. Therefore we will re-express
the whole hierarchy as:

sb ∼ IG(0.5, 1); sa ∼ G(0.5, τ20); β̃i ∼ IG(0.5, 1); α̃i ∼ G(0.5, 1); w̃ij ∼ N (0, 1);

wij = w̃ij

√
sasbα̃iβ̃i. (14)

It should be mentioned that the improper log-uniform prior is the limiting case of the horseshoe prior
when the shapes of the (inverse) Gamma hyperpriors on α̃i, β̃i go to zero [8]. In fact, several well
known shrinkage priors can be expressed in this form by altering the shapes of the (inverse) Gamma
hyperpriors [3]. For the variational posterior we will employ the following mean field approximation:

qφ(sb, sa, β̃) = LN (sb|µsb , σ2
sb

)LN (sa|µsa , σ2
sa)

A∏
i

LN (β̃i|µβ̃i , σ
2
β̃i

) (15)

qφ(α̃,W̃) =

A∏
i

LN (α̃i|µα̃i , σ2
α̃i)

A,B∏
i,j

N (w̃ij |µw̃ij , σ2
w̃ij), (16)

5V(wij) = V(ziw̃ij) = V(zi)
(
E[w̃ij]

2 + V(w̃ij)
)
+ V(w̃ij)E[zi]2.

6Notice that the fact that we are using mean-field variational approximations (which we chose for simplicity)
can potentially underestimate the variance, thus lead to higher bit precisions for the weights. We leave the
exploration of more involved posteriors for future work.

5

where LN (·, ·) is a log-normal distribution. It should be mentioned that a similar form of non-
centered variational inference for the horseshoe has been also successfully employed for undirected
models at [33]. Notice that we can also apply local reparametrizations [37] when we are sampling√
α̃iβ̃i and

√
sasb by exploiting properties of the log-normal distribution7 and thus forming the

implied:

z̃i =

√
α̃iβ̃i ∼ LN (µz̃i , σ

2
z̃i); s =

√
sasb ∼ LN (µs, σ

2
s) (17)

µz̃i =
1

2
(µα̃i + µβ̃i); σ2

z̃i =
1

4
(σ2
α̃i + σ2

β̃i
); µs =

1

2
(µsa + µsb); σ2

s =
1

4
(σ2
sa + σ2

sb
). (18)

As a threshold rule for group pruning we will use the negative log-mode8 of the local log-normal r.v.
zi = sz̃i, i.e. prune when (σ2

zi − µzi) ≥ t, with µzi = µz̃i + µs and σ2
zi = σ2

z̃i
+ σ2

s .This ignores
dependencies among the zi elements induced by the common scale s, but nonetheless we found
that it works well in practice. Similarly with the group normal-Jeffreys prior, we will replace the
distribution over W at each layer with the masked variational posterior mean during test time:

Ŵ = diag(m)Eq(z)q(W̃)[diag(z)W̃] = diag
(
m� exp(µz +

1

2
σ2
z)
)
MW , (19)

where m is a binary mask determined according to the aforementioned threshold, MW are the means
of q(W̃) and µz,σ

2
z are the means and variances of the local log-normals over zi. Furthermore,

similarly to the group normal-Jeffreys approach, we will use the variational posterior marginal
variances:

V(wij)HS = (exp(σ2
zi)− 1) exp(2µzi + σ2

zi)
(
σ2
ij + µ2

ij

)
+ σ2

ij exp(2µzi + σ2
zi), (20)

to compute the final bit precision for the entire weight matrix Ŵ.

5 Experiments

We validated the compression and speed-up capabilities of our models on the well-known architectures
of LeNet-300-100 [41], LeNet-5-Caffe9 on MNIST [42] and, similarly with [51], VGG [63]10 on
CIFAR 10 [38]. The groups of parameters were constructed by coupling the scale variables for each
filter for the convolutional layers and for each input neuron for the fully connected layers. We provide
the algorithms that describe the forward pass using local reparametrizations for fully connected
and convolutional layers with each of the employed approximate posteriors at appendix F. For the
horseshoe prior we set the scale τ0 of the global half-Cauchy prior to a reasonably small value, e.g.
τ0 = 1e− 5. This further increases the prior mass at zero, which is essential for sparse estimation
and compression. We also found that constraining the standard deviations as described at [46] and
“warm-up" [65] helps in avoiding bad local optima of the variational objective. Further details about
the experimental setup can be found at Appendix A. Determining the threshold for pruning can be
easily done with manual inspection as usually there are two well separated clusters (signal and noise).
We provide a sample visualization at Appendix E.

5.1 Architecture learning & bit precisions

We will first demonstrate the group sparsity capabilities of our methods by illustrating the learned
architectures at Table 1, along with the inferred bit precision per layer. As we can observe, our
methods infer significantly smaller architectures for the LeNet-300-100 and LeNet-5-Caffe, compared
to Sparse Variational Dropout, Generalized Dropout and Group Lasso. Interestingly, we observe
that for the VGG network almost all of big 512 feature map layers are drastically reduced to around
10 feature maps whereas the initial layers are mostly kept intact. Furthermore, all of the Bayesian
methods considered require far fewer than the standard 32 bits per-layer to represent the weights,
sometimes even allowing for 5 bit precisions.

7The product of log-normal r.v.s is another log-normal and a power of a log-normal r.v. is another log-normal.
8Empirically, it slightly better separates the scales compared to the negative log-mean −(µzi + 0.5σ2

zi).
9https://github.com/BVLC/caffe/tree/master/examples/mnist

10The adapted CIFAR 10 version described at http://torch.ch/blog/2015/07/30/cifar.html.

6

https://github.com/BVLC/caffe/tree/master/examples/mnist
http://torch.ch/blog/2015/07/30/cifar.html

Table 1: Learned architectures with Sparse VD [51], Generalized Dropout (GD) [66] and Group
Lasso (GL) [73]. Bayesian Compression (BC) with group normal-Jeffreys (BC-GNJ) and group
horseshoe (BC-GHS) priors correspond to the proposed models. We show the amount of neurons left
after pruning along with the average bit precisions for the weights at each layer.

Network & size Method Pruned architecture Bit-precision

LeNet-300-100 Sparse VD 512-114-72 8-11-14

784-300-100 BC-GNJ 278-98-13 8-9-14
BC-GHS 311-86-14 13-11-10

LeNet-5-Caffe Sparse VD 14-19-242-131 13-10-8-12
GD 7-13-208-16 -

20-50-800-500 GL 3-12-192-500 -

BC-GNJ 8-13-88-13 18-10-7-9
BC-GHS 5-10-76-16 10-10–14-13

VGG BC-GNJ 63-64-128-128-245-155-63- 10-10-10-10-8-8-8-
-26-24-20-14-12-11-11-15 -5-5-5-5-5-6-7-11

(2× 64)-(2× 128)- BC-GHS 51-62-125-128-228-129-38- 11-12-9-14-10-8-5-
-(3×256)-(8× 512) -13-9-6-5-6-6-6-20 -5-6-6-6-8-11-17-10

5.2 Compression Rates

For the actual compression task we compare our method to current work in three different scenarios:
(i) compression achieved only by pruning, here, for non-group methods we use the CSC format
to store parameters; (ii) compression based on the former but with reduced bit precision per layer
(only for the weights); and (iii) the maximum compression rate as proposed by [25]. We believe

Table 2: Compression results for our methods. “DC” corresponds to Deep Compression method
introduced at [25], “DNS” to the method of [21] and “SWS” to the Soft-Weight Sharing of [70].
Numbers marked with * are best case guesses.

Compression Rates (Error %)

Model Fast Maximum
Original Error % Method |w 6=0|

|w| % Pruning Prediction Compression

LeNet-300-100 DC 8.0 6 (1.6) - 40 (1.6)
DNS 1.8 28* (2.0) - -

1.6 SWS 4.3 12* (1.9) - 64(1.9)
Sparse VD 2.2 21(1.8) 84(1.8) 113 (1.8)

BC-GNJ 10.8 9(1.8) 36(1.8) 58(1.8)
BC-GHS 10.6 9(1.8) 23(1.9) 59(2.0)

LeNet-5-Caffe DC 8.0 6*(0.7) - 39(0.7)
DNS 0.9 55*(0.9) - 108(0.9)

0.9 SWS 0.5 100*(1.0) - 162(1.0)
Sparse VD 0.7 63(1.0) 228(1.0) 365(1.0)

BC-GNJ 0.9 108(1.0) 361(1.0) 573(1.0)
BC-GHS 0.6 156(1.0) 419(1.0) 771(1.0)

VGG BC-GNJ 6.7 14(8.6) 56(8.8) 95(8.6)
8.4 BC-GHS 5.5 18(9.0) 59(9.0) 116(9.2)

these to be relevant scenarios because (i) can be applied with already existing frameworks such as
Tensorflow [1], (ii) is a practical scheme given upcoming GPUs and frameworks will be designed to
work with low and mixed precision arithmetics [43, 23]. For (iii), we perform k-means clustering on
the weights with k=32 and consequently store a weight index that points to a codebook of available

7

weights. Note that the latter achieves highest compression rate but it is however fairly unpractical at
test time since the original matrix needs to be restored for each layer. As we can observe at Table 2,
our methods are competitive with the state-of-the art for LeNet-300-100 while offering significantly
better compression rates on the LeNet-5-Caffe architecture, without any loss in accuracy. Do note
that group sparsity and weight sparsity can be combined so as to further prune some weights when a
particular group is not removed, thus we can potentially further boost compression performance at
e.g. LeNet-300-100. For the VGG network we observe that training from a random initialization
yielded consistently less accuracy (around 1%-2% less) compared to initializing the means of the
approximate posterior from a pretrained network, similarly with [51], thus we only report the latter
results11. After initialization we trained the VGG network regularly for 200 epochs using Adam with
the default hyperparameters. We observe a small drop in accuracy for the final models when using
the deterministic version of the network for prediction, but nevertheless averaging across multiple
samples restores the original accuracy. Note, that in general we can maintain the original accuracy on
VGG without sampling by simply finetuning with a small learning rate, as done at [51]. This will
still induce (less) sparsity but unfortunately it does not lead to good compression as the bit precision
remains very high due to not appropriately increasing the marginal variances of the weights.

5.3 Speed and energy consumption

We demonstrate that our method is competitive with [73], denoted as GL, a method that explicitly
prunes convolutional kernels to reduce compute time. We measure the time and energy consumption
of one forward pass of a mini-batch with batch size 8192 through LeNet-5-Caffe. We average over 104

forward passes and all experiments were run with Tensorflow 1.0.1, cuda 8.0 and respective cuDNN.
We apply 16 CPUs run in parallel (CPU) or a Titan X (GPU). Note that we only use the pruned
architecture as lower bit precision would further increase the speed-up but is not implementable in
any common framework. Further, all methods we compare to in the latter experiments would barely
show an improvement at all since they do not learn to prune groups but only parameters. In figure 1
we present our results. As to be expected the largest effect on the speed up is caused by GPU usage.
However, both our models and best competing models reach a speed up factor of around 8×. We
can further save about 3 × energy costs by applying our architecture instead of the original one on a
GPU. For larger networks the speed-up is even higher: for the VGG experiments with batch size 256
we have a speed-up factor of 51×.

Figure 1: Left: Avg. Time a batch of 8192 samples takes to pass through LeNet-5-Caffe. Numbers on
top of the bars represent speed-up factor relative to the CPU implementation of the original network.
Right: Energy consumption of the GPU of the same process (when run on GPU).

6 Conclusion

We introduced Bayesian compression, a way to tackle efficiency and compression in deep neural
networks in a unified and principled way. Our proposed methods allow for theoretically principled
compression of neural networks, improved energy efficiency with reduced computation while naturally
learning the bit precisions for each weight. This serves as a strong argument in favor of Bayesian
methods for neural networks, when we are concerned with compression and speed up.

11We also tried to finetune the same network with Sparse VD, but unfortunately it increased the error
considerably (around 3% extra error), therefore we do not report those results.

8

Acknowledgments

We would like to thank Dmitry Molchanov, Dmitry Vetrov, Klamer Schutte and Dennis Koelma for
valuable discussions and feedback. This research was supported by TNO, NWO and Google.

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv
preprint arXiv:1603.04467, 2016.

[2] D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of the Royal Statistical
Society. Series B (Methodological), pages 99–102, 1974.

[3] A. Armagan, M. Clyde, and D. B. Dunson. Generalized beta mixtures of gaussians. In Advances in neural
information processing systems, pages 523–531, 2011.

[4] E. Azarkhish, D. Rossi, I. Loi, and L. Benini. Neurostream: Scalable and energy efficient deep learning
with smart memory cubes. arXiv preprint arXiv:1701.06420, 2017.

[5] J. Ba and R. Caruana. Do deep nets really need to be deep? In Advances in neural information processing
systems, pages 2654–2662, 2014.

[6] E. Beale, C. Mallows, et al. Scale mixing of symmetric distributions with zero means. The Annals of
Mathematical Statistics, 30(4):1145–1151, 1959.

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks.
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, 2015.

[8] C. M. Carvalho, N. G. Polson, and J. G. Scott. The horseshoe estimator for sparse signals. Biometrika, 97
(2):465–480, 2010.

[9] S. Chai, A. Raghavan, D. Zhang, M. Amer, and T. Shields. Low precision neural networks using subband
decomposition. arXiv preprint arXiv:1703.08595, 2017.

[10] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing convolutional neural
networks. arXiv preprint arXiv:1506.04449, 2015.

[11] M. Courbariaux and Y. Bengio. Binarynet: Training deep neural networks with weights and activations
constrained to +1 or −1. arXiv preprint arXiv:1602.02830, 2016.

[12] M. Courbariaux, J.-P. David, and Y. Bengio. Training deep neural networks with low precision multiplica-
tions. arXiv preprint arXiv:1412.7024, 2014.

[13] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary
weights during propagations. In Advances in Neural Information Processing Systems, pages 3105–3113,
2015.

[14] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al. Predicting parameters in deep learning. In Advances in
Neural Information Processing Systems, pages 2148–2156, 2013.

[15] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A more complicated network with less inference
complexity. arXiv preprint arXiv:1703.08651, 2017.

[16] M. A. Figueiredo. Adaptive sparseness using jeffreys’ prior. Advances in neural information processing
systems, 1:697–704, 2002.

[17] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. ICML, 2016.

[18] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using vector
quantization. ICLR, 2015.

[19] A. Graves. Practical variational inference for neural networks. In Advances in Neural Information
Processing Systems, pages 2348–2356, 2011.

[20] P. D. Grünwald. The minimum description length principle. MIT press, 2007.

[21] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns. In Advances In Neural
Information Processing Systems, pages 1379–1387, 2016.

[22] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning with limited numerical
precision. CoRR, abs/1502.02551, 392, 2015.

[23] P. Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. Master’s thesis,
University of California, 2016.

9

[24] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural networks.
In Advances in Neural Information Processing Systems, pages 1135–1143, 2015.

[25] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. ICLR, 2016.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, pages
1026–1034, 2015.

[27] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[28] G. E. Hinton and D. Van Camp. Keeping the neural networks simple by minimizing the description length
of the weights. In Proceedings of the sixth annual conference on Computational learning theory, pages
5–13. ACM, 1993.

[29] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[30] A. Honkela and H. Valpola. Variational learning and bits-back coding: an information-theoretic view to
bayesian learning. IEEE Transactions on Neural Networks, 15(4):800–810, 2004.

[31] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[32] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and< 0.5 mb model size. ICLR, 2017.

[33] J. B. Ingraham and D. S. Marks. Bayesian sparsity for intractable distributions. arXiv preprint
arXiv:1602.03807, 2016.

[34] T. Karaletsos and G. Rätsch. Automatic relevance determination for deep generative models. arXiv preprint
arXiv:1505.07765, 2015.

[35] D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on Learning
Representations (ICLR), San Diego, 2015.

[36] D. P. Kingma and M. Welling. Auto-encoding variational bayes. International Conference on Learning
Representations (ICLR), 2014.

[37] D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparametrization trick.
Advances in Neural Information Processing Systems, 2015.

[38] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images, 2009.

[39] N. D. Lawrence. Note relevance determination. In Neural Nets WIRN Vietri-01, pages 128–133. Springer,
2002.

[40] Y. LeCun, J. S. Denker, S. A. Solla, R. E. Howard, and L. D. Jackel. Optimal brain damage. In NIPs,
volume 2, pages 598–605, 1989.

[41] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[42] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database of handwritten digits, 1998.

[43] D. D. Lin and S. S. Talathi. Overcoming challenges in fixed point training of deep convolutional networks.
Workshop ICML, 2016.

[44] D. D. Lin, S. S. Talathi, and V. S. Annapureddy. Fixed point quantization of deep convolutional networks.
arXiv preprint arXiv:1511.06393, 2015.

[45] C. Louizos. Smart regularization of deep architectures. Master’s thesis, University of Amsterdam, 2015.

[46] C. Louizos and M. Welling. Multiplicative Normalizing Flows for Variational Bayesian Neural Networks.
ArXiv e-prints, Mar. 2017.

[47] D. J. MacKay. Probable networks and plausible predictions—a review of practical bayesian methods for
supervised neural networks. Network: Computation in Neural Systems, 6(3):469–505, 1995.

[48] N. Mellempudi, A. Kundu, D. Mudigere, D. Das, B. Kaul, and P. Dubey. Ternary neural networks with
fine-grained quantization. arXiv preprint arXiv:1705.01462, 2017.

[49] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha. Deep neural networks are robust to
weight binarization and other non-linear distortions. arXiv preprint arXiv:1606.01981, 2016.

[50] T. J. Mitchell and J. J. Beauchamp. Bayesian variable selection in linear regression. Journal of the
American Statistical Association, 83(404):1023–1032, 1988.

10

[51] D. Molchanov, A. Ashukha, and D. Vetrov. Variational dropout sparsifies deep neural networks. arXiv
preprint arXiv:1701.05369, 2017.

[52] E. Nalisnick, A. Anandkumar, and P. Smyth. A scale mixture perspective of multiplicative noise in neural
networks. arXiv preprint arXiv:1506.03208, 2015.

[53] R. M. Neal. Bayesian learning for neural networks. PhD thesis, Citeseer, 1995.

[54] S. E. Neville, J. T. Ormerod, M. Wand, et al. Mean field variational bayes for continuous sparse signal
shrinkage: pitfalls and remedies. Electronic Journal of Statistics, 8(1):1113–1151, 2014.

[55] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld. A general framework for the parametrization of
hierarchical models. Statistical Science, pages 59–73, 2007.

[56] C. Peterson. A mean field theory learning algorithm for neural networks. Complex systems, 1:995–1019,
1987.

[57] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In European Conference on Computer Vision, pages 525–542. Springer,
2016.

[58] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. In Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages 1278–1286, 2014.

[59] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[60] J. Rissanen. Stochastic complexity and modeling. The annals of statistics, pages 1080–1100, 1986.

[61] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini. Group sparse regularization for deep neural
networks. arXiv preprint arXiv:1607.00485, 2016.

[62] S. Shi and X. Chu. Speeding up convolutional neural networks by exploiting the sparsity of rectifier units.
arXiv preprint arXiv:1704.07724, 2017.

[63] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
ICLR, 2015.

[64] M. Sites. Ieee standard for floating-point arithmetic. 2008.

[65] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther. Ladder variational autoencoders.
arXiv preprint arXiv:1602.02282, 2016.

[66] S. Srinivas and R. V. Babu. Generalized dropout. arXiv preprint arXiv:1611.06791, 2016.

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

[68] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient processing of deep neural networks: A tutorial and
survey. arXiv preprint arXiv:1703.09039, 2017.

[69] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

[70] K. Ullrich, E. Meeds, and M. Welling. Soft weight-sharing for neural network compression. ICLR, 2017.

[71] G. Venkatesh, E. Nurvitadhi, and D. Marr. Accelerating deep convolutional networks using low-precision
and sparsity. arXiv preprint arXiv:1610.00324, 2016.

[72] C. S. Wallace. Classification by minimum-message-length inference. In International Conference on
Computing and Information, pages 72–81. Springer, 1990.

[73] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks. In
Advances In Neural Information Processing Systems, pages 2074–2082, 2016.

[74] T.-J. Yang, Y.-H. Chen, and V. Sze. Designing energy-efficient convolutional neural networks using
energy-aware pruning. CVPR, 2017.

[75] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.

[76] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. ICLR, 2017.

Appendix

A. Detailed experimental setup

We implemented our methods in Tensorflow [1] and optimized the variational parameters using
Adam [35] with the default hyperparameters. The means of the conditional Gaussian qφ(W|z)

11

Table 3: Floating point formats

Bits per Exponent Significand underflow overflow unit
Float width [bit] precision [bit] level level roundoff
64 11 52 2.22× 10−308 1.79×10308 2.22× 10−16

32 8 23 1.17× 10−38 3.40×1038 1.19× 10−7

16 5 10 6.10× 10−05 6.54×104 9.76× 10−4

were initialized with the scheme proposed at [26], whereas the log of the standard deviations were
initialized by sampling from N (−9, 1e− 4). The parameters of qφ(z) were initialized such that the
overall mean of z is ≈ 1 and the overall variance is very low (≈ 1e− 8); this ensures that all of the
groups are active during the initial training iterations.

As for the standard deviation constraints; for the LeNet-300-100 architecture we constrained the
standard deviation of the first layer to be ≤ 0.2 whereas for the LeNet-5-Caffe we constrained
the standard deviation of the first layer to be ≤ 0.5. The remaining standard deviations were left
unconstrained. For the VGG network we constrained the standard deviations of the 64 and 128
feature map layers to be ≤ 0.1, the standard deviations of the 256 feature map layers to be ≤ 0.2
and left the rest of the standard deviations unconstrained. We also found beneficial the incorporation
of “warm-up” [65], i.e we annealed the negative KL-divergence from the prior to the approximate
posterior with a linear schedule for the first 100 epochs. We initialized the means of the approximate
posterior by the weights and biases obtained from a VGG network trained with batch normalization
and dropout on CIFAR 10. For our method we disabled batch-normalization during training.

As for preprocessing the data; for MNIST the only preprocessing we did was to rescale the digits to
lie at the [−1, 1] range and for CIFAR 10 we used the preprocessed dataset provided by [75].

Furthermore, do note that by pruning a given filter at a particular convolutional layer we can also
prune the parameters corresponding to that feature map for the next layer. This similarly holds for
fully connected layers; if we drop a given input neuron then the weights corresponding to that node
from the previous layer can also be pruned.

B. Standards for Floating-Point Arithmetic

Floating points values eventually need to be represented in a binary basis in a computer. The most
common standard today is the IEEE 754-2008 convention [64]. It defines x-bit base-2 formats,
officially referred to as binaryx, with x ∈ {16, 32, 64, 128}. The formats are also widely known as
half, single, double and quadruple precision floats, respectively and used in almost all programming
languages as a standard. The format considers 3 kinds of bits: one sign bit, w exponent bits and p
precision bits.

Figure 2: A symbolic representation of the binaryx format [64].

The Sign bit determines the sign of the number to be represented. The exponent E is an w-bit signed
integer, e.g. for single precision w = 8 and thus E ∈ [−127, 128]. In practice, exponents range from
is smaller since the first and the last number are reserved for special numbers. The true significand or
mantissa includes t bits on the right of the binary point. There is an implicit leading bit with value
one. A values is consequently decomposed as follows

mantissa = 1 +

t∑
i=1

bi2
−i (21)

value = (−1)sign bit × 2E ×mantissa. (22)

In table 3, we summarize common and less common floating point formats.

12

There is however the possibility to design a self defined format. There are 3 important quantities
when choosing the right specification: overflow, underflow and unit round off also known as machine
precision. Each one can be computed knowing the number of exponent and significant bits. in
our work for example we consider a format that uses significantly less exponent bits since network
parameters usually vary between [-10,10]. We set the unit round off equal to the precision and thus
can compute the significant bits necessary to represent a specific weight.

Beyond designing a tailored floating point format for deep learning, recent work also explored the
possibility of deep learning with mixed formats [43, 23]. For example, imagine the activations having
high precision while weights can be low precision.

C. Shrinkage properties of the normal-Jeffreys and horseshoe priors

(a) Empirical CDF (b) Prior on shrinkage coefficient

Figure 3: Comparison of the behavior of the log-uniform / normal-Jeffreys (NJ) prior and the
horseshoe (HS) prior (where s = 1). Both priors behave similarly at zero but the normal-Jeffreys has
an extremely heavy tail (thus making it non-normalizable).

In this section we will provide some insights about the behavior of each of the priors we employ by
following the excellent analysis of [8]; we can perform a change of variables and express the scale
mixture distribution of eq.3 in the main paper in terms of a shrinkage coefficient, λ = 1

1+z2 :

λ ∼ p(λ); w ∼ N
(

0,
1− λ
λ

)
. (23)

It is easy to observe that eq. 23 corresponds to a continuous relaxation of the spike-and-slab prior:
when λ = 0 we have that p(w|λ = 0) = U(−∞,∞), i.e. no shrinkage/regularization for w, when
λ = 1 we have that p(w|λ = 1) = δ(w = 0), i.e. w is exactly zero, and when λ = 1

2 we have that
p(w|λ = 1

2) = N (0, 1). Now by examining the implied prior on the shrinkage coefficient λ for both
the log-uniform and the horseshoe priors we can better study their behavior. As it is explained at [8],
the half-Cauchy prior on z corresponds to a beta prior on the shrinkage coefficient, p(λ) = B(1

2 ,
1
2),

whereas the normal-Jeffreys / log-uniform prior on z corresponds to p(λ) = B(ε, ε) with ε ≈ 0.
The densities of both of these distributions can be seen at Figure 3b. As we can observe, the log-
uniform prior posits a distribution that concentrates almost all of its mass at either λ ≈ 0 or λ ≈ 1,
essentially either pruning the parameter or keeping it close to the maximum likelihood estimate due
to p(w|λ ≈ 1) = U(−∞,∞). In contrast the horseshoe prior maintains enough probability mass for
the in-between values of λ and thus can, potentially, offer better regularization and generalization.

D. Negative KL-divergences for log-normal approximating posteriors

Let q(z) = LN (µ, σ2) be a log-normal approximating posterior. Here we will derive the negative
KL-divergences to q(z) from inverse gamma, gamma and half-normal distributions.

Let p(z) be an inverse gamma distribution, i.e. p(z) = IG(α, β). The negative KL-divergence can
be expressed as follows:

−KL(q(z)||p(z)) =

∫
q(z) log p(z)dz −

∫
q(z) log q(z)dz. (24)

13

The second term is the entropy of the log-normal distribution which has the following form:

Hq = −
∫
q(z) log q(z)dz =

1

2
log σ2 + µ+

1

2
+

1

2
log(2π). (25)

The first term is the negative cross-entropy of the log-normal approximate posterior from the inverse-
Gamma prior:

−CEqp =

∫
q(z)

(
α log β − log Γ(α)− (α+ 1) log z)− β

z

)
dz (26)

= α log β − log Γ(α)− (α+ 1)Eq(z)[log z]− β Eq(z)[z−1]. (27)

Since the natural logarithm of a log-normal distribution LN (µ, σ2) follows a normal distribution
N (µ, σ2) we have that Eq(z)[log z] = µ. Furthermore we have that if x ∼ LN (µ, σ2) then 1

x ∼
LN (−µ, σ2), therefore Eq(z)[z−1] = exp(−µ+ σ2

2). Putting everything together we have that:

−CEqp = α log β − log Γ(α)− (α+ 1)µ− β exp(−µ+
σ2

2
). (28)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = α log β − log Γ(α)− αµ− β exp(−µ+ 0.5σ2)+

+ 0.5(log σ2 + 1 + log(2π)). (29)

Now let p(z) be a Gamma prior, i.e. p(z) = G(α, β). We have that the negative cross-entropy
changes to:

−CEqp =

∫
q(z)

(
− α log β − log Γ(α)− z

β
+ (α− 1) log z

)
dz (30)

= −α log β − log Γ(α)− β−1 Eq(z)[z] + (α− 1)Eq(z)[log z] (31)

= −α log β − log Γ(α)− β−1 exp(µ+
σ2

2
) + (α− 1)µ. (32)

Therefore the negative KL-divergence is:

−KL(q(z)||p(z)) = −α log β − log Γ(α) + αµ− β−1 exp(µ+ 0.5σ2)+

+ 0.5(log σ2 + 1 + log(2π)). (33)

Now, by employing the aforementioned we can express the negative KL-divergence from
p(sa, sb, α̃, β̃) to qφ(sa, sb, α̃, β̃) as follows:

−KL(qφ(sa)||p(sa)) = log τ0 − τ−10 exp
(
µsa +

1

2
σ2
sa

)
+

1

2

(
µsa + log σ2

sa + 1 + log 2
)

(34)

−KL(qφ(sb)||p(sb)) = − exp
(1

2
σ2
sb
− µsb

)
+

1

2

(
− µsb + log σ2

sb
+ 1 + log 2

)
(35)

−KL(qφ(α̃)||p(α̃)) =

A∑
i

(
− exp

(
µα̃i +

1

2
σ2
α̃i

)
+

1

2

(
µα̃i + log σ2

α̃i + 1 + log 2
))

(36)

−KL(qφ(β̃)||p(β̃)) =

A∑
i

(
− exp

(1

2
σ2
β̃i
− µβ̃i

)
+

1

2

(
− µβ̃i + log σ2

β̃i
+ 1 + log 2

))
, (37)

with the KL-divergence for the weight distribution qφ(W̃) given by eq.8 in the main paper.

14

E. Visualizations

(a)

(b)

(c)

Figure 4: Distribution of the thresholds for the Sparse Variational Dropout 4a, Bayesian Compression
with group normal-Jeffreys (BC-GNJ) 4b and group Horseshoe (BC-GHS) 4c priors for the three
layer LeNet-300-100 architecture. It is easily observed that there are usually two well separable
groups with BC-GNJ and BC-GHS, thus making the choice for the threshold easy. Smaller values
indicate signal whereas larger values indicate noise (i.e. useless groups).

15

(a)

(b)

(c)

Figure 5: Distribution of the bit precisions for the Sparse Variational Dropout 5a, Bayesian Com-
pression with group normal-Jeffreys (BC-GNJ) 5b and group Horseshoe (BC-GHS) 5c priors for the
three layer LeNet-300-100 architecture. All of the methods usually require far fewer than 32bits for
the weights.

F. Algorithms for the feedforward pass

Algorithms 1, 2, 3, 4 describe the forward pass using local reparametrizations for fully connected and
convolutional layers with the approximate posteriors for the Bayesian Compression (BC) with group
normal-Jeffreys (BC-GNJ) and group Horseshoe (BC-GHS) priors employed at the experiments. For
the fully connected layers we coupled the scales for each input neuron whereas for the convolutional
we couple the scales for each output feature map. Mw,Σw are the means and variances of each layer,
H is a minibatch of activations of size K. For the first layer we have that H = X where X is the
minibatch of inputs. For the convolutional layers Nf are the number of convolutional filters, ∗ is the
convolution operator and we assume the [batch, height, width, feature maps] convention.

16

Algorithm 1 Fully connected BC-GNJ layer h.
Require: H,Mw,Σw

1: Ê ∼ N (0, 1)

2: Z = µz + σz � Ê

3: Ĥ = H� Z
4: Mh = ĤMw

5: Vh = Ĥ2Σw

6: E ∼ N (0, 1)
7: return Mh +

√
Vh �E

Algorithm 2 Convolutional BC-GNJ layer h.
Require: H,Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw

3: Ê ∼ N (0, 1)
4: µ̂z = reshape(µz, [K, 1, 1, Nf])
5: σ̂z = reshape(σz, [K, 1, 1, Nf])

6: Z = µ̂z + σ̂z � Ê
7: E ∼ N (0, 1)
8: return Mh � Z +

√
Vh � Z2 �E

Algorithm 3 Fully connected BC-GHS layer h.
Require: H,Mw,Σw

1: ε̂ ∼ N (0, 1)
2: µs = .5µsa + .5µsb
3: σs =

√
.25σ2

sa + .25σ2
sb

4: log s = µs + σs � ε̂
5: µz̃ = .5µα̃ + .5µβ̃ + log s

6: σz̃ =
√
.25σ2

α̃ + .25σ2
β̃

7: Ê ∼ N (0, 1)

8: Z = exp(µz̃ + σz̃ � Ê)
9: Ĥ = H� Z

10: Mh = ĤMw

11: Vh = Ĥ2Σw

12: E ∼ N (0, 1)
13: return Mh +

√
Vh �E

Algorithm 4 Convolutional BC-GHS layer h.
Require: H,Mw,Σw

1: Mh = H ∗Mw

2: Vh = H2 ∗Σw

3: ε̂ ∼ N (0, 1)
4: µs = .5µsa + .5µsb
5: σs =

√
.25σ2

sa + .25σ2
sb

6: log s = reshape(µs + σs � ε̂, [K, 1, 1, 1])
7: µz̃ = reshape(.5µα̃ + .5µβ̃ , [K, 1, 1, Nf])

8: σz̃ = reshape(
√
.25σ2

α̃ + .25σ2
β̃
, [K, 1, 1, Nf])

9: Ê ∼ N (0, 1)

10: Z = exp(µz̃ + log s + σz̃ � Ê)
11: E ∼ N (0, 1)
12: return Mh � Z +

√
Vh � Z2 �E

17

	1 Introduction
	2 Variational Bayes and Minimum Description Length
	3 Related Work
	4 Bayesian compression with scale mixtures of normals
	4.1 Reparametrizing variational dropout for group sparsity
	4.2 Group horseshoe with half-Cauchy scale priors

	5 Experiments
	5.1 Architecture learning & bit precisions
	5.2 Compression Rates
	5.3 Speed and energy consumption

	6 Conclusion

