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Abstract

Obtaining reliable uncertainty estimates of
neural network predictions is a long standing
challenge. Bayesian neural networks have been
proposed as a solution, but it remains open
how to specify their prior. In particular, the
common practice of an independent normal
prior in weight space imposes relatively weak
constraints on the function posterior, allowing
it to generalize in unforeseen ways on inputs
outside of the training distribution. We
propose noise contrastive priors (NCPs) to
obtain reliable uncertainty estimates. The
key idea is to train the model to output high
uncertainty for data points outside of the
training distribution. NCPs do so using an
input prior, which adds noise to the inputs of
the current mini batch, and an output prior,
which is a wide distribution given these inputs.
NCPs are compatible with any model that
can output uncertainty estimates, are easy to
scale, and yield reliable uncertainty estimates
throughout training. Empirically, we show
that NCPs prevent overfitting outside of the
training distribution and result in uncertainty
estimates that are useful for active learning. We
demonstrate the scalability of our method on
the flight delays data set, where we significantly
improve upon previously published results.

1 INTRODUCTION

Many successful applications of neural networks
(Krizhevsky et al., 2012; Sutskever et al., 2014; van den
Oord et al., 2016) are in restricted settings where pre-
dictions are only made for inputs similar to the training
distribution. In real-world scenarios, neural networks can
face truly novel data points during inference, and in these
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settings it can be valuable to have good estimates of the
model’s uncertainty. For example, in healthcare, reliable
uncertainty estimates can prevent overconfident decisions
for rare or novel patient conditions (Schulam and Saria,
2015). Another application are autonomous agents that
should actively explore their environment, requiring un-
certainty estimates to decide what data points will be most
informative.

Epistemic uncertainty describes the amount of missing
knowledge about the data generating function. Uncer-
tainty can in principle be completely reduced by observ-
ing more data points at the right locations and training
on them. In contrast, the data generating function may
also have inherent randomness, which we call aleatoric
noise. This noise can be captured by models outputting
a distribution rather than a point prediction. Obtaining
more data points allows the noise estimate to move closer
to the true value, which is usually different from zero. For
active learning, it is crucial to separate the two types of
randomness: we want to acquire labels in regions of high
uncertainty but low noise (Lindley et al., 1956).

Bayesian analysis provides a principled approach to mod-
eling uncertainty in neural networks (Denker et al., 1987;
MacKay, 1992b). Namely, one places a prior over the
network’s weights and biases. This induces a distribution
over the functions that the network represents, capturing
uncertainty about which function best fits the data. Spec-
ifying this prior remains an open challenge. Common
practice is to use an independent normal prior in weight
space, which is neither informative about the induced
function class nor the data (e.g., it is sensitive to parame-
terization). This can cause the induced function posterior
to generalize in unforeseen ways on out-of-distribution
(OOD) inputs, which are inputs outside of the distribution
that generated the training data.

Motivated by these challenges, we introduce noise con-
trastive priors (NCPs), which encourage uncertainty out-
side of the training distribution through a loss in data
space. NCPs are compatible with any model that repre-
sents functional uncertainty as a random variable, are easy
to scale, and yield reliable uncertainty estimates that show
significantly improved active learning performance.
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(b) BBB
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(c) ODC+NCP
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(d) BBB+NCP

Figure 1: Predictive distributions on a low-dimensional active learning task. The predictive distributions are visualized
as mean and two standard deviations shaded. They decompose into epistemic uncertainty � and aleatoric noise �. Data
points are only available within two bands, and are selected using the expected information gain �. (a) A deterministic
network models no uncertainty but only noise, resulting in overconfidence outside of the data distribution. (b) A
variational Bayesian neural network with independent normal prior represents uncertainty and noise separately but is
overconfident outside of the training distribution. (c) On the OOD classifier model, NCP prevents overconfidence. (d)
On the Bayesian neural network, NCP produces smooth uncertainty estimates that generalize well to unseen data points.
Models trained with NCP also separate uncertainty and noise well. The experimental setup is described in Section 5.1.

2 NOISE CONTRASTIVE
PRIORS

Specifying priors is intuitive for small probabilistic mod-
els, where each variable often has a clear interpretation
(Blei, 2014). It is less intuitive for neural networks, where
the parameters serve more as adaptive basis coefficients
in a nonparametric function. For example, neural network
models are non-identifiable due to weight symmetries
that yield the same function (Müller and Insua, 1998).
This makes it difficult to express informative priors on the
weights, such as expressing high uncertainty on unfamil-
iar examples.

Data priors Unlike a prior in weight space, a data prior
lets one easily express informative assumptions about
input-output relationships. Here, we use the example of
a prior over a labeled data set {x, y}, although the prior
can also be on x and another variable in the model that
represents uncertainty and has a clear interpretation. The
prior takes the form pprior(x, y) = pprior(x) pprior(y | x),
where pprior(x) denotes the input prior and pprior(y | x)
denotes the output prior.

To prevent overconfident predictions, a good input prior
pprior(x) should include OOD examples so that it acts
beyond the training distribution. A good output prior
pprior(y | x) should be a high-entropy distribution, rep-

resenting high uncertainty about the model output given
OOD inputs.

Generating OOD inputs Exactly generating OOD
data is difficult. A priori, we must uniformly represent the
input domain. A posteriori, we must represent the com-
plement of the training distribution. Both distributions
are typically uniform over infinite support, making them
ill-defined. To estimate OOD inputs, we develop an algo-
rithm inspired by noise contrastive estimation (Gutmann
and Hyvärinen, 2010; Mnih and Kavukcuoglu, 2013),
where a complement distribution is approximated using
random noise.

A hypothesis of our work is that in practice it is enough to
encourage high uncertainty output near the boundary of
the training distribution, and that this effect will propagate
to the entire OOD space. This hypothesis is backed up
by previous work (Lee et al., 2017) as well as our exper-
iments (see Figure 1). This means we no longer need
to sample arbitrary OOD inputs. It is enough to sample
OOD points that lie close to the boundary of the training
distribution, and to apply our desired prior at those points.

Parameter Estimation Noise contrastive priors are
data priors that are enforced on both training inputs x
and inputs x̃ perturbed by noise. For example, in bi-
nary and categorical input domains, we can approximate
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Figure 2: Graphical representations of the two uncertainty-aware models we consider. Circles denote random variables,
squares denote deterministic variables, shading denotes observations during training. (a) The Bayesian neural network
captures a belief over parameters for the predictive mean, while the predictive variance is a deterministic function of the
input. In practice, we only use weight uncertainty for the mean’s output layer and share earlier layers between the mean
and variance. (b) The out-of-distribution classifier model uses a binary auxiliary variable o to determine if a given input
is out-of-distribution; given its value, the output mixed between a neural network prediction and a wide output prior.

OOD inputs by randomly flipping the features to different
classes with a certain probability. For continuous valued
inputs x, we can use additive Gaussian noise to obtain
noised up inputs x̃ = x + ε. This expresses the noise
contrastive prior where inputs are distributed according
to the convolved distribution,

pprior(x̃) =
1

N

∑
i

Normal(x̃− xi | µx, σ2
x)

pprior(ỹ | x̃) = Normal(µy, σ
2
y).

(1)

The variances σ2
x and σ2

y are hyperparameters that tune
how far from the boundary we sample, and how large
we want the output uncertainty to be. We choose µx =
0 to apply the prior equally in all directions from the
data points. The output mean µy determines the default
prediction of the model outside of the training distribution,
for example µy = 0. We set µy = y which corresponds to
data augmentation (Matsuoka, 1992; An, 1996), where a
model is trained to recover the true labels from perturbed
inputs. This way, NCP makes the model uncertain but still
encourages its prediction to generalize to OOD inputs.

For training, we minimize the loss function

L(θ) = − Eptrain(x,y)
[
ln pmodel(y | x)

]
(2)

+γEpprior(x̃)

[
DKL[pprior(ỹ | x̃) ‖ pmodel(ỹ | x̃, θ)]

]
.

The first term represents typical maximum likelihood.
The second term is added by our method: it represents the
analogous term on a data prior, where maximum likeli-
hood can be derived as minimizing a KL divergence to the
empirical training distribution ptrain(y | x) over training
inputs. The hyperparameter γ sets the relative influence
of the prior, allowing to trade-off between the two terms.

Interpretation as function prior The noise contrastive
prior can be interpreted as inducing a function prior. This

is formalized through the prior predictive distribution,

p(y | x) =
∫
pmodel(y | x, θ) pmodel(θ | x̃, ỹ)

pprior(x̃, ỹ) dθ dx̃ dỹ.
(3)

The distribution marginalizes over network parameters θ
as well as data fantasized from the data prior. The dis-
tribution p(θ | x̃, ỹ) represents the distribution of model
parameters after fitting the prior data. That is, the belief
over weights is shaped to make p(y | x) highly variable.
This parameter belief causes uncertain predictions outside
of the training distribution, which would be difficult to
express in weight space directly.

Because network weights are trained to fit the data prior,
the prior acts as “pseudo-data.” This is similar to classical
work on conjugate priors: a Beta(α, β) prior on the prob-
ability of a Bernoulli likelihood implies a Beta posterior,
and if the posterior mode is chosen as an optimal parame-
ter setting, then the prior translates to α−1 successes and
β − 1 failures. It is also similar to pseudo-data in sparse
Gaussian processes (Quiñonero-Candela and Rasmussen,
2005).

Data priors encourage learning parameters that not only
capture the training data well but also the prior data. In
practice, we can combine NCP with other priors, for exam-
ple the typical normal prior in weight space for Bayesian
neural networks, although we did not find this necessary
in our experiments.

3 VARIATIONAL INFERENCE
WITH NCP

In this section, we apply a Bayesian treatment of NCP
where we perform posterior inference instead of point
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estimation. Consider a regression task that we model
as p(y | x, θ) = Normal(µ(x), σ2(x)) with mean and
variance predicted by a neural network from the inputs.
This model is heteroskedastic, meaning that it can predict
a different aleatoric noise amount for every point in the
input space. We apply NCP to posit epistemic uncertainty
on the output of the mean µ, and we infer the induced
weight posterior for only the output layer (Lázaro-Gredilla
and Figueiras-Vidal, 2010; Calandra et al., 2014) that
predicts the mean. This results in the model

θ ∼ qφ(θ) y ∼ Normal(µ(x, θ), σ2(x)), (4)

where qφ(θ) forms an approximate posterior over weights.
We do not model uncertainty about the noise estimate, as
this is not required for the approximation for the Gaussian
expected information gain (MacKay, 1992a) that we will
use to acquire labels. The distribution of the mean induced
by the weight posterior, q(µ(x)) =

∫
µ(x, θ)qφ(θ) dθ,

represents epistemic uncertainty. Note that this is different
from the predictive distribution, which combines both
uncertainty and noise. The loss function is

L(φ) =− Eptrain(x,y)
[
Eqφ(θ)[ln p(y | x, θ)]

]
+DKL[Normal(µµ, σ

2
µ) ‖ q(µ(x̃))],

(5)

where x̃ are the perturbed inputs drawn from the input
prior. Because we only use the weight belief for the linear
output layer, the KL-divergence can computed analyti-
cally. In other models, it can be estimated using samples.
Compared to the loss function for point estimation (Equa-
tion 2), the only difference is a posterior expectation and
using the posterior predictive distribution for the KL.

Note Equation 5’s relationship to the variational lower
bound for typical Bayesian neural networks (Blundell
et al., 2015). The expected log likelihood term is the same.
Only the KL divergence differs in that it now penalizes
the approximate posterior in output space rather than in
weight space. This change avoids a common pathology
in variational Bayesian neural network training where
the variational distribution collapses to the prior; this
pathology happens on a per-dimension basis as the KL
decomposes into a sum of KLs for each weight dimension,
making it easy for many dimensions to collapse (Bowman
et al., 2015). By penalizing deviations in output space,
the approximate posterior can only collapse if the entire
predictive distribution is set to the output prior; this is
hard to achieve as the model would pay a large cost in the
data misfit (log-likelihood) term because little capacity
remains to additionally fit the data.

The loss function is an (approximate) lower bound to the
log-marginal likelihood. See Appendix B for its deriva-
tion via reparameterizing the original KL in weight space,
resulting in the reverse KL divergence known from varia-
tional inference.

4 RELATED WORK

Priors for neural networks Classic work has investi-
gated entropic priors (Buntine and Weigend, 1991) and hi-
erarchical priors (MacKay, 1992b; Neal, 2012; Lampinen
and Vehtari, 2001). More recently, Depeweg et al. (2018)
introduce networks with latent variables in order to dis-
entangle forms of uncertainty, and Flam-Shepherd et al.
(2017) propose general-purpose weight priors based on
approximating Gaussian processes. Other works have ana-
lyzed priors for compression and model selection (Ghosh
and Doshi-Velez, 2017; Louizos et al., 2017). Instead of
a prior in weight space (or latent inputs as in Depeweg
et al. (2018)), NCPs take the functional view by imposing
explicit regularities in terms of the network’s inputs and
outputs. This is similar in nature to Sun et al. (2019), who
define a GP prior for BNNs resulting in an interesting
but more complex algorithm. Malinin and Gales (2018)
propose prior networks to avoid an explicit belief over
parameters for classification tasks.

Input and output regularization There is classic work
on adding noise to inputs for improved generalization
(Matsuoka, 1992; An, 1996; Bishop, 1995). For example,
denoising autoencoders (Vincent et al., 2008) encourage
reconstructions given noisy encodings. Output regular-
ization is also a classic idea from the maximum entropy
principle (Jaynes, 1957), where it has motivated label
smoothing (Szegedy et al., 2016) and entropy penalties
(Pereyra et al., 2017). Also related is virtual adversarial
training (Miyato et al., 2015), which includes examples
that are close to the current input but cause a maximal
change in the model output, and mixup (Zhang et al.,
2018), which includes examples under the vicinity of
training data. These methods are orthogonal to NCPs:
they aim to improve generalization from finite data within
the training distribution (interpolation), while we aim
to improve uncertainty estimates outside of the training
distribution (extrapolation).

Classifying out-of-distribution inputs A simple ap-
proach for neural network uncertainty is to classify
whether data points belong to the data distribution, or
are OOD (Hendrycks and Gimpel, 2017). Recently, Lee
et al. (2017) introduce a GAN to generate OOD samples,
and Liang et al. (2018) add perturbations to the input,
applying an “OOD detector” to improve softmax scores
on OOD samples by scaling the temperature. Extending
these directions of research, we connect to Bayesian prin-
ciples and focus on uncertainty estimates that are useful
for active data acquisition.
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5 EXPERIMENTS

To demonstrate their usefulness, we evaluate NCPs on
various tasks where uncertainty estimates are desired.
Our focus is on active learning for regression tasks,
where only few targets are visible in the beginning, and
additional targets are selected regularly based on an
acquisition function. We use two data sets: a toy example
and a large flights data set. We also evaluate how sensitive
our method is to the choice of input noise. Finally, we
show that NCP scales to large data sets by training on
the full flights data set in a passive learning setting. Our
implementation uses TensorFlow Probability (Dillon
et al., 2017; Tran et al., 2016) and is open-sourced at
https://github.com/brain-research/ncp.
An implementation of NCP is also available in Aboleth
(Aboleth Developers, 2017) and Bayesian Layers (Tran
et al., 2018).

We compare four neural network models, all using leaky
ReLU activations (Maas et al., 2013) and trained using
Adam (Kingma and Ba, 2014). The four models are:

• Deterministic neural network (Det) A neural net-
work that predicts the mean and variance of a normal
distribution. The name stands for deterministic, as
there is no weight uncertainty.

• Bayes by Backprop (BBB) A Bayesian neural net-
work trained via gradient-based variational inference
with a independent normal prior in weight space (Blun-
dell et al., 2015; Kucukelbir et al., 2017). We use the
same model as in Section 3 but with a KL in weight
space.

• Bayes by Backprop with noise contrastive prior
(BBB+NCP) Bayes by Backprop with NCP on the
predicted mean distribution as described in Section 3.

• Out-of-distribution classifier with noise contrastive
prior (OCD+NCP) An uncertainty classifier model
described in Appendix A. It is a deterministic neural
network combined with NCP which we use as a base-
line alternative to Bayes by Backprop with NCP.

For active learning, we select new data points {x, y} for
which x maximizes the expected information gain under
the model q(y | x) =

∫
p(y | x, θ)q(θ) dθ,

max
x

Eq(y|x)[DKL[q(θ | x, y) ‖ q(θ)]]. (6)

The expected information gain is the mutual information
between weights and output given input. It measures how
many bits of information the new data point is expected to
reveal about the optimal weights. Intuitively, the expected

information gain is the largest where the model has high
epistemic uncertainty but expects low aleatoric noise.

We use the form of the expected information gain for
Gaussian posterior predictive distributions discussed in
MacKay (1992a). Moreover, to select batches of data
points, we place a softmax distribution on the information
gain for all available data points and acquire labels by
sampling with a temperature of τ = 0.5 to get diversity.
This results in the acquisition rule

{xnew, ynew} ∼ pnew(x, y) ∝
(
1 +

Var[q(µ(x))]

σ2(x)

) 1
τ
,

(7)
where σ2(x) is the estimated aleatoric noise and q(µ(x))
is the epistemic uncertainty around the predicted mean
projected into output space. Since our Bayesian neural
networks only use a weight belief for the output layer,
q(µ(x)) is Gaussian and its variance can be computed
in closed form. In general, it the epistemic part of the
predictive variance would be estimated by sampling. In
the classifier model, we use the OOD probability p(o =
1|x) for this. For the deterministic neural network, we
use Var[p(y | x)] as proxy since it does not output an
estimate of epistemic uncertainty.

5.1 LOW-DIMENSIONAL ACTIVE
LEARNING

For visualization purposes, we start with experiments on
a 1-dimensional regression task that consists of a sine
function with a small slope and increasing variance for
higher inputs. Training data can be acquired only within
two bands, and the model is evaluated on all data points
that are not visible to the model. This structured split
between training and testing data causes a distributional
shift at test time, requiring successful models to have
reliable uncertainty estimates to avoid mispredictions for
OOD inputs.

For this experiment, we use two layers of 200 hidden units,
a batch size of 10, and a learning rate of 3 × 10−4 for
all models. NCP models use noise ε ∼ Normal(0, 0.5).
We start with 10 randomly selected initial targets, and
select 1 additional target every 1000 epochs. Figure 3
shows the root mean squared error (RMSE) and negative
log predictive density (NLPD) throughout learning. The
two baseline models severely overfit to the training dis-
tribution early on when only few data points are visible.
Models with NCP outperform BBB, which in turn out-
performs Det. Figure 1 visualizes the models’ predictive
distributions at the end of training, showing that NCP
prevents overconfident generalization.
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Figure 3: Active learning on the 1-dimensional regression problem, mean and standard deviation over 20 seeds. The test
root mean squared error (RMSE) and negative log predictive density (NLPD) of the models trained with NCP decreases
during the active learning run, while the baseline models select less informative data and overfit. The deterministic
network is barely visible in the plots as it overfits quickly. Figure 1 shows the predictive distributions of the models.

5.2 ACTIVE LEARNING ON FLIGHT
DELAYS

We consider the flight delay data set (Hensman et al.,
2013; Deisenroth and Ng, 2015; Lakshminarayanan et al.,
2016), a large scale regression benchmark with several
published results. The data set has 8 input variables de-
scribing a flight, and the target is the delay of the flight
in minutes. There are 700K training examples and 100K
test examples. The test set has a subtle distributional shift,
since the 100K data points temporally follow after the
training data.

We use two layers with 50 units each, a batch size
of 10, and a learning rate of 10−4. For NCP models,
ε ∼ Normal(0, 0.1). Starting from 10 labels, the models
select a batch of 10 additional labels every 50 epochs.
The 700K data points of the training data set are avail-
able for acquisition, and we evaluate performance on the
typical test split. Figure 4 shows the performance for
the visible data points and the test set respectively. We
note that BBB and BBB+NCP show similar NLPD on the
visible data points, but the NCP models generalize better
to unseen data. Moreover, the Bayesian neural network
with NCP achieves lower RMSE than the one without
and the classifier based model achieves lower RMSE than
the deterministic neural network. All uncertainty-based
models outperform the deterministic neural network.

5.3 ROBUSTNESS TO NOISE
PATTERNS

The choice of input noise might seem like a critical
hyper parameter for NCP. In this experiment, we find
that our method is robust to the choice of input noise.
The experimental setup is the same as for the active
learning experiment described in Section 5.2, but with

uniform or normal input noise with different variance
(σ2
x ∈ {0.1, 0.2, · · · , 1.0}). For uniform input noise, this

means noise is drawn from the interval [−2σx, 2σx].

We observe that BBB+NCP is robust to the size of the
input noise. NCP consistently improves RMSE for the
tested noise sizes and yields the best NLPD for all noise
sizes below 0.6. For our ODC baseline, we observe an
intuitive trade-off: smaller input noise increases the regu-
larization strength, leading to better NLPD but reduced
RMSE. Robustness to the choice of input noise is further
supported by the analogous experiment on toy data set,
where above a small threshold (BBB+NCP σ2

x ≥ 0.3 and
ODC+NCP σ2

x ≥ 0.1), NCP consistently performs well
(Figure 6).

5.4 LARGE SCALE REGRESSION OF
FLIGHT DELAYS

In addition to the active learning experiments, we perform
a passive learning run on all 700K data points of the
flights data set to explore the scalability of NCP. We use
networks of 3 layers with 1000 units and a learning rate of
10−4. Table 1 compares the performance of our models
to previously published results. We significantly improve
state of the art performance on this data set.

6 DISCUSSION

We develop noise contrastive priors (NCPs), a prior for
neural networks in data space. NCPs encourage network
weights that not only explain the training data but also
capture high uncertainty on OOD inputs. We show that
NCPs offer strong improvements over baselines and scale
to large regression tasks.
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Figure 4: Active learning on the flights data set. The models trained with NCP achieve significantly lower negative log
predictive density (NLPD) on the test set, and Bayes by Backprop with NCP achieves the lowest root mean squared
error (RMSE). The test NLPD for the baseline models diverges as they overfit to the visible data points. Plots show
mean and std over 10 runs.
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Figure 5: Robustness to different noise patterns. Plots show the final test performance on the flights active learning
task (mean and stddev over 5 seeds). Lower is better. NCP is robust to the choice of input noise and improves over the
baselines in all settings (compare Figure 4).

We focused on active learning for regression tasks, where
uncertainty is crucial for determining which data points
to select next. NCPs are only one form of a data prior, de-
signed to encourage uncertainty on OOD inputs. In future
work, it would be interesting to apply NCPs to alternative
settings where uncertainty is important, such as image
classification (using correlated noise noise, such as mixup
(Zhang et al., 2018)) and learning with sparse or missing
data. Priors in data space can easily capture properties
such as periodicity or spatial invariance, and they may
provide a scalable alternative to Gaussian process priors.

Acknowledgements We thank Balaji Lakshmi-
narayanan, Jascha Sohl-Dickstein, Matthew D. Hoffman,
and Rif Saurous for their comments.

Table 1: Performance on all 700K data points of the flights
data set. While uncertainty estimates are not necessary
when a large data set that is similar to the test data set is
available, it shows that our method scales easily to large
data sets.

Model NLPD RMSE

gPoE (Deisenroth & Ng 2015) 8.1 —
SAVIGP (Bonilla et al. 2016) 5.02 —
SVI GP (Hensman et al. 2013) — 32.60
HGP (Ng & Deisenroth 2014) — 27.45
MF (Lakshminarayanan et al. 2016) 4.89 26.57

BBB 4.38 24.59
BBB+NCP 4.38 24.71
ODC+NCP 4.38 24.68
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A OOD CLASSIFIER MODEL WITH NCP

We showed how to apply NCP to a Bayesian neural network model that captures function uncertainty in a belief over
parameters. An alternative approach to capture uncertainty is to make explicit predictions about whether an input is
OOD. There is no belief over weights in this model. Figure 2b shows such a mixture model via a binary variable o,

o ∼Bernoulli(π(x, θ))

y ∼

{
Normal(µ(x, θ), σ2(x, θ)) if o = 0

Normal(µy, σ
2
y) if o = 1,

(8)

where p(o = 1 | x) is the OOD probability of x. If o = 0 (“in distribution”), the model outputs the neural network
prediction. Otherwise, if o = 1 (“out of distribution”), the model uses a fixed output prior. The neural network weights
θ are estimated using a point estimate, so we do not maintain a belief distribution over them.

The classifier prediction p(o | x, θ) captures uncertainty in this model. We apply the NCP p(o | x̃, θ) = δ(o = 1|x̃, θ)
to this variable, which assumes noised-up inputs to be OOD. During training on the data set, {x, y} and o = 0 are
observed, as training data are in-distribution by definition. Following Equation 2, the loss function is

L(θ) = DKL[ptrain(y | x) ‖ pmodel(y | x, o = 0, θ)] +DKL[pprior(õ | x̃) ‖ pmodel(õ | x̃, θ)]
= − ln p(y, o = 0 | x, θ)− ln p(y, o = 1 | x̃, θ)
= − lnNormal(y | µ(x, θ), σ2(x, θ))− lnBernoulli(0 | π(x, θ))− lnBernoulli(1 | π(x̃, θ))

NCP loss

.
(9)

Analogously to the Bayesian neural network model in Section 3, we can either set µy, σ2
y manually or use the neural

network prediction for potentially improved generalization. In our experiments, we implement the OOD classifier
model using a single neural network with two output layers that parameterize the Gaussian distribution and the binary
distribution.

B DERIVING VARIATIONAL INFERENCE WITH NCP

In Section 3, we described a variational inference objective with NCP which takes the log-likelihood term and adds a
forward KL-divergence from the mean prior to the model mean. To derive this:

Ep(x,y)
[
ln p(y | x)

]
= Ep(x,y)

[
ln

∫
p(y | x, θ)p(θ)q(θ)

q(θ)
dθ
]

≥ Ep(x,y)

[ ∫
q(θ) ln p(y | x, θ)p(θ)

q(θ)
dθ
]

= Ep(x,y)
[
Eq(θ)[ln p(y | x, θ)]−DKL[q(θ) ‖ p(θ)]

]
= Ep(x,y)

[
Eq(θ)[ln p(y | x, θ)]− Ep(x̃|x)[DKL[q(θ) ‖ p(θ)]]

]
≈ Ep(x,y)

[
Eq(θ)[ln p(y | x, θ)]− Ep(x̃|x)[DKL[q(µ(x̃)) ‖ p(µ(x̃) | x)]]

]
,

(10)

where p(µ(x̃)) =
∫
µ(x̃, θ)p(θ) dθ and q(µ(x̃)) =

∫
µ(x̃, θ)q(θ) dθ are the distributions of the predicted mean induced

by the weight beliefs. As a result, instead of specifying a prior in weight space, we can specify a prior in output space.

Above, we reparameteterized the KL in weight space as a KL in output space; by the change of variables, this is
equivalent if the mapping µ(·, θ) is continuous and 1-1 with respect to θ. This assumption does not hold for neural nets
as multiple parameter vectors can lead to the same predictive distribution, thus the approximation above. A compact
reparameterization of the neural network (equivalence class of parameteters) would make this an equality.

Note that the derivation uses the opposite direction of the KL divergence than what we use in the main text. The forward
KL divergence we use was originally motivated from maximum likelihood with data augmentation, in which the data
prior appears on the left-hand-side of the KL divergence when interpreting maximum likelihood as minimizing the KL
divergence from the data distribution to the model. In preliminary experiments, we haven’t found that the direction
makes a significant difference, but this requires future investigation.

11



C ROBUSTNESS EXPERIMENT ON TOY DATASET

See Figure 6.
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Figure 6: Robustness to different noise patterns. Plots show the final test performance on the low-dimensional active
learning task (mean and stddev over 5 seeds). Lower is better. The baseline performances are RMSE: BBB (0.75±0.31),
Det (1.46± 0.64) and NLPD: BBB (10.29± 8.05), Det (1.3× 108 ± 1.7× 108). NCP works with both Gaussian and
uniform input noise ε and is robust to σ2

x.

D RELATED ACTIVE LEARNING WORK

Active learning is often employed in domains where data is cheap but labeling is expensive, and is motivated by the
idea that not all data points are equally valuable when it comes to learning (Settles, 2009; Dasgupta, 2004). Active
learning techniques can be coarsely grouped into three categories. Ensemble methods (Seung et al., 1992; McCallumzy
and Nigamy, 1998; Freund et al., 1997) generate queries that have the greatest disagreement between a set of classifiers.
Error reduction approaches incorporate the select data based on the predicted reduction in classifier error based
on information (MacKay, 1992a), Monte Carlo estimation (Roy and McCallum, 2001), or hard-negative example
mining (Sung, 1994; Rowley et al., 1998).

Uncertainty-based techniques select samples for which the classifier is most uncertain. Approaches include maximum
entropy (Joshi et al., 2009), distance from the decision boundary (Tong and Koller, 2001), pseudo labelling high
confidence examples (Wang et al., 2017), and mixtures of information density and uncertainty measures (Li and Guo,
2013). Within this category, the area most related to our work are Bayesian methods. Kapoor et al. (2007) estimate
expected improvement using a Gaussian process. Other approaches use classifier confidence (Lewis and Gale, 1994),
predicted expected error (Roy and McCallum, 2001), or model disagreement (Houlsby et al., 2011). Recently, Gal et al.
(2017) applied a convolutional neural network with dropout uncertainty to images.

12


	1 Introduction
	2 Noise Contrastive Priors
	3 Variational Inference with NCP
	4 Related Work
	5 Experiments
	5.1 Low-dimensional active learning
	5.2 Active learning on flight delays
	5.3 Robustness to noise patterns
	5.4 Large scale regression of flight delays

	6 Discussion
	A OOD Classifier Model with NCP
	B Deriving Variational Inference with NCP
	C Robustness Experiment on Toy Dataset
	D Related Active Learning Work

