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0. Abstract

Variational methods : tractable approximation to Bayesian Inference
previous works : have only been applicable to few simple network architectures

This paper introduces "stochastic variational method" (= MDL loss function) that can be applied to
most NN!

1. Introduction

at first, V.I. has not been widely used ( due to difficulty of deriving analytical solutions to the
integrals )

Key point :

e forget about analytical solutions! can be efficiently approximated with NUMERICAL
INTEGRATION
e "Stochastic method" for V.l with a diagonal Gaussian posterior

takes a view of MDL (Minimum Description Length)

e 1) clear separation between "prediction accuracy" and "model accuracy"
e 2)recasting inference as "optimization" makes it easier to implement in "gradient-descent
based NN"

2. Neural Networks

network loss ( defined as the "negative log probability") :
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LY(w,D) = —InPr(D | w) = — > (xy)ep M Pr(y | x, w)

3. Variational Inference
prior of weights: P(w | a)

posterior of weights : Pr(w | D, a) — can not be calculated analytically in most cases

solve this problem by approximating Pr(w | D, &) with a more tractable distribution Q(w | 5)

by minimizing "VARIATIONAL FREE ENERGY" : F = —<ln[%}> o

((9)z~p denotes the expectation of g over p)

4. MDL (Minimum Description Length)
Variational Free Energy F can be viewed with MDL principle!
F = <LN(W> D)>w~Q(ﬂ) =+ DKL(Q(:B)HP(a))

e Nerrorloss: LF(B,D) = (L" (w, D)>WNQ(ﬂ)
e 2) complexity loss : L (e, ) = Dk1,(Q(B)||P(cx))

with MDL view : L(«, 8, D) = L (8,D) + L¢ (a, B)

e 1) cost of transmitting the model with w unspecified
e 2) cost of transmitting the prior

Network is then trained on D by minimizing L(c, 3, D)

5. Choice of Distributions

Should derive the form of LZ(8, D) and L¢(a, B) for various choices of Q(8) and P(a)
will limit to diagonal posteriors of the form

« QB =111 a (8)
o L% e, B) = ZZI Dxr (¢ (8i) || P(ex))

5-1. Delta Posterior

¢ Delta posterior : simplest non-trivial distribution for Q(3)

(assign probability 1 to a particular set of weights w, and 0 to all other weights))

e Prior: Laplace distribution with ¢ = 0 — L1 regularization

°© a:{p,,b}
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o Plw|a)= Hzl %bexp(— lwi;“‘)
o L¢(a,w)=Wn2b+ 13, |w; —p|+C

0L (auw) _ sgn(wi—p)

e Prior: Gaussian distribution with y = 0 — L2 regularization

° a={uo’}
o P(w|a) =1}, exp (-0
o LY (a,w) = Wln(\/27r02) + L5 (w; —p)?+C
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5-2. Gaussian Posterior

e diagonal Gaussian posterior
e each weight requires a separate mean $ variance ( 8 = {u, o2}, both of size w)
e cannot compute derivative exactly, so apply MC integration :
LF(B,D) ~ £ Y0, LN (w*, D)
e derive the following identities for the derivatives:

Vu(V(@))auw = (VaV(a))aups Vu(V(@))anw = 3(VaVaV(a))guy
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