[ Paper review 6 ]

Weight Uncertainty in Neural Networks
( Charles Blundell, et.al, 2015)

[ Contents ]

0. Abstract

1. Introduction

2. Point Estimates of Neural Networks
3. Being Bayesian by Backpropagation
4. Key point

0. Abstract

Bayes by Backprop

e New, Efficient "Backpropagation-compatible Algorithm" for learning a probability distribution
on the weights of NN

e regularizes the weights by "minimizing a compression cost"
(=ELBO, Variational Free Energy )
e comparable performance to dropout

e demonstrate how learnt uncertainty can be used to improve "generalization" in non-linear
regression

e exploration-exploitation trade-off in reinforcement learning

1. Introduction

plain feedforward NN : prone to OVERFITTING

— by using variational Bayesian learning, introduce "Uncertainty in Weights"

"Bayes by Backprop" suggests 3 motivations for introducing uncertainty on weights

e 1)regularization on weights
e 2)richer representations & predictions from cheap model averaging
e 3)exploration in simple RL problems ( ex. contextual bandits )

Previous works to prevent overfitting

e 1) early stopping
e 2)weight decay
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3) dropout (Hinton et al., 2012)

Summary

2.

All weights are represented by "distribution" ( not a single fixed points )

Instead of learning single NN, BBB trains "an ENSEMBLE of networks"

( each network has its weights drawn from a distribution)

unlike other ensemble methods, only doubles the number of parameters! ( ué&o)

gradients can be made UNBIASED and can also be used with non-Gaussian priors!

uncertainty in hidden unit — uncertainty about particular observation — regularization of
the weights

Figure I. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

Point Estimates of Neural Networks

probabilistic model : P(y | z,w)

e for categorical dist'n : cross-entropy, softmax loss
e for continuous dist'n : squared loss

Weights can be learnt by...

MLE (Maximum Likelihood Estimator) :

wME — arg maxlog P(D | w)
w

= argmaleogP(y,- | xi, W)
i
MAP (Maximum a Posteriori) : can introduce REGULARIZATION :
wMAP — argmaxlog P(w | D)

= argmaxlog P(D | w) + log P(w)
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if wis a Gaussian prior : L2 regularization

if wis aLaplace prior: L1 regularization

3. Being Bayesian by Backpropagation
Bayesian inference for neural networks calculates the posterior distribution P(w | D)
predictive distribution : P(§ | X) = Ep(w/p) [P(¥ | X, W)]

"Taking an expectation under the posterior distributions on weights = ensemble of uncountably
infinite number of NN"

Variational Inference

e find g(w | ) that minimizes KL divergence
0" = argminKL{g(w | 0)] P(w | D)]
. g(w | 6)
= f)log ——~— '
argmn / a(w | 6)log P(w)P(D | w)
= argmin KL{g(w | 6)]| P(w)] — Ey(u)[log P(D | w)

dw

e cost function : "Variational Free energy" (= maximize ELBO)
F(D,0) = KLg(w | 0)[| P(w)] — Eq(wig) [log P(D | w)]

3-1. Unbiased Monte Carlo gradients

Reparameterzation trick :

deterministic function ¢(6, €) transforms a sample of parameter-free noise € & parameter 6 into a
sample from the variational posterior!

d of(w.0) ow |, 9f(w,0)
2Byl [f(w,0)] = By [ L) o . 2l

Proof )

sy Eawn v, 0)] = 5 [ 1w, 00w | 6)aw

-2 / F(w, B)q(e)de

= Bf(w,9)8_w+6f(w,9)
) | T aw a9 90

using the trick above, approximate
o F(D,6) = KLg(w | )] P(w)] — Eywjo)[log P(D | w)] as
F(D,0) ~ 3"  logq (w® | 6) —log P (w)) —log P (D | w?)

e where w® denotes the i® MC sample drawn from variational posterior g(w(® | 6)

found that a prior without an easy-to-compute closed form complexity cost performed the best
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3-2. Gaussian Variational Posterior

suppose variational posterior = "diagonal Gaussian"

parameter : § = (u, p) where o = log (1 + exp(p))

weight : w = t(6,€) = pu + log(1 + exp(p)) o €

Each step of optimization :

L.
2.
3

el

of(w.0)
ow

Sample € ~ N(0,1).
Letw = p+log(1 + exp(p)) o e.

. Let @ = (u, p).

Let f(w,f) =logq(w|f) — log P(w)P(D|w).
Calculate the gradient with respect to the mean

_ Of(w,0) Of(w,0)
Bu= ow T o

. (3)

Calculate the gradient with respect to the standard de-
viation parameter p

_0f(w.0) e Of(w, )

Bp = ow 1+exp(—p)+T' )

Update the variational parameters:

f— o —al\, (5)
pp—al, (6)

: shared for mean & variance

e also, excatly the same gradients find in plain backprop!

4. Key point

F(D,0) ~ > "  logq (w(i) | 6’) — log P (w(i)) —log P (’D | w(i))

use f(w,0) =logg(w | 8) — logp(w) — logp(D | w) for training g(w | 6)
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