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0. Abstract  
Bayes by Backprop 

New, Efficient "Backpropagation-compatible Algorithm" for learning a probability distribution 
on the weights of NN

regularizes the weights by "minimizing a compression cost"

( = ELBO, Variational Free Energy )

comparable performance to dropout

demonstrate how learnt uncertainty can be used to improve "generalization" in non-linear 
regression

exploration-exploitation trade-off in reinforcement learning

 

1. Introduction  
plain feedforward NN : prone to OVERFITTING

 by using variational Bayesian learning, introduce "Uncertainty in Weights"

 

"Bayes by Backprop" suggests 3 motivations for introducing uncertainty on weights

1) regularization on weights
2) richer representations & predictions from cheap model averaging
3) exploration in simple RL problems ( ex. contextual bandits )

 

Previous works to prevent overfitting

1) early stopping
2) weight decay
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3) dropout (Hinton et al., 2012)

 

Summary

All weights are represented by "distribution" ( not a single fixed points )

Instead of learning single NN, BBB trains "an ENSEMBLE of networks"

( each network has its weights drawn from a distribution)

unlike other ensemble methods, only doubles the number of parameters! (  )

gradients can be made UNBIASED and can also be used with non-Gaussian priors!

uncertainty in hidden unit  uncertainty about particular observation  regularization of 
the weights

 

2. Point Estimates of Neural Networks  
probabilistic model : 

for categorical dist'n : cross-entropy, softmax loss
for continuous dist'n : squared loss

 

Weights can be learnt by...

MLE (Maximum Likelihood Estimator) :

MAP (Maximum a Posteriori) : can introduce REGULARIZATION :
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if   is a Gaussian prior :  regularization

if   is a Laplace prior :  regularization

 

3. Being Bayesian by Backpropagation  
Bayesian inference for neural networks calculates the posterior distribution 

predictive distribution : 

"Taking an expectation under the posterior distributions on weights = ensemble of uncountably 
infinite number of NN"

 

Variational Inference

find  that minimizes KL divergence

cost function : "Variational Free energy" ( = maximize ELBO)

 

3-1. Unbiased Monte Carlo gradients  

Reparameterzation trick :

deterministic function  transforms a sample of parameter-free noise  & parameter  into a 
sample from the variational posterior!

Proof )

 

using the trick above, approximate 

 as 

where   denotes the  MC sample drawn from variational posterior 

 

found that a prior without an easy-to-compute closed form complexity cost performed the best
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3-2. Gaussian Variational Posterior  

suppose variational posterior = "diagonal Gaussian"

parameter :   where 

weight : 

 

Each step of optimization :

 

 : shared for mean & variance 

also, excatly the same gradients find in plain backprop!

 

4. Key point  

use  for training 
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