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0. Abstract

Disadvantage of Backpropagation

e 1) have to tune LARGE NUMBER of HYPERPARAMETERS
e 2)lack of calibrated probabilistic predictions
e 3)tendency to overfit

Bayesian approach solve those problems!

But, Bayesian lack scalability to large dataset & network sizes

PBP (Probabilistic Backpropagation)

e scalable method for learning BNN
e forward propagation of probabilities
backward computation of gradients

e provides accurate estimates of the posterior variance!

1. Introduction

NN solves wide range of supervised learning problems

success of NN is due to ability to train them on massive data ( with stochastic optimization,
backpropagation, ...)
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How PBP solve those three problems (of original BP)?

e problem 1) have to tune LARGE NUMBER of HYPERPARAMETERS

— automatically infer hyperparameter values ( by marginalizing the out of the posterior)
e problem 2) lack of calibrated probabilistic predictions

— account for uncertainty
e problem 3) tendency to overfit

— average over parameter values (instead of single point), thus robust to overfitting!

Previous Bayesian Approach : lack of scalability

e ex 1) Laplace approximation (MacKay, 1992c)

e ex 2) Hamiltonian Monte Carlo (Neal, 1995)

e ex 3) Expected Propagation (Jylanki et al., 2014)

e ex 4) Variational Inference (Hinton & Camp, 1993)

Previous Bayesian Approach : has scalability, but.....

e ex 5)Scalable Variational Inference Appraoch ( Graves, 2011)

But, perform poorly in practice, due to noise from Monte Carlo approximations within the
stochastic gradient computations

e ex 6) Scalable solution based on Expected Propagation (Soudry et al., 2014)
( works with binary weights, but extension to continuous weights is unsatisfying )

( does not produce estimates of posterior variance)

PBP : fast & dos not have the disadvantages of previous approaches!

2. Probabilistic Neural Network Models

data: D = {xn,yn}nNzl, wherex, € R”, y, € R,
probabilistic model : y, = f (x,; W) + €n

(+ additive noise variable : e, ~ N (0,771) )

Notation

L : number of layers

Vi : number of hidden units in layer [

W= {Wl}lL:1 : collection of V} x (V;_1 + 1) weight matrices
a; = Wyz;_1/4/Vi_1 + 1 input to the I th layer ( scaled )

a(z) = max(z,0) : ReLU activation function
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(1) likelihood : p(y | W, X,7) = [I2, N (yn | £ (xu; W), 77Y)

(2) prior : pW | A) = TT7, T T (i | 0,271

j
e Gaussian prior
e hyperprior for \: p(A) = Gam(X | o), B))

e prior for noise precision v: p(y) = Gam(y | af, 5})

(3) posterior : p(W, v, A | D) = £ (YIW’X’Q(I’;‘);V(‘)’\)I’ Wr()

e normalizing constant : p(y | X)

(4) predictive : p (y. | %, D) = [p (3« | W, 7) p(W, 7, A | D)dydAdW

* wherep (y, | x,W,7) =N (. | £(x4),7)
e p(W,v,A | D) and p (y, | x.) is not tractable in most cases

thus, use approximate inference

3. Probabilistic Backpropagation

2 phase of original BP :

e phase 1) propagate forward through the network to compute the function output & loss
e phase 2) derivatives of training loss (w.r.t weights) are propagated back

2 phase of PBP :

e do not use POINT estimates for the weights

instead, use "collection of 1-D Gaussian" ( each one approximating the marginal posterior
distribution)

e phase 1) (same)
e phase2)

o weights are random — activations produced in each layer are also random — resultin
intractable distribution!

sequentially approximates each of these distributions with a collection of 1-D Gaussian
match their marginal mean & variance

o instead of prediction error, use "logarithm of the marginal probability of the target
variable"

gradients of this quantity (w.r.t mean & variances) of the approximate Gaussian
posterior are propagated back!

current prior : g(w) = $N (w | m,v)
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updated prior : s(w) = Z 1 f(w)N (w | m,v)

e 7 :normalizing constant
¢ s(w) have a complex form — approximate with simpler distribution ( = use same form as q)

approximated upated prior : ¢"*V (w) = N (w | m™" ,v™" )

e by minimizing KL-divergence between s and ¢"°"

o miew :m_’_valogZ
om
2
o phev :’U—U2 dlog Z _2810gZ
om v

e those two distributions (s and ¢"°" )have same mean & variance

Detailed description of PBP

e ADF (assumed density filtering) method
e uses some of the improvements on ADF given by expected propagation (Minka, 2001)

3-1. PBP as an ADF(Assumed Density Filtering) method

approximate the exact posterior of NN ( with factored distribution)

L V, Vii+1

aW, v, N) =TT 1] N (wisa | maja,vije) | x Gam(y | @, 87) Gam(A | o, B*)
=1 i=1

Jj=1

approximation parameters are determind by ADF method

first, g(W, v, A) is initialized to uniform

* mgj; = 0,v; = 00
) a’y g aA = ]_

° ngA:O

(y (WX, 7)p(WINp(N)p(7)

PBP iterates iver the factors in the numerator of p(W, v, A | D) = £ oK)

and sequentially incorporates each of these factors into the approximation in g(W, ~, A)

There are...

e 2factors — for the priors on yand X (p(\) = Gam(X | o)), 8;). p(v) = Gam(vy | of, 7))
. HzL:1 Vi (Vi-1 + 1) factors —for the prior on W (

pOV [ A) =TT TS TS (wig [ 0,071)
e N factors — for likelihood (p(y | W, X,7) = [T2_, N (yn | £ (s W), 77 1))
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3-2. Incorporating the PRIOR factors into g
priors on yand A
resulting update : agew = o, Brew = B> Ohew =

® aéew = [ZZQZ;2 (Ol)‘ + 1) /O{)\ — 10] !
. B = (2227 (o +1) B 22 0B

Notation

e Z: normalizer of s
e 7 :value of Z when o is increased by 1 unit
e 7, :value of Z when o is increased by 2 unit

How to find Z?
Z= / N (wizy | 0,A71) g(W, v, \)dWdydA
= / N (wijg | 0, X ) N (wijg | maja, i)
X Gam()\ | a)‘,ﬁ’\)dwijﬂld)\
= / T (wiji | 0,8 /a*,202) N (wijy | miji,viga) dwigy

o [N 3010.8% (6~ 1)) A g | )
=N (mij,l | 0;5)\/ (a’\ - 1) + 'Uij,l)

where T (- | p, B,v) denotes a Student's ¢ distribution with mean g, variance parameter 3 and
degrees of freedom v

approximate Student's ¢ density with Gaussian density

3-3. Incorporating the LIKELIHOOD factors into g

N factors — for likelihood ( p(y | W, X, ) = [[2_, N (n | f (xn;W),771))
update for all the m;;; and v;;;

assume an approximating Gaussian with mean m?* and variance v*:

How to find Z?
Z- / N (o | £ | W) 7Y) gV, 7, AWy, dA
z / N (g | 20,7 YN (21 | m*, v ) Gam(y | o, 87)zpdy

_ /fr(yn | 21,87/, 207) N (21, | m™ ,v%) dzy
~ N (g | M, 87/ (@ — 1) + ™)

where z;, = f(x; | W) ~ N (m®,v*)


af://n190
af://n214

How to find (m?*, v*)

a=Wiz_1/y/Vi-1 +1,
e mean:m*» =Mm*'/,/Vi_; +1

e variance: v¥ = [(M; o M) v® + V; (m®* om®) + Vv 1] /(Vi_; + 1)

bl =a (al)

® mean: m]iol =& (a;)
o variance: o™ = mPv[® (—a;) + & (i) v* (1 - (i + )

i

!
VRN . R mi o B(—a)
where v, = m;' + /vy, a; = ﬁ’ Yi = (o)

and ® and ¢ are respectively the cdf / pdf of standard Gaussian.

output of the I layer + bias 1 :

m* = [mbl; 1] , Vi = [Vbl;O]

to compute mean & variance (m?* & v ), initialize m* = [z;; 1] & v* =
implement iteratively

until we obtain m* = mi* & v = vj*

3-4. Expectation Propagation

EP imporves ADF by iteratively incorporating "each factor multiple times"

e each factor is "removed" from the current posterior approximation, re-estimated, and re-
incorporated

e disadvantage : have to keep in memory of all the approximate factors
e impossible with massive data

— instead, incorporate these factors multiple times "without removing" them from the
current approximation

( but can lead to underestimation of variance parameters )
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