[Paper review 8]

Probabilistic Backpropagation for
Scalable Learning of Bayesian Neural
Networks

(Jose Miguel Hernandez-Lobato, Ryan P.Adams, 2015)

[Contents]

0. Abstract

1. Introduction

2. Probabilistic Neural Network Models
3. Probabilistic Backpropagation

0. Abstract

Disadvantage of Backpropagation

e 1) have to tune LARGE NUMBER of HYPERPARAMETERS
e 2)lack of calibrated probabilistic predictions
e 3)tendency to overfit

Bayesian approach solve those problems!

But, Bayesian lack scalability to large dataset & network sizes

PBP (Probabilistic Backpropagation)

e scalable method for learning BNN
e forward propagation of probabilities
backward computation of gradients

e provides accurate estimates of the posterior variance!

1. Introduction

NN solves wide range of supervised learning problems

success of NN is due to ability to train them on massive data (with stochastic optimization,
backpropagation, ...)

af://n0
af://n2
af://n3
af://n5
af://n16
af://n39

How PBP solve those three problems (of original BP)?

e problem 1) have to tune LARGE NUMBER of HYPERPARAMETERS

— automatically infer hyperparameter values (by marginalizing the out of the posterior)
e problem 2) lack of calibrated probabilistic predictions

— account for uncertainty
e problem 3) tendency to overfit

— average over parameter values (instead of single point), thus robust to overfitting!

Previous Bayesian Approach : lack of scalability

e ex 1) Laplace approximation (MacKay, 1992c)

e ex 2) Hamiltonian Monte Carlo (Neal, 1995)

e ex 3) Expected Propagation (Jylanki et al., 2014)

e ex 4) Variational Inference (Hinton & Camp, 1993)

Previous Bayesian Approach : has scalability, but.....

e ex 5)Scalable Variational Inference Appraoch (Graves, 2011)

But, perform poorly in practice, due to noise from Monte Carlo approximations within the
stochastic gradient computations

e ex 6) Scalable solution based on Expected Propagation (Soudry et al., 2014)
(works with binary weights, but extension to continuous weights is unsatisfying)

(does not produce estimates of posterior variance)

PBP : fast & dos not have the disadvantages of previous approaches!

2. Probabilistic Neural Network Models

data: D = {xn,yn}nNzl, wherex, € R”, y, € R,
probabilistic model : y, = f (x,; W) + €n

(+ additive noise variable : e, ~ N (0,771))

Notation

L : number of layers

Vi : number of hidden units in layer [

W= {Wl}lL:1 : collection of V} x (V;_1 + 1) weight matrices
a; = Wyz;_1/4/Vi_1 + 1 input to the I th layer (scaled)

a(z) = max(z,0) : ReLU activation function

af://n78
af://n83

(1) likelihood : p(y | W, X,7) = [I2, N (yn | £ (xu; W), 77Y)

(2) prior : pW | A) = TT7, T T (i | 0,271

j
e Gaussian prior
e hyperprior for \: p(A) = Gam(X | o), B))

e prior for noise precision v: p(y) = Gam(y | af, 5})

(3) posterior : p(W, v, A | D) = £ (YIW’X’Q(I’;‘);V(‘)’\)I’ Wr()

e normalizing constant : p(y | X)

(4) predictive : p (y. | %, D) = [p (3« | W, 7) p(W, 7, A | D)dydAdW

* wherep (y, | x,W,7) =N (. | £(x4),7)
e p(W,v,A | D) and p (y, | x.) is not tractable in most cases

thus, use approximate inference

3. Probabilistic Backpropagation

2 phase of original BP :

e phase 1) propagate forward through the network to compute the function output & loss
e phase 2) derivatives of training loss (w.r.t weights) are propagated back

2 phase of PBP :

e do not use POINT estimates for the weights

instead, use "collection of 1-D Gaussian" (each one approximating the marginal posterior
distribution)

e phase 1) (same)
e phase2)

o weights are random — activations produced in each layer are also random — resultin
intractable distribution!

sequentially approximates each of these distributions with a collection of 1-D Gaussian
match their marginal mean & variance

o instead of prediction error, use "logarithm of the marginal probability of the target
variable"

gradients of this quantity (w.r.t mean & variances) of the approximate Gaussian
posterior are propagated back!

current prior : g(w) = $N (w | m,v)

af://n114

updated prior : s(w) = Z 1 f(w)N (w | m,v)

e 7 :normalizing constant
¢ s(w) have a complex form — approximate with simpler distribution (= use same form as q)

approximated upated prior : ¢"*V (w) = N (w | m™" ,v™")

e by minimizing KL-divergence between s and ¢"°"

o miew :m_’_valogZ
om
2
o phev :’U—U2 dlog Z _2810gZ
om v

e those two distributions (s and ¢"°")have same mean & variance

Detailed description of PBP

e ADF (assumed density filtering) method
e uses some of the improvements on ADF given by expected propagation (Minka, 2001)

3-1. PBP as an ADF(Assumed Density Filtering) method

approximate the exact posterior of NN (with factored distribution)

L V, Vii+1

aW, v, N) =TT 1] N (wisa | maja,vije) | x Gam(y | @, 87) Gam(A | o, B*)
=1 i=1

Jj=1

approximation parameters are determind by ADF method

first, g(W, v, A) is initialized to uniform

* mgj; = 0,v; = 00
) a’y g aA =]_

° ngA:O

(y (WX, 7)p(WINp(N)p(7)

PBP iterates iver the factors in the numerator of p(W, v, A | D) = £ oK)

and sequentially incorporates each of these factors into the approximation in g(W, ~, A)

There are...

e 2factors — for the priors on yand X (p(\) = Gam(X | o)), 8;). p(v) = Gam(vy | of, 7))
. HzL:1 Vi (Vi-1 + 1) factors —for the prior on W (

pOV [A) =TT TS TS (wig [0,071)
e N factors — for likelihood (p(y | W, X,7) = [T2_, N (yn | £ (s W), 77 1))

af://n164

3-2. Incorporating the PRIOR factors into g
priors on yand A
resulting update : agew = o, Brew = B> Ohew =

® aéew = [ZZQZ;2 (Ol)‘ + 1) /O{)\ — 10] !
. B = (2227 (o +1) B 22 0B

Notation

e Z: normalizer of s
e 7 :value of Z when o is increased by 1 unit
e 7, :value of Z when o is increased by 2 unit

How to find Z?
Z= / N (wizy | 0,A71) g(W, v, \)dWdydA
= / N (wijg | 0, X) N (wijg | maja, i)
X Gam()\ | a)‘,ﬁ’\)dwijﬂld)\
= / T (wiji | 0,8 /a*,202) N (wijy | miji,viga) dwigy

o [N 3010.8% (6~ 1)) A g |)
=N (mij,l | 0;5)\/ (a’\ - 1) + 'Uij,l)

where T (- | p, B,v) denotes a Student's ¢ distribution with mean g, variance parameter 3 and
degrees of freedom v

approximate Student's ¢ density with Gaussian density

3-3. Incorporating the LIKELIHOOD factors into g

N factors — for likelihood (p(y | W, X,) = [[2_, N (n | f (xn;W),771))
update for all the m;;; and v;;;

assume an approximating Gaussian with mean m?* and variance v*:

How to find Z?
Z- / N (o | £ | W) 7Y) gV, 7, AWy, dA
z / N (g | 20,7 YN (21 | m*, v) Gam(y | o, 87)zpdy

_ /fr(yn | 21,87/, 207) N (21, | m™ ,v%) dzy
~ N (g | M, 87/ (@ — 1) + ™)

where z;, = f(x; | W) ~ N (m®,v*)

af://n190
af://n214

How to find (m?*, v*)

a=Wiz_1/y/Vi-1 +1,
e mean:m*» =Mm*'/,/Vi_; +1

e variance: v¥ = [(M; o M) v® + V; (m®* om®) + Vv 1] /(Vi_; + 1)

bl =a (al)

® mean: m]iol =& (a;)
o variance: o™ = mPv[® (—a;) + & (i) v* (1 - (i +)

i

!
VRN . R mi o B(—a)
where v, = m;' + /vy, a; = ﬁ’ Yi = (o)

and ® and ¢ are respectively the cdf / pdf of standard Gaussian.

output of the I layer + bias 1 :

m* = [mbl; 1] , Vi = [Vbl;O]

to compute mean & variance (m?* & v), initialize m* = [z;; 1] & v* =
implement iteratively

until we obtain m* = mi* & v = vj*

3-4. Expectation Propagation

EP imporves ADF by iteratively incorporating "each factor multiple times"

e each factor is "removed" from the current posterior approximation, re-estimated, and re-
incorporated

e disadvantage : have to keep in memory of all the approximate factors
e impossible with massive data

— instead, incorporate these factors multiple times "without removing" them from the
current approximation

(but can lead to underestimation of variance parameters)

af://n247

	[Paper review 8]
	Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
	(Jose Miguel Hernandez-Lobato, Ryan P.Adams, 2015)

	[Contents]
	0. Abstract
	1. Introduction
	2. Probabilistic Neural Network Models
	Notation

	3. Probabilistic Backpropagation
	3-1. PBP as an ADF(Assumed Density Filtering) method
	3-2. Incorporating the PRIOR factors into q
	3-3. Incorporating the LIKELIHOOD factors into q
	3-4. Expectation Propagation

