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0. Abstract

Extend Variational Dropout to the case when dropout rates are unbounded

Propose a way to reduce the variance of the gradient estimator

1. Introduction

Dropout

e Binary Dropout (Hinton et al., 2012)
e Gaussian Dropout (Srivastava et al, 2014)
( multiplies the outputs of the neurons by Gaussian random noise )
e Dropout rates are usually optimized by grid-search
( To avoid exponential complexity, dropout rates are usually shared for all layers)

e can be seen as a Bayesian regularization (Gal & Ghahramani, 2015)

Instead of injecting noise, Sparsity!
e inducing sparsity during training DNN leads regularization (Han et al., 2015a)

e Sparse Bayesian Learning (Tipping, 2001)

( provies framework for training of sparse models )

This paper

e 1) study Variational Dropout (Kingma et al, 2015)
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where each weight of a model has its own individual dropout rate
e 2)propose Sparse Variational Dropout

"extends VD" to all possible values of drop out rates (= «)

(to do this, provide a new approximation of KL-divergence term in VD objective )
e 3) propose a way to reduce variance of stochastic gradient estimator

— leads to faster convergence

2. Related Work
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3. Preliminaries

3.1 Bayesian Inference

HOW to minimize Dgy, (g4 (w)||p(w | D)) ?

Maximize ELBO = (1) Expected Log-likelihood - (2) KL-divergence

ELBO : L(¢) = Lp(¢) — Dkr (g5 (w)|[p(w)) — maxses

e (1) Expected Log-likelihood : Lp(¢) = 33N Eq,(w) [logp (Yn | Zp, w)]

n=

* (2)KL-divergence : Dk, (g4 (w)||p(w))

3.2 Stochastic Variational Inference

(a) Reparameterization Trick (Kingma & Welling, 2013)

e obtain unbiased differentiable minibatch-based MC estimator of expected log-likelihood
(thatis, find V4 Lp (g4) )
e trick : decompose into (1) deterministic & (2) stochastic part

w = f(¢,€) where e ~ p(e)

e number of data in one mini-batch : M
L(9) ~ LVF(¢) = LEVP(¢) — D (4 (w)l|p(w))
Lp(9) = L3P (9) = 37 X1 108D (G | Ems f (61 6m))
VoL (9) = 3t Yoy Vo 108D (i | &, f($r€m))
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(b) Local Reparameterization Trick (Kingma et al., 2015)

e sample separate weight matrices for each data-point inside mini-batch
e done efficiently by moving the noise from "weights" to "activation"

3.3 Variational Dropout

B = (A®E)W, with &,; ~ p(£) ... putting noise on INPUT

Bernoulli(Binary) Dropout

e Hinton et al.,, 2012
e &mi ~ Bernoulli (1 — p)

Gaussian Dropout with continuous noise
e Srivastava et al, 2014
p
o i~ N1 a=15)
e continuous noise is better than discrete noise
( multiplying the inputs by Gaussian noise = putting Gaussian noise on the weights)

e can be used to obtain posterior distribution over model's weight! (Wang & Manning, 2013),
(Kingma et al., 2015)

(&j ~ N (1, a) = sampling w;; from g (w;j | 0;j,a) =N (wi]- | 03, aﬁfj) )

(Then, wij = Oijgij = 91‘]' (1 + \/aﬁij) ~ N (wij ‘ Hij, a05j> where €ij ~ N(O, 1) )

Variational Dropout

® (usereparam trick + draw single sample W ~ q(W | 6, a) )
— Gaussian dropout = stochastic optimization of exxpected log likelihood
e VD extends this technique!

use ¢(W | 6, ) as an approximate posterior with special prior,
p (loglwij|) = const < p (|wi;]) o< ==

|wi;]

GD Training = VD Training (when «is fixed )

However, VD provides a way to train dropout rate « by optimizing the ELBO

4. Sparse Variational Dropout

difficulties in training the model with large values of «

— have considered the case of a < 1 (<4 p < 0.5 in binary dropout)
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High dropout rate a;; — oo =p =1

( meaning : corresponding weight is always ignored & can be removed )

4.1 Additive Noise Reparameterization

GESGVB B OESGVB a,w” B (1) 5 (2)
691']' a Bw,-j 69” a

(2) is very noisy if ay; is large.

wij =0 (1+ /& - €ij)

Ow;

(99,']'

=1+, /Qj - €ijr where €ij ~ N(O, 1)

How to reduce variance when a; is large ?

replace multiplicative noise term 1 + , /a;; - €;; .... with 03 - €5,
2 _ .92

(where 0;; = alﬂij )

Wi :01-]- (1 + \/Ol_z] . eij)

= Oij + 045 - €

Ow;
Thus, Wl] = 1, €ij ™~ N(O, 1)

( has no injection noise!)

avoid the problem of large gradient variance!

can train the model within the full range of a;; € (0, 4+00)

4.2. Approximation of the KL Divergence
full KL-divergence term in ELBO

Dir(a(W | 0,a)|p(W)) = >_;; Dxr (q(wij | 63, aij) || (wij))

log-scale uniform prior distribution is an improper prior
—Dxr (g (wij | 0ij, aig) [P (wig)) = $log aij — Bept,ay)
Term above is intractable in VD

need to be sampled & approximated

—Dxkr, (q (wij ‘ Hij,ozij) llp (wij)) ~ = ko (ke + ks logaij)) — 0.510g<1 + Ol;jl) +C
k1 = 0.63576 Kk, = 1.87320 ks = 1.48695
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