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3. Bayesian Deep Learning  
Based on two works

1) MC estimation ( Graves, 2011 )
2) VI ( Hinton and Van Camp, 1993 )

in a Bayesian persepective!

"BNN inference + SRTs ( offer a practical inference technique )"

 

Steps

step 1) analyze the variance of several stochastic estimators (used in VI)
step 2) tie these derivations to SRTs
step 3) propose practical techniques to obtain model uncertainty

 

3.1 Advanced techniques in VI  
[ review of VI ]

expected log likelihood : 

 

problems in expected log likelihood :

problem 1)   : perform computations over the entire dataset
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problem 2)  : not tractable

 

Solutions

solution 1) data sub-sampling ( mini-batch optimization )

( unbiased + stochastic estimator )

solution 2) MC integration

 

3.1.1 MC estimators  

use MC estimation to estimate "EXPECTED LOG LIKELIHOOD"

( more importantly, the "derivatives" of expected log likelihood )

 

Estimate "integral derivatives"

 

THREE main techniques for MC estimation for 

find "mean" derivative estimator  
find "standard deviation" derivative estimator 

 

(1) Score function estimator

 ( = Likelihood ratio estimator, Reinforce )

(2) Path-wise derivative estimator

 ( = reparametrization trick )

(3) Characteristic function estimator

 

(1) Score function estimator ( =  )  

  with   

simple
but high variance

 

 

(2) Path-wise derivative estimator ( =  )  

 

reparameterization trick
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before )  
after )    &  

 

"mean" derivative estimator   : 

"standard deviation" derivative estimator  : 

 

(3) Characteristic function estimator ( =  )  

    (   )

rely on the characteristic function of "Gaussian distribution"

( restricts the estimator to Gaussian  alone )

 

[tip] Reparameterization Trick  

use 

where 

( +   is zero for all  apart from )

 

 

3.1.2 Variance Analysis of MC estimator  

None of 3 estimators has the lowest variance for all functions of 

(1) score function
(2) path-wise derivative function
(3) characteristic function

 

Properties that (2), (3) have lower variance than (1) : in the paper

 

From empirical observations, (2) seems to be good!

Will continue our work using the path-wise derivative estimator

 

3.2 Practical Inference in BNN  
in terms of "PRACTICALITY"
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Graves (2011)

(a) delta approximating distribution ( use "characteristic function" )

(b) fully factorized approximating distribution 

( factorized the approximating distribution for EACH WEIGHT scalar, thus "losing weight correlation"  hurt 
performance )

 

Advancement

(a) use "path-wise derivative estimator" instead ( used 're-parameterization trick ')
(b) factorize the approximating distribution for EACH ROW WEIGHT 

 

ELBO using (1) reparam trick & (2) MC estimation

   

 

Predictive distribution

where 

 

[ Summary ]

optimizing  w.r.t  = optimizing  w.r.t  

 



3.2.1 SRT ( Stochastic Regularization Techniques )  

"REGULARIZE models through injection of STOCHASTIC NOISE"

 ex) dropout, multiplicative Gaussian Noise, drop connect ...

 

notation

 : deterministic matrix
 : random variable defined over the set of real matrices
 : realization of 

 

(1) Dropout  

two binary vectors 

( each with dimension  (=input dim) and  (=intermediate dim) )

parameters : 

sample  for every input & every forward pass

use the same value for backward pass

test time : do not sample any variables & just use the original units  scaled by 

 

(2) Multiplicative Gaussian Noise  

same as (1), except 

 

3.2.2 SRT as approximate inference  

inject noise to feature space ( =the input features to each layer, which are  and  )

( let  and  )

( random variable realization as weights :   )

 

Loss function  

where  corresponding to new masks 

 

Example)  Negative Log Likelihood
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where  with  observation noise
(for classification) 

 

 

Reparametrization trick  

where   and  for  

 

Loss function : 

 

Derivative of the loss function :

 

 

[ Summary ]

optimizing  with dropout :

 

instead of Dropout...  

1) Multiplicative Gaussian Noise

with  for  a product of  with positive  

 

2) Drop connect

with  a product of Bernoulli random variables

 

3) Additive Gaussian Noise

af://n253
af://n266


with  a product of  for each weight scalar

 

[ Algorithm summary ]  

[3.2.1] Algorithm 1 ) Minimize divergence between 

[3.2.2] Algorithm 2 ) Optimization of a NN with Dropout

 

For algorithm 1 = 2....

1) "regularization term derivatives" should be same ( = KL condition )

2) scale of derivatives

 

Summary :

"Optimizing any NN with DROPOUT" = "APPROXIMATE INFERENCE in a probabilistic interpretation of the model"
NN trained with dropout is "Bayesian NN"

 

3.2.3 KL condition  

condition for "VI" = "DO"  depends on the model specification ( choice of  and )

Example 1 )

prior :   where ( prior length scale )

then

 

Example 2 ) discrete prior

 

Example 3 ) improper log-uniform prior

for Multiplicative Gaussian Noise

 

 

3.3 Model Uncertainty in BNN  
approximate predictive distribution

 is our set of random variables for a model with  layers
 : model's stochastic output

 : optimum

 

check if FIRST & SECOND MOMENT matches!
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First Moment  

with 

unbiased estimator, following MC integration with  samples
when use Dropout  "MC Dropout" ( = model averaging )

 

( proof )

 

Second Moment  

with  and   row vectors

unbiased estimator, following MC integration with  samples

 

( proof )

 

 

Variance  

 

 

How to find model precision  ?

with grid search, find weight-decay  

 

Predictive Log-likelihood  

( approximated by MC integration )
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for regression :  

 

3.3.1 Uncertainty in Classification  

(regression) find predictive uncertainty by "looking at the sample variance of multiple stochastic forward pass"

(classification) 

1) variation ratios
2) predictive entropy
3) mutual information

 

1) Variation Ratio  

sample a label from softmax probabilities
collecting a set of  labels  from multiple stochastic forward passes ( of the same input )

, where 

 

variation-ratio can be seen as approximating the quantity : 

 

2) Predictive entropy  

foundation in "information theory"

( captures the information contained in the predictive distribution )

summing over all possible classes  that  can take

 

3) Mutual Information  

mutual information between prediction  and posterior ( over the  )

 

Example ( with binary output )  

case 1 ) all equal to 1 ...... ( (1,0), (1,0), ... (1,0) )
case 2 ) all equal to 0.5 ...... ( (0.5,0.5), (0.5,0.5), ... (0.5,0.5) )
case 3 ) half 1, half 0 ...... ( (1,0), (0,1), ... (1,0) )
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example Predictive Uncertainty Model Uncertainty

case 1 LOW (=0) LOW (=0)

case 2 HIGH (=0.5) LOW (=0)

case 3 HIGH (=0.5) HIGH (=0.5)

in case 2) 

variation ratio & predictive entropy = 0.5
mutual information = 0

 

 

3.3.2 Difficulties with the approach  

simple! just several stochastic forward pass & find sample mean and variance

but have 3 shortcomings...

1) test time is scaled by 

( but not a real concern in a real world application ... transferring an input to a GPU )

2) model's uncertainty is not calibrated

( calibrated model : predictive probabilities match the empirical frequency of the data )

( GP's uncertainty is known to not be calibrated )

( lack of calibration = scale is different! can not compare... )

3) limitation of VI : underestimation of predictive variance

( but not a real concern in a real world application )

 

3.4 Approximate inference in complex models  
apply it to CNN & RNN

 

3.4.1 Bayesian CNN  

also apply dropout after all convolution layers

 

3.4.2 Bayesian RNN  

inference with Bernoulli variational distributions for RNNs

 where 

 

view the under RNN model as a probabilistic model

regard 

where 
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Final objective function :
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