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1. Abstract  
Bayesian

pros) can fix many shortcomings of DL
cons) impractical

 

This paper shows "practical training of DNN with natural gradient variational inference"

use batch norm / data augmentation / distributed training / ....
similar performance as Adam ( even on large datasets )

 

Keeps benefits of Bayesian view

1) predictive probabilities are well calibrated
2) uncertainties of OOD is improved
3) continual-learning performance is boosted

 

2. Introduction  
problem of DL

1) need large dataset ( o.w, overfit! )
2) sequential learning can cause forgetting of past knowledge
3) lack of uncertainty estimation
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Bayesian can solve those 3 problems!

1) using Bayesian model averaging 
2) sequential learning with Bayes' rule
3) uncertainty estimation with posterior distribution

 

(previous) Bayesian inference on NN 

MCMC
Laplace's method
VI

 rarely used, due to impracticality ( because of computation of posterior )

 

New approaches ex)

MC-dropout (Dropout as a Bayesian approximation) : less-principled, but unsuitable for 
continual learning

 

Goal of this paper : "make VI practical"

"By using recently-proposed natural gradient VI method"

 

3. Deep Learning with Bayesian
Principles & its Challenges

 

form of loss function : 

where 

widely used optimizers

ex) SGD,RMSprop, Adam...

form : 

 : iteration

 and  : learning rates

 : stochastic gradients at  

(  ... using minibatch )

 scales extremely well!

 

full Bayesian approach

computationally very expensive in DNN

use Bayes rule to get posterior

(  )

VI
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principled approach, to more scalably estimate an approximation to posterior 

optimization by maximizing ELBO

(  )

the more complex, the more computational cost

 have still remained impractical....

 

4. Practical Deep Learning with Natual-
Gradient Variational Inference

 

propose natural-gradient VI methods

simple, when estimating exponential-family approximation

ex) when .

update of natural-parameter  : .

 : learning rate

use moving average

( if  , update = minimize the regularized loss )

 

VOGN (Variational Online Gauss-Newton) method

if  : Gaussian..

 is becomes similar to

.

. 

 where 

 : adapts the learning rate ( updated using moving average )

major difference:

update of  is based on Gauss-Newton approximation

(  )

 

This paper :

show practical training of DNN using VOGN

 

Techniques

(1) Batch Norm 

speed up & stabilize training
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do not use L2 reg/ weight decay
(2) Data Augmentation

improve performance drastically
(3) Momentum & initialization

to improve speed of convergence
 : momentum rate
 : momentum term

Xavier initialization
(4) Learning rate scheduling

regularly decayed
(5) Distributed training

to perform large experiments quickly
parallelize ( over data & MC samples )
reduce variance

(6) Implementation of Gauss-Newton update in VOGN

use Gauss-Newton approximation

( different from Adam! )

 

5. Algorithm  
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