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1. Abstract

Bayesian

e pros) can fix many shortcomings of DL
e cons) impractical

This paper shows "practical training of DNN with natural gradient variational inference"

e use batch norm / data augmentation / distributed training / ....
e similar performance as Adam ( even on large datasets )

Keeps benefits of Bayesian view

e 1) predictive probabilities are well calibrated
e 2)uncertainties of OOD is improved
e 3) continual-learning performance is boosted

2. Introduction

problem of DL

e 1) need large dataset ( 0.w, overfit! )
e 2)sequential learning can cause forgetting of past knowledge
e 3)lack of uncertainty estimation
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Bayesian can solve those 3 problems!

e 1) using Bayesian model averaging
e 2)sequential learning with Bayes' rule
e 3)uncertainty estimation with posterior distribution

(previous) Bayesian inference on NN

e MCMC
e laplace's method
o VI

— rarely used, due to impracticality ( because of computation of posterior )

New approaches ex)

e MC-dropout (Dropout as a Bayesian approximation) : less-principled, but unsuitable for
continual learning

Goal of this paper : "make VI practical”

"By using recently-proposed natural gradient VI method"

3. Deep Learning with Bayesian
Principles & its Challenges

form of loss function : Z(w) + éw'w

o where £(w) := L3 £ (y;, £, (%)), fu(x) € R

widely used optimizers

e ex) SGD,RMSprop, Adam...

g(w)+ow;
VStrite

str1 < (1= By) st + Be(& (we) + 5Wt)2

o form:wip <+ Wy — oy
o t:iteration
o a; >0and0 < B; < 1:learning rates
o g(w) : stochastic gradients at w
(8(w) := 2 > icm, Vol (i, £ (xi)) .. using minibatch )

— scales extremely well!

full Bayesian approach

e computationally very expensive in DNN

e use Bayes rule to get posterior
(p(w | D) = exp(—N{(w)/7)p(w)/p(D) )

VI
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¢ principled approach, to more scalably estimate an approximation to posterior p(w | D)
e q(w):=N(w|p %)
e optimization by maximizing ELBO

( ELBO: L(p,X) := —NE,[€(w)] — mDgz [g(w)|p(w)])

e the more complex, the more computational cost

— have still remained impractical....

4. Practical Deep Learning with Natual-
Gradient Variational Inference

propose natural-gradient VI methods
e simple, when estimating exponential-family approximation
e ex)when p(w) := N (w | 0,1/9),.
update of natural-parameter A: Ay 11 = (1 — 7p) A — pV,E, [£(w) + 276w w].
o p:learning rate
o use moving average

(if 7 =0, update = minimize the regularized loss )

VOGN (Variational Online Gauss-Newton) method
e if g: Gaussian..
o A1 = (1= 7p)Ar — pV, By [£(w) + 376w w] is becomes similar to

g +5 t A~
Wil < W — atg(\;:t—%, str1 < (1= Be) st + Be (& (we) + 5Wt)2

&(wi)+6
® HUpy1 S M — Oy gt Ht, str1 < (1—7B) st + 3tﬁ ZiEMt (& (Wt))2-

Ser140
° g (Wi) = Vul (yi, fu, (%:))-
w; ~ N (w | pt, ;) where 3, := diag(1/ (N (s; +9))),8 :=6/N
o s; :adapts the learning rate ( updated using moving average )
e major difference:

o update of s; is based on Gauss-Newton approximation

( ﬁ ZieMt (g (Wt))2 )

This paper :

e show practical training of DNN using VOGN

Techniques

e (1) Batch Norm

o speed up & stabilize training
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o do not use L2 reg/ weight decay
(2) Data Augmentation

o improve performance drastically
(3) Momentum & initialization

to improve speed of convergence
B1 : momentum rate

m : momentum term

Xavier initialization

(4) Learning rate scheduling

(e]
o
(e]
(o]

o regularly decayed
(5) Distributed training

o to perform large experiments quickly
o parallelize ( over data & MC samples)
o reduce variance
(6) Implementation of Gauss-Newton update in VOGN

o use Gauss-Newton approximation

( different from Adam!)

5. Algorithm

Algorithm 1: Variational Online Gauss Newton (VOGN)

1: Initialise peq. So. mo.

w(? ~ g(w)

2: N+ pN.b+ 73/N. | M |
3: repeat
4 Sample a minibatch M of size M. O b
5:  Split M into each GPU (local minibatch Myeq)). ‘ML”C‘“ ‘M""C'ﬂ ‘ Miocat ‘ MEDC“'!‘
6:  for each GPU in parallel do u r ﬂ 0
7: fork=1,2,...,K do wD| w® WO Wl
8: Sample € ~ N(0,I). w@l w® | w®| | w®)
9: w®  p+eowitho « (1/(N(s+6+7)))"2% i U L 1
10 Compute g+ Vul(y,. £, (x:)), Vi € Migeal gh|/€h|[gh]|[&n
using the method described in Appendix B| M R Y
. k
I &k 21 CieMpas B gh
. k
12: he — & e v, (8)2
}; Egn:i_f'lr ZK & and e L ZK i Learning rate o
15 endfor X Jizl k< K 2uk=1 11k [E/[mnemu'fn;afte' ‘ B1
l6:  AllReduce g, h. Exp. moving average rate
17 m ¢ Bim+ (g + é’ul)' External damping factor ¥
18: s (1 —7f2)s+ fzh Tempering parameter T
190 pep—am/(s+35+7). # MC samples for training K
20: until stopping criterion is met Data augmentation factor p

Figure 2: A pseudo-code for our distributed VOGN algorithm is shown in Algorithm and the
distributed scheme is shown in the right figure. The computation in line 10 requires an extra
calculation (see Appendix B), making VOGN slower than Adam. The bottom table gives a list of
algorithmic hyperparameters needed for VOGN,
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