[Paper review 41]

Neural Variational Inference for Text Processing

(Miao, et al., 2016)

[Contents]

- 1. Abstract
- 2. Introduction
- 3. Neural Variational Inference Framework
- 4. NVDM (Neural Variational Document Model)

1. Abstract

Introduce Variational Inference framework for generative & conditional models of text

- traditional) analytic approximation for intractable distn
- this paper) construct **inference network** conditioned on the discrete text input

Validate using 2 applications

- 1) generative document modeling
- 2) supervised question answering

2. Introduction

Probabilistic generative models in NLP

- 1) ability use unlabelled data effectively
- 2) incorporate abundant linguistic features
- 3) learn interpretable dependencies among data

ightarrow but as the model becomes complex.... becomes intractable! (due to high dimensional integrals)

 \rightarrow use MCMC or VI

Problem of MCMC & VI

- MCMC : computational cost
- VI: confined due to underestimation of posterior variance

Introduces **NEURAL VARIATIONAL FRAMEWORK** for generative models of text, inspired by **VAE**

- \rightarrow main idea : building **inference network** with DNN
 - analytic approximation (X)
 model the posterior probability (O) thus strong generalization ability
 - due to DNN: capture of learning complex non-linear distn
 - use reparam tricks
 (to train by back-prop of unbiased & low variance gradients w.r.t latent variables)

Propose

- NVDM (Neural Variational Document Model)
- NASM (Neural Answer Selection Model)

NVDM

Figure 1. NVDM for document modelling.

- unsupervised generative model of text
- extract "continuous semantic latent variable" for each document
- like VAE
 - **MLP encoder** (X : bag-of-words documents \rightarrow Z : continuous latent distn)
 - Softmax decoder (reconstructs document!)
 (each word is generated directly from dense continuous document representation)

NASM

Figure 2. NASM for question answer selection.

- supervised conditional model which imbues LSTMs
- attention model

(to focus on the phrases of an answer that are strongly connected to the question semantics)

Summary

demonstrate the effectiveness of **Neural Variational Inference for text processing** on 2 tasks the models are simple, expressive, trained efficiently (with scalable stochastic gradient back-prop)

suitable for unsupervised & supervised task

3. Neural Variational Inference Framework

latent variable model: popular in NLP, but hard to be effective & efficient in complex structures

- → thus propose generic **"neural variational inference framework"** that can be applied to
 - unsupervised NVDM
 - supervised NASM

Generative model

- latent variable h(= stochastic units in DNN)
- ullet x, y: observed parent & child nodes of h
- joint pdf : $p_{\theta}(x,y) = \sum_h p_{\theta}(m{y} \mid m{h}) p_{\theta}(m{h} \mid m{x}) p(m{x})$

ELBO:

$$egin{aligned} \mathcal{L} &= \mathbb{E}_{q(oldsymbol{h})} \left[\log p_{ heta}(oldsymbol{y} \mid oldsymbol{h}) p_{ heta}(oldsymbol{h} \mid oldsymbol{x}) p(oldsymbol{x}) - \log q(oldsymbol{h})
ight] \ &\leqslant \log \int rac{q(oldsymbol{h})}{q(oldsymbol{h})} p_{ heta}(oldsymbol{y} \mid oldsymbol{h}) p_{ heta}(oldsymbol{h} \mid oldsymbol{x}) p(oldsymbol{x}) doldsymbol{h} = \log p_{ heta}(oldsymbol{x}, oldsymbol{y}) \, . \end{aligned}$$

- $q(m{h})$ should approach true posterior $p(m{h} \mid m{x}, m{y})$
- parameterized diagonal Gaussian

$$q_{\phi}(m{h} \mid m{x}, m{y}) = \mathcal{N}\left(m{h} \mid m{\mu}(m{x}, m{y}), \mathrm{diag}ig(m{\sigma}^2(m{x}, m{y})ig)
ight).$$

3 steps to construct Inference network

- step 1) Construct vector representations of the observed variables :
 - $u = f_x(x), v = f_y(y).$
 - $\circ f_x(\cdot)$ and $f_y(\cdot)$: DNN
- step 2) Assemble a **joint representation**: $\pi = g(\boldsymbol{u}, \boldsymbol{v})$.
 - $\circ \ g(\cdot)$: MLP that concatenates vector representations of the conditioning variables
- step 3) Parameterise the variational distribution over the latent variable:

$$\mu = l_1(\pi), \log \sigma = l_2(\pi)$$

 $\circ \ \ l(\cdot)$: linear transformation & outputs the params of Gaussian

During training,

- model params θ
- inference network params ϕ

are updated using stochastic-backprop

(1) model params θ

$$egin{aligned}
abla_{ heta} \mathcal{L} &\simeq rac{1}{L} \sum_{l=1}^{L}
abla_{ heta} \log p_{ heta} \left(oldsymbol{y} \mid oldsymbol{h}^{(l)}
ight) p_{ heta} \left(oldsymbol{h}^{(l)} \mid oldsymbol{x}
ight) \end{aligned}$$
 where $h \sim q_{\phi}(h \mid x, y)$

(2) inference network params ϕ

need reparam trick!

- $oldsymbol{\bullet} \quad h = \mu + \sigma \cdot \epsilon.$ where $\epsilon^{(l)} \sim \mathcal{N}(0,I)$
- to reduce variance!

update of ϕ can be carried out, using gradients w.r.t. μ and σ

$$s(oldsymbol{h}) = \log p_{ heta}(oldsymbol{y} \mid oldsymbol{h}) p_{ heta}(oldsymbol{h} \mid oldsymbol{x}) - \log q_{\phi}(oldsymbol{h} \mid oldsymbol{x}, oldsymbol{y})$$

$$abla_{\mu}\mathcal{L} \simeq rac{1}{L} \sum_{l=1}^{L}
abla_{m{h}^{(l)}} \left[s\left(m{h}^{(l)}
ight)
ight].$$

$$abla_{\sigma}\mathcal{L} \simeq rac{1}{2L} \sum_{l=1}^{L} oldsymbol{\epsilon}^{(l)}
abla_{oldsymbol{h}^{(l)}} ig[s\left(oldsymbol{h}^{(l)}
ight) ig].$$

4. NVDM (Neural Variational Document Model)

"Unsupervised learning"

 $h \in R^K$: continuous hidden variable , used to represent its semantic content

interpret NVDM as VAE

- MLP encoder : $q(\mathbf{h} \mid \mathbf{X})$
- ullet softmax decoder : $p(oldsymbol{X} \mid oldsymbol{h}) = \prod_{i=1}^N p\left(oldsymbol{x}_i \mid oldsymbol{h}
 ight)$

To maximize log likelihood (= $\log \sum_h p({m{X}} \mid {m{h}}) p({m{h}})$),

$$ightarrow$$
 maximize ELBO $\mathcal{L} = \mathbb{E}_{q_{\phi}(m{h}|m{X})}\left[\sum_{i=1}^{N}\log p_{ heta}\left(m{x}_{i}\midm{h}
ight)
ight] - D_{\mathrm{KL}}\left[q_{\phi}(m{h}\midm{X})\|p(m{h})
ight]$

- *N* : number of words in the document
- $p(\mathbf{h})$: Gaussian prior for h

Encoder

- inference network
- modeled by Gaussian
- $q_{\phi}(m{h}\mid m{X}) = \mathcal{N}\left(m{h}\mid m{\mu}(m{X}), \mathrm{diag}ig(m{\sigma}^2(m{X})ig)
 ight).$ where $\pi = g\left(f_X^{\mathrm{MLP}}(m{X})
 ight)$. and $\mu = l_1(m{\pi}), \log \sigma = l_2(m{\pi})$

Decoder

- modeled by softmax (= multinomial logistic regression)
- $egin{aligned} ullet p_{ heta}\left(oldsymbol{x}_i \mid oldsymbol{h}
 ight) &= rac{\exp\{-E(oldsymbol{x}_i;oldsymbol{h}, heta)\}\}}{\sum_{j=1}^{|V|} \exp\{-E(oldsymbol{x}_j;oldsymbol{h}, heta)\}}. \end{aligned}$ where $E\left(oldsymbol{x}_i;oldsymbol{h}, heta
 ight) = -oldsymbol{h}^Toldsymbol{R}oldsymbol{x}_i oldsymbol{b}_{x_i}$

ELBO (=
$$\mathcal{L} = \mathbb{E}_{q_{\phi}(m{h}|m{X})}\left[\sum_{i=1}^{N}\log p_{ heta}\left(m{x}_{i}\midm{h}
ight)
ight] - D_{\mathrm{KL}}\left[q_{\phi}(m{h}\midm{X})\|p(m{h})
ight]$$
) can be optimized,

by back-prop of stochastic gradients w.r.t heta and ϕ

5. NASM (Neural Answer Selection Model)

after reviewing Attention mechanism...