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1. Abstract  
RNN's major difficulty : 

 tendency to overfit , but dropout is shown to fail on recurrent layers!

 

This paper, offers insights into the use of dropout with RNN models

Apply VI based dropout techniques in LSTM & GRU

assess it to language model & sentiment analysis task

 

2. Introduction  
RNN 

sequence based models, key to NLP

but overfit quickly

( + lack of regularization ..... difficult on small dataset )

dropout has not been successful

 

with Bayesian view!
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"Dropout = variational approximation to the posterior of BNN" ( Gal and Ghahramani )

RNNs with weights, treated as random variables

perform approximate VI in these probabilistic Bayesian models 

( called Variational RNNs )

weights with mixture of Gaussians  tractable optimization objective

 Identical to performing a new variant of DROPOUT in the respective RNNs!

 

Dropout in RNN

repeat the SAME dropout mask at each time step for inputs/outputs/recurrent layers

.

3. Background  
3-1. BNN  
Softmax Likelihood (for classification)

.

 

Predictive distribution

.

 

Prior

place a prior distn over NN's weight  BNN
often place standard matrix Gaussian prior, .

 

3-2. Approximate VI in BNN  
posterior is intractable, use VI
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minimize KL-div, .

extend this to probabilistic RNNs

 

4. VI in RNNs  
use simple RNN models for simplicity ( LSTM, GRU )

 

(1) hidden state  : 

where   : non-linearity function

(2) output of model 

.

 

RNN models ( by (1) & (2) ) :

parameters : 

( random variables, following Normal prior )

using MC integration..

.

 unbiased estimator to each sum term

 

Objective function ( minimize )

.

 

For each sequence , sample new realization .

Approximating distribution :

.

 : variational parameters ( of random weight matrices )
 : dropout probability

 optimize  over !

( 2nd term (KL-term) can be approximated as  regularization )

 

Key point : "SAME MASK is used through all time steps"
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Prediction :

method 1) propagating the mean of each layer to next

( = standard dropout approximation )

method 2) approximating the posterior 

approximate  with 

Thus, 

where 

 

4-1. Implementation and Relation to Dropout in
RNNs

 

Implementing approximate inference 

= Implementing dropout in RNNs with same network units dropped at each time step

 

LSTM's 4 gates : input / forget / output / input modulation

2 notations

1) United-weights LSTM
2) Tied-weights LSTM

 

1) United-weights LSTM  

.

 

2) Tied-weights LSTM  

.

 

Even though, 1) and 2) result in the same deterministic model,

lead to different approximating distribution !

for 1) .... could use different dropout masks for different gates

for 2) ... place a distribution over the single matrix 

dropout variant with 2 )
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.

 

Others

Zaremba et al. [4] 's dropout variant 

 

Moon et al.'s dropout variant

replace . in (1) United-weights LSTM

 

4-2. Word Embeddings Dropout  
Continuous vs Discrete

In continuous inputs..

apply dropout to input layer

( =  placing a distn over weight matrix )

In discrete inputs...

seldom done...

 

Discrete Input

product of one-hot encoded vector & embedding matrix = word embedding

( embedding matrix :  )

this parameter layer is largest layer in NLP, but often not regularized... :(

Thus, apply dropout to the one-hot encoded vector!

( = dropping words at random )

 

Dropping words?

sample  Bernoulli r.v ( what is V is too large...? )

with sequence of length , at most  embeddings could be dropped

 first map the words to the word embedding, then zero-out word embeddings!

( more efficient )

 

5. Conclusion  
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New technique for RNN regularization, RNN dropout variant
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