[Paper review 44]

Variational Inference ; A Review for Statisticians

(Blei, et.al, 2018)

[Contents]

- 1. Abstract
- 2. Introduction
- 3. Variational Inference
 - 1. Problem of Approximate Inference
 - 2. ELBO
 - 3. MFVI
 - 4. CAVI (Coordinate ascent MFVI)
 - 5. Practicalities
- 4. A complete example: Bayesian Mixture of Gaussians
 - 1. (step 1) The variational density of the "mixture assignments"
 - 2. (step 2) The variational density of the "mixture-component means"
 - 3. CAVI for the mixture of Gaussians
- 5. VI with exponential families
 - 1. Complete conditionals in the exponential family
 - 2. Conditional conjugacy and Bayesian models
 - 3. SVI (Stochastic Variational Inference)
- 6. Discussion

1. Abstract

core problem: difficult-to-compute pdf

This paper: review VARIATIONAL INFERENCE

- approximates via optimization
- step 1) posit a family of densities

step 2) find the member of that family, closest to the target

2. Introduction

VI :faster & easier to scale to LARGE data

$$p(\mathbf{z}, \mathbf{x}) = p(\mathbf{z})p(\mathbf{x} \mid \mathbf{z}).$$

- latent variables : $\mathbf{z}=z_{1:m}$ (help govern the distn of data)
- observation : $x = x_{1:n}$

Draw latent variable from prior p(z)

Relate them to observation, via likelihood $p(\mathbf{z} \mid \mathbf{x})$

MCMC

- step 1) construct ergodic Markov chain on z (whose stationary distn is posterior $p(\mathbf{z}\mid\mathbf{x})$)
- step 2) sample from the chain (= collect samples from stationary distn)
- step 3) approximate posterior with collected samples

VI is needed, when we need faster speed than MCMC

- when data sets are large
- when models are **complex**

Rather than sampling, use optimization!

Key point

- **KEY POINT 1** choose approximating distn to be **flexible**
- **KEY POINT 2** simple enough for efficient optimization

VI vs MCMC

MCMC:

- computationally intensive, but (asymptotically) exact samples
- suited to smaller dataset

VI:

- faster than MCMC (can use stochastic optimization), but do not guarantee exact samples
- suited to largerdataset
- when we want to quickly explore many models

Not only data size, but also geometry of the posterior

• multi-mode: VI > MCMC

Modern research in VI

- problem which involve massive data
- using improved optimization method
- easy to apply to a wide class of models
- increase the accuracy of VI (by stretching the boundaries of approx distn)

This paper...

- [Section 2] MVFI, CAVI
- [Section 3] Bayesian Mixture of Gaussians
- [Section 4-1&2] When joint density of z and x are exponential family [Section 4-3] SVI

3. Variational Inference

Goal of VI : approximate conditional density of latent variables, given observed variables (= $P(Z \mid X)$)

key: solve using optimization

(use family of densities over latent variables, parameterized by free variational parameters)

3-1. Problem of Approximate Inference

$$p(\mathbf{z} \mid \mathbf{x}) = rac{p(\mathbf{z}, \mathbf{x})}{p(\mathbf{x})}$$

• evidence : $p(\mathbf{x}) = \int p(\mathbf{z}, \mathbf{x}) d\mathbf{z}$ (intractable)

Bayesian Mixture of Gaussians

- *K* mixture components
- ullet mean params : $\mu = \{\mu_1, \dots, \mu_K\}$
 - \circ drawn from $p\left(\mu_{k}
 ight)=\mathcal{N}\left(0,\sigma^{2}
 ight)$
- how to generate x_i ?
 - \circ step 1) choose cluster assignment c_i
 - \circ step 2) draw x_i from $\mathcal{N}\left(c_i^{ op}\mu,1
 ight)$
- Full hierarchical model:

$$egin{aligned} \mu_k &\sim \mathscr{N}\left(0, \sigma^2
ight), & k = 1, \ldots, K, \ c_i &\sim ext{ Categorical } (1/K, \ldots, 1/K), & i = 1, \ldots, n \, . \ x_i \mid c_i, \mu \sim \mathscr{N}\left(c_i^ op \mu, 1
ight) & i = 1, \ldots, n \end{aligned}$$

• Joint pdf : (latent var : $\mathbf{z} = \{\mu, \mathbf{c}\}$)

$$p(\mu, \mathbf{c}, \mathbf{x}) = p(\mu) \prod_{i=1}^n p\left(c_i
ight) p\left(x_i \mid c_i, \mu
ight).$$

• Evidence:

$$egin{aligned} p(\mathbf{x}) &= \int p(\mu) \prod_{i=1}^n \sum_{c_t} p\left(c_i\right) p\left(x_i \mid c_i, \mu\right) \mathrm{d}\mu \ &= \sum_{\mathbf{c}} p(\mathbf{c}) \int p(\mu) \prod_{i=1}^n p\left(x_i \mid c_i, \mu\right) \mathrm{d}\mu \end{aligned}$$

• time complexity of K-dim : $O(K^n)$

3-2. **ELBO**

Optimization problem ($q^*(\mathbf{z}) = rg \min_{q(\mathbf{z}) \in \mathscr{Q}} \mathrm{kL}(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x}))$)

Minimize KL Divergence:

$$\begin{split} \mathrm{KL}(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x})) &= \mathbb{E}[\log q(\mathbf{z})] - \mathbb{E}[\log p(\mathbf{z} \mid \mathbf{x})] \\ &= \mathbb{E}[\log q(\mathbf{z})] - \mathbb{E}[\log p(\mathbf{z}, \mathbf{x})] + \log p(\mathbf{x}) \end{split}$$

Maximize ELBO:

$$\mathrm{ELBO}(q) = \mathbb{E}[\log p(\mathbf{z}, \mathbf{x})] - \mathbb{E}[\log q(\mathbf{z})]$$

Interpretation of ELBO:

$$\begin{split} \mathrm{ELBO}(q) &= \mathbb{E}[\log p(\mathbf{z})] + \mathbb{E}[\log p(\mathbf{x} \mid \mathbf{z})] - \mathbb{E}[\log q(\mathbf{z})] \\ &= \mathbb{E}[\log p(\mathbf{x} \mid \mathbf{z})] - \mathrm{kL}(q(\mathbf{z}) \| p(\mathbf{z})) \end{split}.$$

- first term) fit well
- second term) regularize well

Relationship between ELBO & $\log p(x)$

• used for **model selection** criterion

EM vs VI

- EM assumes, expectation under $p(z \mid x)$ is computable
- VI does not estimate fixed-model parameters (classical params are treated as latent variables)

3-3. MFVI

Assumption: independency between latent variables

$$ightarrow q(\mathbf{z}) = \prod_{j=1}^m q_j\left(z_j
ight)$$

Each latent variable z_j is governed by its own variational factor, $q_j(z_j)$

(these variational factors are chosen to MAXIMIZE ELBO)

• ex) choose as Gaussian factor, or categorical factor

Researchers have also studied more complex families

- 1) Structured VI
- 2) Mixture of variational densities

 \rightarrow both improve the fidelity of the approximation

(trade-off: dificult to solve variational optimization problem)

Bayesian Mixture of Gaussians (cont)

MFVI : $q(\mu, \mathbf{c}) = \prod_{k=1}^{K} q\left(\mu_k; m_k, s_k^2\right) \prod_{i=1}^n q\left(c_i; \varphi_i\right)$.

- $ullet q\left(\mu_k;m_k,s_k^2
 ight)$: Gaussian distn
- $q\left(c_{i};\varphi_{i}\right)$: its assignment probabilities are a K -vector φ_{i}

Summary: ELBO is defined by..

- model definition : $p(\mu, \mathbf{c}, \mathbf{x}) = p(\mu) \prod_{i=1}^{n} p\left(c_{i}\right) p\left(x_{i} \mid c_{i}, \mu\right)$
- MFVI : $q(\mu, \mathbf{c}) = \prod_{k=1}^{K} q\left(\mu_k; m_k, s_k^2\right) \prod_{i=1}^{n} q\left(c_i; \varphi_i\right)$

3-4. CAVI (Coordinate ascent MFVI)

CAVI : **iteratively** optimizes each factor of the MF variational density

optimal solution

- conditional: $q_{j}^{*}\left(z_{j}\right) \propto \exp\{\mathbb{E}_{-j}\left[\log p\left(z_{j} \mid \mathbf{z}_{-j}, \mathbf{x}\right)\right]\}.$
- joint: $q_j^*(z_j) \propto \exp\{\mathbb{E}_{-j} \left[\log p\left(z_j, \mathbf{z}_{-j}, \mathbf{x}\right)\right]\}.$

(expectation on RHS do not involve j^{th} variational factor o valid coordinate update)

Algorithm 1: Coordinate ascent variational inference (CAVI)

```
Input: A model p(\mathbf{x}, \mathbf{z}), a data set \mathbf{x}

Output: A variational density q(\mathbf{z}) = \prod_{j=1}^m q_j(z_j)

Initialize: Variational factors q_j(z_j)

while the ELBO has not converged do

for j \in \{1, \dots, m\} do

Set q_j(z_j) \propto \exp\{\mathbb{E}_{-j}[\log p(z_j | \mathbf{z}_{-j}, \mathbf{x})]\}

end

Compute ELBO(q) = \mathbb{E}[\log p(\mathbf{z}, \mathbf{x})] - \mathbb{E}[\log q(\mathbf{z})]
```

end

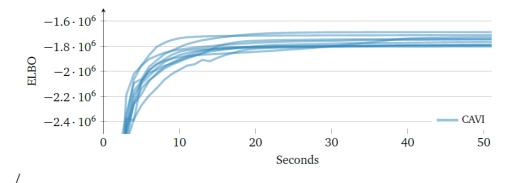
return $q(\mathbf{z})$

(can see that it is closely related to Gibbs sampling)

3-5. Practicalities

Initialization

- ELBO: (usually) non-convex objectiv function
- CAVI only guarantees local optimum (sensitive to initialization)



- 10 random initialization, reaching different values!
 (many local optima in ELBO)
- Not always bad!
 - o ex) Mixture of Gaussian: many posterior modes
 - o exploring latent clusters, predicting new observation

Assessing convergence

- computing the ELBO of full dataset may be undesirable
- proxy! average log predictive of a small held-out dataset

Numerical stability

- probabilities should be between 0~1
- use log-sum-exp trick

$$\log[\sum_{i} \exp(x_i)] = \alpha + \log[\sum_{i} \exp(x_i - \alpha)].$$

4. A complete example : Bayesian Mixture of Gaussians

notation

- K real valued mean params : $\mu = \mu_{1:K}$
- n latent class assignments : $\mathbf{c} = c_{1:n}$

ELBO for mixture of Gaussians

• variational parameters : $\mathbf{m}, \mathbf{s}^2, \varphi$

$$\begin{split} \text{ELBO}\big(\mathbf{m}, \mathbf{s}^{2}, \varphi\big) &= \sum_{k=1}^{K} \mathbb{E}\left[\log p\left(\mu_{k}\right); m_{k}, s_{k}^{2}\right] \\ &+ \sum_{i=1}^{n} \left(\mathbb{E}\left[\log p\left(c_{i}\right); \varphi_{i}\right] + \mathbb{E}\left[\log p\left(x_{i} \mid c_{i}, \mu\right); \varphi_{i}, \mathbf{m}, \mathbf{s}^{2}\right]\right) \\ &- \sum_{i=1}^{n} \mathbb{E}\left[\log q\left(c_{i}; \varphi_{i}\right)\right] - \sum_{k=1}^{K} \mathbb{E}\left[\log q\left(\mu_{k}; m_{k}, s_{k}^{2}\right)\right] \end{split}$$

CAVI updates each variational parameters in turn

4-1. (step 1)The variational density of the "mixture assignments"

(review) optimal solution : $q_i^*\left(z_j\right) \propto \exp\{\mathbb{E}_{-j}\left[\log p\left(z_j,\mathbf{z}_{-j},\mathbf{x}\right)\right]\}$

(1) derive variational update for c_i (cluster assignment)

- $q^*\left(c_i; \varphi_i\right) \propto \exp\{\log p\left(c_i\right) + \mathbb{E}\left[\log p\left(x_i \mid c_i, \mu\right); \mathbf{m}, \mathbf{s}^2\right]\}.$
 - \circ 1st term) log prior of c_i : $\log p\left(c_i
 ight) = -\log K$
 - \circ 2nd term) expected log of the c_i th Gaussian density

$$p(x_i \mid c_i, \mu) = \prod_{k=1}^K p(x_i \mid \mu_k)^{c_{ik}}$$

Thus.

$$egin{aligned} \mathbb{E}\left[\log p\left(x_i\mid c_i, \mu
ight)
ight] &= \sum_k c_{ik} \mathbb{E}\left[\log p\left(x_i\mid \mu_k
ight); m_k, s_k^2
ight] \ &= \sum_k c_{ik} \mathbb{E}\left[-(x_i-\mu_k)^2/2; m_k, s_k^2
ight] + ext{ const.} \ &= \sum_k c_{ik} \left(\mathbb{E}\left[\mu_k; m_k, s_k^2
ight] x_i - \mathbb{E}\left[\mu_k^2; m_k, s_k^2
ight]/2
ight) + ext{ const.} \end{aligned}$$

 $\bullet \ \ \text{result}: \varphi_{ik} \propto \exp\!\left\{\mathbb{E}\left[\mu_k; m_k, s_k^2\right] x_i - \mathbb{E}\left[\mu_k^2; m_k, s_k^2\right]/2\right\}$

4-2. (step 2)The variational density of the "mixture-component means"

(2) variational density $q\left(\mu_{k}; m_{k}, s_{k}^{2}\right)$ of k^{th} mixture components $q\left(\mu_{k}\right) \propto \exp\left\{\log p\left(\mu_{k}\right) + \sum_{i=1}^{n} \mathbb{E}\left[\log p\left(x_{i} \mid c_{i}, \mu\right); \varphi_{i}, \mathbf{m}_{-k}, \mathbf{s}_{-k}^{2}\right]\right\}$.

Unnormallized log of $q(\mu_k)$:

$$\begin{split} \log q\left(\mu_{k}\right) &= \log p\left(\mu_{k}\right) + \sum_{i} \mathbb{E}\left[\log p\left(x_{i} \mid c_{i}, \mu\right); \varphi_{i}, \mathbf{m}_{-k}, \mathbf{s}_{-k}^{2}\right] + \mathrm{const.} \\ &= \log p\left(\mu_{k}\right) + \sum_{i} \mathbb{E}\left[c_{ik} \log p\left(x_{i} \mid \mu_{k}\right); \varphi_{i}\right] + \mathrm{const.} \\ &= -\mu_{k}^{2}/2\sigma^{2} + \sum_{i} \mathbb{E}\left[c_{ik}; \varphi_{i}\right] \log p\left(x_{i} \mid \mu_{k}\right) + \mathrm{const.} \\ &= -\mu_{k}^{2}/2\sigma^{2} + \sum_{i} \varphi_{ik} \left(-(x_{i} - \mu_{k})^{2}/2\right) + \mathrm{const.} \\ &= -\mu_{k}^{2}/2\sigma^{2} + \sum_{i} \varphi_{ik} x_{i} \mu_{k} - \varphi_{ik} \mu_{k}^{2}/2 + \mathrm{const.} \\ &= \left(\sum_{i} \varphi_{ik} x_{i}\right) \mu_{k} - \left(1/2\sigma^{2} + \sum_{i} \varphi_{ik}/2\right) \mu_{k}^{2} + \mathrm{const.} \end{split}$$

where $arphi_{ik} = \mathbb{E}\left[c_{ik}; arphi_i
ight]$.

Thus,
$$m_k=rac{\sum_i arphi_{ik} x_i}{1/\sigma^2+\sum_i arphi_{ik}}, \quad s_k^2=rac{1}{1/\sigma^2+\sum_i arphi_{ik}}$$

4-3. CAVI for the mixture of Gaussians

```
Algorithm 2: CAVI for a Gaussian mixture model

Input: Data x_{1:n}, number of components K, prior variance of component means \sigma^2

Output: Variational densities q(\mu_k; m_k, s_k^2) (Gaussian) and q(c_i; \varphi_i) (K-categorical)

Initialize: Variational parameters \mathbf{m} = m_{1:K}, \mathbf{s}^2 = s_{1:K}^2, and \varphi = \varphi_{1:n}

while the ELBO has not converged \mathbf{do}

or i \in \{1, \dots, n\} \mathbf{do}
```

Set
$$m_k \leftarrow \frac{\sum_i \varphi_{ik} x_i}{1/\sigma^2 + \sum_i \varphi_{ik}}$$
Set $s_k^2 \leftarrow \frac{1}{1/\sigma^2 + \sum_i \varphi_{ik}}$

CIIC

Compute ELBO($\mathbf{m}, \mathbf{s}^2, \varphi$)

end

return $q(\mathbf{m}, \mathbf{s}^2, \varphi)$

Approximate predictive: (mixture of Gaussians)

$$p\left(x_{ ext{new}} \mid x_{1:n}
ight) pprox rac{1}{K} \sum_{k=1}^{K} p\left(x_{ ext{new}} \mid m_{k}
ight)$$

5. VI with exponential families

(Until now....)

- MFVI
- CAVI (coordinate ascent algorithm for optimizing ELBO)

demonstration using simple mixture of Gaussians
 (available in closed-form)

Now, will work with exponential family

- · working with this simplifies VI
- · easier to derive CAVI
- section 5-1) general case
 section 5-2) conditionally conjugate models
 section 5-3) SVI

5-1. Complete conditionals in the exponential family

suppose complete conditional is "exponential family":

$$p\left(z_{j} \mid \mathbf{z}_{-j}, \mathbf{x}
ight) = h\left(z_{j}
ight) \exp \left\{\eta_{j}(\mathbf{z}_{-j}, \mathbf{x})^{ op} z_{j} - a\left(\eta_{j}\left(\mathbf{z}_{-j}, \mathbf{x}
ight)
ight)
ight\}$$

CAVI with MFVI

• coordinate update of $q_j^* (z_j) \propto \exp\{\mathbb{E}_{-j} [\log p (z_j \mid \mathbf{z}_{-j}, \mathbf{x})]\} = q(z_j) \propto \exp\{\mathbb{E} [\log p (z_j \mid \mathbf{z}_{-j}, \mathbf{x})]\}$ $= \exp\{\mathbb{E} [\log h (z_j) \exp\{\eta_j (\mathbf{z}_{-j}, \mathbf{x})^\top z_j - a (\eta_j (\mathbf{z}_{-j}, \mathbf{x}))\}]\}$ $= \exp\{\log h (z_j) + \mathbb{E} [\eta_j (\mathbf{z}_{-j}, \mathbf{x})]^\top z_j - \mathbb{E} [a (\eta_j (\mathbf{z}_{-j}, \mathbf{x}))]\}$ $\propto h (z_j) \exp\{\mathbb{E} [\eta_j (\mathbf{z}_{-j}, \mathbf{x})]^\top z_j\}$

ullet set $v_j = \mathbb{E}\left[\eta_j\left(\mathbf{z}_{-j},\mathbf{x}
ight)
ight]$

5-2. Conditional conjugacy and Bayesian models

Special case of exponential family: "conditional conjugate models" with local & global variables

Conditionally conjugate models

- β : global latent variables
- z : local latent variables
- joint pdf: $p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i \mid \beta)$

Assumption 1) joint density of each (x_i, z_i) pair, conditional on β = exponential family

$$p(z_i, x_i \mid \beta) = h(z_i, x_i) \exp\{\beta^{\top} t(z_i, x_i) - a(\beta)\}...$$
(a)

Assumption 2) prior (on global variables) to be conjugate prior

$$p(\beta) = h(\beta) \exp\left\{\alpha^{\top}[\beta, -a(\beta)] - a(\alpha)\right\}$$
(b)

• natural (hyper) parameter $lpha = \left[lpha_1, lpha_2
ight]^ op$

(a) and (b) : conjugate
$$ightarrow$$
 $\hat{lpha}=\left[lpha_1+\sum_{i=1}^nt\left(z_i,x_i
ight),lpha_2+n
ight]^{ op}$

Complete conditional of local variable z_i :

• (given β and x_i) z_i is conditionally independent!

$$egin{aligned} eta & p\left(z_i \mid x_i, eta, \mathbf{z}_{-i}, \mathbf{x}_{-i}
ight) = p\left(z_i \mid x_i, eta
ight) \end{aligned}$$

• assumption) exponential family

$$egin{aligned}
ightarrow & p\left(z_i \mid x_i, eta
ight) = h\left(z_i
ight) \exp \left\{ \eta(eta, x_i)^ op z_i - a\left(\eta\left(eta, x_i
ight)
ight)
ight\} \end{aligned}$$

VI in conditionally conjugate models

describe CAVI for general class of models

notation

• λ : **global** variational parameter

 $q(eta \mid \lambda)$: variational posterior approximation on eta

• ϕ : **local** variational parameter

 $q(z_i \mid \phi)$: variational posterior on each local variable z_i

Local variational update : $\varphi_i = \mathbb{E}_{\lambda}\left[\eta\left(\beta, x_i\right)\right]$ by

- (1) $v_i = \mathbb{E}\left[\eta_i\left(\mathbf{z}_{-i},\mathbf{x}\right)\right]$
- (2) $p(z_i \mid x_i, \beta, \mathbf{z}_{-i}, \mathbf{x}_{-i}) = p(z_i \mid x_i, \beta)$

Global variational update : $\lambda = \left[lpha_1 + \sum_{i=1}^n \mathbb{E}_{arphi_i} \left[t\left(z_i, x_i
ight)
ight], lpha_2 + n
ight]^ op$

ullet expectation of $\hat{lpha} = \left[lpha_1 + \sum_{i=1}^n t\left(z_i, x_i
ight), lpha_2 + n
ight]^ op$

CAVI optimizes the ELBO by iterating "local updates" and "global updates"

To assess convergence, compute ELBO at each iteration!

ELBO:

- ELBO $(q) = \mathbb{E}[\log p(\mathbf{z}, \mathbf{x})] \mathbb{E}[\log q(\mathbf{z})]$ $p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i \mid \beta)$
- $\bullet \ \ \text{Therefore, } \ \mathrm{ELBO} = \left(\alpha_1 + \textstyle\sum_{i=1}^n \mathbb{E}_{\varphi_i} \left[t\left(z_i, x_i\right) \right] \right)^\top \mathbb{E}_{\lambda}[\beta] \left(\alpha_2 + n\right) \mathbb{E}_{\lambda}[a(\beta)] \mathbb{E}[\log q(\beta, \mathbf{z})]$

$$ullet \ \mathbb{E}[\log q(eta,\mathbf{z})] = \lambda^ op \mathbb{E}_{\lambda}[t(eta)] - a(\lambda) + \sum_{i=1}^n arphi_i^ op \mathbb{E}_{arphi_i}\left[z_i
ight] - a\left(arphi_i
ight)$$

5-3. SVI (Stochastic Variational Inference)

Modern problems: require analyizing massive data

but, most do not easily scale (ex. CAVI)

CAVI, not scalable!

- requires iteration through entire data at each iteration
- alternative: gradient-based optimization(= Key to SVI)

SVI focuses on optimizing the global variational params λ of conditionally conjugate model

- step 1) subsample data
- step 2) use current global param to compute optimal local params for the subsampled data
- step 3) adjust the current **global params**

Natural gradient of ELBO

SVI focuses on optimizing the global variational params λ

Euclidan gradient of ELBO:

• $\nabla_{\lambda} \text{ELBO} = a''(\lambda) \left(\mathbb{E}_{\omega}[\hat{\alpha}] - \lambda \right)$ (Hoffman et al. 2013)

Natural gradient: (premultiply by inverse Fisher info)

•
$$g(\lambda) = \mathbb{E}_{\varphi}[\hat{\alpha}] - \lambda$$

Update param, using **natural gradient** in gradient-based optimization method

• at each iteration, update $\lambda_t = \lambda_{t-1} + \epsilon_t g\left(\lambda_{t-1}\right)$ $(= \lambda_t = (1 - \epsilon_t) \, \lambda_{t-1} + \epsilon_t \mathbb{E}_{\varphi}[\hat{\alpha}])$

Stochastic Optimization of the ELBO

goal: construct a cheaply computed, noisy, unbiiased natural gradient

$$ullet g(\lambda) = \mathbb{E}_{arphi}[\hat{lpha}] - \lambda$$

$$ullet \quad \hat{lpha} = \left[lpha_1 + \sum_{i=1}^n t\left(z_i, x_i
ight), lpha_2 + n
ight]^ op$$

$$ightarrow g(\lambda) = lpha + \left[\sum_{i=1}^{n} \mathbb{E}_{arphi_{i}^{st}} \left[t\left(z_{i}, x_{i}
ight)
ight], n
ight]^{ op} - \lambda$$

(φ_i^* : optimized local variational param)

Construct noisy natural gradient, by sampling an index from the data & rescaling

• $t \sim \text{Unif}(1,\ldots,n)$

$$\hat{g}(\lambda) = lpha + nig[\mathbb{E}_{arphi_t^*}\left[t\left(z_t, x_t
ight)
ight], 1ig]^ op - \lambda$$

• $\hat{g}(\lambda)$ is unbiased ($\mathbb{E}_t[\hat{g}(\lambda)]=g(\lambda)$) & ceheap to compute (not only sample 1 data, but can also use mini-batch)

Step-size sequence

• should follow conditions of Robbins and Monro,

$$\sum_t \epsilon_t = \infty; \sum_t \epsilon_t^2 < \infty$$

Algorithm 3: SVI for conditionally conjugate models

Input: Model $p(\mathbf{x}, \mathbf{z})$, data \mathbf{x} , and step size sequence ϵ_t

Output: Global variational densities $q_{\lambda}(\beta)$ Initialize: Variational parameters λ_0

while TRUE do

Choose a data point uniformly at random, $t \sim \text{Unif}(1,\ldots,n)$ Optimize its local variational parameters $\varphi_t^* = \mathbb{E}_{\lambda}\left[\eta(\beta,x_t)\right]$ Compute the coordinate update as though x_t was repeated n times,

$$\hat{\lambda} = \alpha + n \mathbb{E}_{\varphi_t^*} [f(z_t, x_t)]$$

Update the global variational parameter, $\lambda_t = (1 - \epsilon_t)\lambda_t + \epsilon_t \hat{\lambda}_t$

end

return λ

6. Discussion

Summary

- MFVI
- CAVI
- Bayesian Mixture of Gaussians
- special case of exponential families & conditional conjugacy
- SVI