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1. Abstract  
core problem : difficult-to-compute pdf

This paper : review VARIATIONAL INFERENCE

approximates via optimization

step 1) posit a family of densities

step 2) find the member of that family, closest to the target

 

2. Introduction  
VI :faster & easier to scale to LARGE data

.
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latent variables : 

( help govern the distn of data )

observation : 

 

Draw latent variable from prior 

Relate them to observation, via likelihood 

 

MCMC

step 1) construct ergodic Markov chain on 

( whose stationary distn is posterior  )

step 2) sample from the chain ( = collect samples from stationary distn )

step 3) approximate posterior with collected samples

 

VI is needed, when we need faster speed than MCMC 

when data sets are large
when models are complex

 

Rather than sampling, use optimization!

Key point

KEY POINT 1 choose approximating distn to be flexible
KEY POINT 2 simple enough for efficient optimization

 

VI vs MCMC  

MCMC : 

computationally intensive, but (asymptotically) exact samples
suited to smaller dataset

VI : 

faster than MCMC ( can use stochastic optimization ), but do not guarantee exact samples
suited to largerdataset
when we want to quickly explore many models

 

Not only data size, but also geometry of the posterior

multi-mode : VI > MCMC
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Modern research in VI  

problem which involve massive data
using improved optimization method
easy to apply to a wide class of models
increase the accuracy of VI ( by stretching the boundaries of approx distn )

 

This paper...  

[Section 2] MVFI, CAVI

[Section 3] Bayesian Mixture of  Gaussians

[Section 4-1&2] When joint density of  and  are exponential family

[Section 4-3] SVI

 

3. Variational Inference  
Goal of VI : approximate conditional density of latent variables, given observed variables ( = 

 )

key : solve using optimization

( use family of densities over latent variables, parameterized  by free variational parameters )

 

3-1. Problem of Approximate Inference  

evidence :  ( intractable )

 

Bayesian Mixture of Gaussians  

 mixture components

mean params : 

drawn from 
how to generate  ?

step 1) choose cluster assignment 
step 2) draw  from 

Full hierarchical model :

.

Joint pdf : (latent var :  )

.

Evidence : 
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time complexity of -dim : 

 

3-2. ELBO  
Optimization problem (  )

Minimize KL Divergence :

 

Maximize ELBO:

 

 

Interpretation of ELBO :

.

first term ) fit well
second term ) regularize well

 

Relationship between ELBO & 

used for model selection criterion

 

EM vs VI

EM assumes, expectation under  is computable
VI does not estimate fixed-model parameters ( classical params are treated as latent 
variables )

 

3-3. MFVI  
Assumption : independency between latent variables

 

 

Each latent variable  is governed by its own variational factor, 

( these variational factors are chosen to MAXIMIZE ELBO )

ex) choose as Gaussian factor, or categorical factor

 

Researchers have also studied more complex families
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1) Structured VI
2) Mixture of variational densities

 both improve the fidelity of the approximation

( trade-off : dificult to solve variational optimization problem )

 

Bayesian Mixture of Gaussians (cont)  

MFVI : .

 : Gaussian distn
 : its assignment probabilities are a  -vector 

 

Summary : ELBO is defined by..

model definition : 
MFVI : 

 

3-4. CAVI ( Coordinate ascent MFVI )  
CAVI : iteratively optimizes each factor of the MF variational density

optimal solution

conditional : .

joint : .

( expectation on RHS do not involve  variational factor  valid coordinate update )

( can see that it is closely related to Gibbs sampling )

 

3-5. Practicalities  
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Initialization  

ELBO : (usually) non-convex objectiv function
CAVI only guarantees local optimum ( sensitive to initialization )

/

10 random initialization, reaching different values!

( many local optima in ELBO )

Not always bad!

ex) Mixture of Gaussian : many posterior modes
exploring latent clusters, predicting new observation

 

Assessing convergence  

computing the ELBO of full dataset may be undesirable
proxy! average log predictive of a small held-out dataset

 

Numerical stability  

probabilities should be between 0~1

use log-sum-exp trick

.

 

4. A complete example : Bayesian
Mixture of Gaussians

 

notation

 real valued mean params  : 
 latent class assignments : 

 

ELBO for mixture of Gaussians

variational parameters : 
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CAVI updates each variational parameters in turn

 

4-1. (step 1)The variational density of the "mixture
assignments"

 

(review) optimal solution : 

 

(1) derive variational update for  ( cluster assignment )

.

1st term) log prior of  :  

2nd term) expected log of the th Gaussian density

Thus,

.

result : 

 

4-2. (step 2)The variational density of the "mixture-
component means"

 

(2) variational density  of  mixture components

.

 

Unnormallized log of  :
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where 

 

Thus,  

 

4-3. CAVI for the mixture of Gaussians  

 

Approximate predictive : (mixture of Gaussians)

 

5. VI with exponential families  
(Until now....)

MFVI

CAVI ( coordinate ascent algorithm for optimizing ELBO )
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demonstration using simple mixture of Gaussians

( available in closed-form )

 

Now, will work with exponential family

working with this simplifies VI

easier to derive CAVI

section 5-1) general case

section 5-2) conditionally conjugate models

section 5-3) SVI

 

5-1. Complete conditionals in the exponential family 
suppose complete conditional is "exponential family" :

 

 

CAVI with MFVI

coordinate update of   = 

.

set  

 

5-2. Conditional conjugacy and Bayesian models  
Special case of exponential family : "conditional conjugate models" with local & global variables

 

Conditionally conjugate models  

 : global latent variables
 : local latent variables

joint pdf : 

 

Assumption 1) joint density of each  pair, conditional on  = exponential family

 .........................(a)

 

Assumption 2) prior (on global variables) to be conjugate prior
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  ........................................ (b)

natural (hyper) parameter 

 

(a) and (b) : conjugate  

 

Complete conditional of local variable  :

(given  and )  is conditionally independent!

 

assumption ) exponential family

  

 

VI in conditionally conjugate models  

describe CAVI for general class of models

notation

 : global variational parameter

 : variational posterior approximation on 

  : local variational parameter

 : variational posterior on each local variable 

 

Local variational update :  .... by

(1) 
(2) 

Global variational update : 

expectation of 

 

CAVI optimizes the ELBO by iterating "local updates" and "global updates"

 

To assess convergence, compute ELBO at each iteration!

 

ELBO :

Therefore,  
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5-3. SVI ( Stochastic Variational Inference )  
Modern problems : require analyizing massive data

but, most do not easily scale ( ex. CAVI )

 

CAVI, not scalable!

requires iteration through entire data at each iteration

alternative : gradient-based optimization

( = Key to SVI )

 

SVI focuses on optimizing the global variational params  of conditionally conjugate model

step 1) subsample data
step 2) use current global param to compute optimal local params for the subsampled data
step 3) adjust the current global params 

 

Natural gradient of ELBO  

SVI focuses on optimizing the global variational params  

 

Euclidan gradient of ELBO :

 ( Hoffman et al. 2013)

Natural gradient : (premultiply by inverse Fisher info )

Update param, using natural gradient in gradient-based optimization method

at each iteration, update 

( =  )

 

Stochastic Optimization of the ELBO  

goal : construct a cheaply computed, noisy, unbiiased natural gradient

 

 (   : optimized local variational param )

 

Construct noisy natural gradient, by sampling an index from the data & rescaling
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 is unbiased (  ) & ceheap to compute

( not only sample 1 data, but can also use mini-batch )

 

Step-size sequence

should follow conditions of Robbins and Monro,

 

 

6. Discussion  
Summary

MFVI
CAVI
Bayesian Mixture of Gaussians
special case of exponential families & conditional conjugacy
SVI
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