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1. Abstract  
VI lets us approximate high-dim Bayesian posterior with a simpler variational distn

Start with standard MFVI,

then review recent advances :

(1) scalable VI ( including stochastic approx )
(2) generic VI ( extends the applicability of VI to a large class of models, i.e. non-conjugate 
models )
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(3) accurate VI ( includes variational models beyond mean-field approx, or with atypical 
divergences)
(4) amortized VI ( implements inference over latent variables with inference networks )

 

2. Introduction  
Variational Inference

"optimization based approach"
faster, but may suffer from oversimplified posterior approximation

 

In recent years, new interest in variational methods!

(1) availability of large datasets  scalable approaches

(2) classical VI is limited to conditionally conjugate  exp fam model  BBVI

(3) more accurate variational approx, such as alternative divergence measures

(4) amortized inference employs complex function such as NN

( ex. Bayesian deep learning architecture, such as VAE )

 

Summary : recent developments in scalable, generic, accurate, amortized VI

 

3. Variational Inference  
( 너무 많이 봐서 간단히 정리하고만 넘어감 )

notation

observation :  

latent variables : 

variational params : 

( variational distn : $ )

 

Variational Objective ( ELBO )  

.

 

We can rewrite true log marginal probability of the data as sum of

(1) ELBO
(2) KL-div
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.

 

MFVI  

Assumption : 

 

If we rewrite ELBO....

.

 

Solution ( optimize by minimizing negative ELBO )

.

.

 

 

Beyond Vanilla VI  

section 3) scale VI to large dataset

section 4) make VI both easier to use & more generic

section 5) non-MFVI

section 6) NN can be used to amortize the estimation of certain local latent variables
  bridges the gap between "Bayesian inference" & "modern representation learning"

 

4. Scalable VI  
SVI (Stochastic Variational Inference)

"use SGD" to scale VI to large dataset
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notation

latent variable : 

local : 
global : 

variational parameter : 

 : corresponds to "local" latent variable
  : corresponds to "global" latent variable

hyperparameters : 
mini-batch size : 

 

4-1. SVI ( Stochastic Variational Inference )  
Variational distn :

 

 

ELBO :

.

 

ELBO above can be optimized by CAVI, GD...

 but both CAVI & GD is not scalable

( every iteration / gradient step scales with , therefore expensive for large dataset )

THUS, use SVI ( STOCHASTIC VARIATIONAL INFERENCE ) 

 

SVI ( Stochastic Variational Inference )

every iteration, select mini-batchs of size  to obtain stochastic estimate of ELBO 
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stochastic estimate of ELBO  : 

there is a stochastic part in the second term
this is a noisy estimator of the direction of steepest ascent of the true ELBO

using natural gradients ( instead of standard gradients ) in SVI simplifies the variational 
updates for models in the conditionally conjugate exponential family!

when  : same as traditional batch VI

(  computational savings when  )

learning rate  : should decrease with iteration

( Robbins-Monro conditions :  )

 

SVI is referred to as ONLINE VI

SVI = Online VI, when the volume of data  is known!

in streaming applications, the mini-batches arrive sequentially from a data source,

but the SVI updatse are the same

( However, when  is unknown, it is unclear how to set the scale param 

 

4-2. Tricks of the Trade for SVI  
convergence speed of SGD depends on "variance of the gradient estimates"

(a) Adaptive Learning Rate & Mini-batch size  

( due to LLN ) mini-batch size   stochastic gradient noise  ( allowing larger learning rates )

[method 1] learning rate adaptation

empirical gradient variance can guide the adaptation of the learning rate

( inversely proportional to gradient noise )

 : global variational param

 :  optimal global variational param

 : covariance matrix of the variational parameter in this mini-batch

optimal learning rate : .

 

[method 2] mini-batch size adaptation

keep learning rate fixed
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(b) Variance Reduction  

[method 1] Control Variates

same expectation, lower variance

used commonly in MC simulation & stochastic optimization

SVRG (Stochastic Variance Reduced Gradient)

construct control variate ( take advantage of previous gradients from all data point ), 

standard ) 

SVRG )  

 : estimated objective ( = negative ELBO ),based on current mini-batch

 : snapshot of  after every  iterations

 : batch gradient computed over all the datapoints (  )

 ( thus can be used as control variates! ) 

convergence rate :

standard ) 

SVRG ) 

 

[method 2] Non-uniform Sampling

Instead of subsampling with equal prob, use non-uniform sampling when selecting mini-batches

( for lower variance! )

but not always practical

 

[method 3] Other methods

Rao Blackwellization
average expected sufficient statistics over sliding window of mini-batches

 

4-3. Collapse, Sparse, Distributed VI  
Instead of using stochastic optimization for faster convergence,

present methods that leverage the structure of certain models for faster convergence

 

Collapsed VI ( CVI )  

"Integrate out certain model params" 

 due to reduced number of params to be estimated, it becomes FASTER & ELBO tighter

( but constrained to conjugate exp fams.... :( ))

 

CVI for topic models : ex) collapse topic proportions or topic assignments
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Computational benefit of CVI depends on the "statistic of collapsed variables"

Collapsing latent variables can make other inference tractable

ex) topic models : collapse discrete variables

 only infer the continuous ones , thus allowing using inference network

 

Shortcomings

1) Mathematical challenges
2) Marginalizing variables can introduce additional dependencies between variables

 

Sparse VI  

introduce additional low-rank approx , enabling scalable inference

can be interpreted as "modeling choice", or "inference scheme"

 

Often encountered in GP literature

computational cost of GP :  where  = number of data

( by inversion of kernel matrix  , which hinders the application of GPS to big data )

 

Sparse inference in GP

introduce  inducing points

( = pseudo-inputs that reflect original data )

since , yield more sparse representation

only  is needed :)

further) collapse distn of inducing points & extends to a stochastic version  

makes Deep GPs tractable!

 

Parallel and Distributed VI  

can also be adjusted to distributed computing

required in large scale scenarios

 

5. Generic VI : Beyond the Conjugate
Exponential Family

 

Making VI more generic!

applicable to broader class of models
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eliminate the need for model-specific calculations

 

Key : "Stochastic gradient estimators" of ELBO that can be computed for a broader class of 
model

(1) Laplace Approximation

(2) BBVI that rely on REINFORCE(or score function gradient)

(3) BBVI that uses reparameterization gradients

(4) Other approaches for non-conjuagte VI

 

5-1. Laplace's method & limitations  
 Laplaces' approximation

an alternative to non-conjugate inference

approximate the posterior by Gaussian

step 1) seek the MAP ( mean of Gaussian )

step 2) compute the inverse of Hessian ( cov of Gaussian )

needs to be twice-differentiable

(by Bayesian CLT)  posterior approaches Gaussian asymptotically, in the limit of large data

 

Shortcomings

1) being purely local & depend only on the curvature of the posterior around the optimum

2) does not apply to discrete variables

3) Hessian can be costly in high dimensions

 makes intractable with large number of datasets

 

5-2. REINFORCE gradients  
(classical VI) ELBO is derived analytically

(BBVI) propose a generic inference algorithm

ONLY the generative process of data has to be specified
model can be anything!

 

Main idea of BBVI :

 Represent the gradient as an expectation & use MC techniques to estimate this expectation

can obtain an UNBIASED gradient estimator by SAMPLING from the variational distribution,

WITHOUT the need of calculating ELBO anlaytically

full gradient )
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stochastic gradient )

where 

 : called score function 

( key part of REINFORCE algorithm )

 

Variance reduction

Rao-Blackwellization
Control variates

 

Variance Reduction for BBVI  

SVI vs BBVI

SVI) noise resulted from subsampling from a FINITE set of datapont

BBVI) noise originates from r.v with possibly INFINITE support

 SVRG is not applicable

( full gradient is not a sum over FINITELY many terms )

thus, BBVI invloves different set of control variates

 

 

Score Function control variate

most important control variate in BBVI

subtract MC expectation of the score function from the gradient estimator

.

 : expectation is zero ( under variational distn )
 :  is selected s.t. it minimizes the variance of the gradient

 

Original BBVI paper introduces both

1) Rao-Blackwellization
2) control-variates

 good choice depends on the model!

 

Different approach ex)

overdispersed importance sampling

from proposal distn that place high mass on the tails  variance of gradient is reduced!
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5-3. Reparameterization Gradient VI  
 

Reparameterization Gradients  

Reparam trick 

by MC samples!

gives low-variance stochastic gradients

& do not need to compute analytic expectation

distn  can be expressed as a transformation of r.v 

ex)   , where 

 

Allows to compute any expectation over  as an expectation over  

build a STOCHASTIC GRADIENT ESTIMATOR of the ELBO!

.

 

Variance of this estimator is often lower than that of score function!

 

Etc

reparam gradients are also key to VAE

( discrete distn version ) Gumbel-Max trick

replace argmax operation with a softmax operator
temperature parameter controls the degree to which the softmax can approx the 
categorical distn

 

5-4. Other Generalizations  
Approaches that consider VI in non-conjugate models, but do not follow BBVI principle

Examples

Taylor approximations
lower-bounding the ELBO
using some form of MC estimators....

 

Approximations based on...

inner optimization routines : prohibitively slow
additional lower bounds with closed form updates : computationally efficient
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6. Accurate VI : Beyond KL and MFVI  
( until now, have dealt with MFVI & KL-div as a measure of distance )

Recent developments go beyond this!

goal of avoiding poor local optima
increase the accuracy of VI!

ex) Normalizing Flow, Inference Networks ( will be dealt in next section )

 

(1) origins of MFVI & limitations ( skip )

(2) Alternative Divergence measures

(3) Structured VI

 

6-1. Origins and Limitations of MFVI  
skip

 

6-2. VI with Alternative Divergences  
KL-divergence

computationally convenient method to measure the distancce
analytically tractable expectations for certain models!

problems )

underestimating posterior variances
unable to break symmetry when multiple modes are close

 other divergence measures?

( ex. EP ( Expectation Propagation ) : use alternative divergence measures )

 

introduce relevant divergence measure & show how to use in VI

KL divergence   divergence   divergence
they all can be written in the form of Stein discrepancey

 

 divergence  

both KL divergence & Hellinger distance is a special case of  divergence

(Renyi's formulation)

 , where .

 For , same as standard VI (involving the KL divergence)

implies a bound on the marginal likelihood
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.

negative value of  = UPPER bound

( it is not a divergence in this case )

 

- Divergence & Generalized VI  

 divergence is a subset of  divergence

 

Stein Discrepancy and VI  

introduce (1) Stein Discrepancy & (2) two VI methods that use this :

(a) Stein Variational Gradient Descent (SVGD)

(b) operator VI

both share the same objective
but differ in optimization method

 

(1) Stein Discrepancy  

where  indicates a set of smooth, real-valued functions

second term    : intractable  can be only used in VI if this is zero(0) for arbitrary 

 

. where 

operator  , which makes second term (  ) zero!

That is, 

 

(2) SVGD & Operator VI  

both SVGD and Operator VI share the same objective above!

Difference : optimization of the variational objective

SVGD ) kernelized Stein discrepancy
Operator VI ) minmax ( GAN-style ) formulation

 

6-3. Structured VI  
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MFVI assumes fully-factorized
  limited accuracy ( especially when latent variables are hihgly CORRELATED )

 

Structured VI

not fully factorized

contain dependencies between latent variables

more expressive

higher computational cost

makes harder to estimate the gradient of ELBO

 

Allowing structured variational distribution is a modeling choice! depends on model

ex) Structured VI for LDA : maintaining a global structure is vital
ex) Structured VI for Beta Bernoulli Process : maintaining a local structure is vital 

 

ex) Hierarchical VI & copula VI

 

(a) Hierarchical VI  

HVM(Hierarchical variational models)

BBVI framework for Structured variational distributions, which applies to broad class of 
models

step 1) start with a mean-field variational distribution, 

step 2) instead of estimating variational param ,

   place a prior  & marginalize them out!

   

 captures dependencies ( through marginalization as above ! )

resulting ELBO can be made tractable, by 

further lower-bounding the resulting entropy & 
sampling from the hierarchical model

this approach is used in development of Variational Gaussian Process (VGP)

 

Variational Gaussian Process (VGP)

applies GP to generative variational estimates

( thus form a Bayesian non-parametric prior )

able to approximate diverse posterior distn
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(b) copula VI  

instead of fully-factorized variational distn, use form as below :

.

 : copula distn

( = joint distn over marginal cumulative distn functions  )

 

VI for time series  

ex) Hidden Markov Models (HMM), Dynamic Topic Models (DTM)

have strong dependencies between time steps

Thus, typically employs a STRUCTURED variational distn

( capture dependencies between time points, while remaining fully-factorized in the remaining 
variables)

 

 

6-4. Other Non-standard VI methods  
Methods that improve accuracy of VI, but

not categorized as alternative measures
or structured models

 

(a) VI with Mixture distn  

Very flexible! ( + but also computationally difficult )

To fit a mixture models, can use auxiliary bounds, fixed point update, etc....

ex) Boosting VI, Variational boosting

refine the approximate posterior ITERATIVELY by adding one component at time

( while keeping previously fitted components fixed )

 

(b) VI by Stochastic Gradient Descent  

SGD on NLL can be seen as an IMPLICIT VI algorithm!

consider SGD with

1) constant learning rates, constant SGD
2) early stopping

 

Constant SGD

can be viewed as a Markov chain that converges to stationary distn
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variance of stationary distn is controlled by the learning rate

 

Early stopping

interpret SGD as non-parametric
track entropy changes based on estimates of "Hessian"

 

(c) Robustness to Outliers & Local Optima  

ELBO : non-convex  VI benefits from advanced optimization algorithms

ex) Variational tempering

 

7. Amortized VI and Deep Learning  
(Previous : not-amortized)

 is governed by its latent variable ,  with variational parameter 

 

Amortized Variational inference

use powerful predictor to predict the optimal , based on the features of 

( i.e.  )

local variational params (  ) are replaced by a function of the data, whose params are 
shared across all the data points! ( called "inference is amortized" )
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7-1. Amortized VI  
"Amortized Inference" : utilizing inferences from past computations

"Amortized Inference in VI" : inference over local variables

instead of approximating separate variables,
assumes that local variational parameters can be predicted by a function of the data

DNN used in this context is called INFERENCE network

 

Amortized VI with inference networks

 = (1) probabilistic modeling + (2) representational power of DL

 

DGPs ( Deep Gaussian Processes )

apply amortized inference 

inference is intractable! solution?

(method 1) apply MFVI with inducing points

(method 2) propose to estimate these latent variables as a functions of inference 
networks

( allowing to scale to bigger dataset )

 

7-2. Variational Auto Encoder ( VAE )  
Amortized VI has become poupluar tool for inference in DLGM

 leads to VAEs

 

(a) Generative Model  

introduce class of DLGMs

Generative Process

draw latent variable  : 

more generally, can use prior that depends on  :  

likelihood depends on  through two non-linear functions  and  ( typically NN ) 
 entails the parameters of the networks  and 

 

DLGMs are very FLEXIBLE density estimators!

Modified version

for binary data, Gaussian likelihood can be replaced by Bernoulli likelihood
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(b) VAE  

VAEs refer to DLGMs which are trained using inference networks

Architecture

Encoder = RECOGNITION network / INFERENCE network
Decoder = GENERATIVE nework

 

Amortized mean-field variational distn

To approximate posterior, VAE employ amortized mean-field variational distn

Typically chosen as

similar to generative model, employs non-linear mappings  and  ( ex. NN )

 

During optimization, both INFERENCE & GENERATIVE networks are trained jointly to maximize 
ELBO

 

use Reparameterization Trick

ELBO :

differentiate w.r.t  and 

also implies that the gradient variance is bounded by a constant

 

(c) A probabilistic Encoder-Decoder Persepectiove  

Auto Encoder

DNN that are trained to reconstruct their inputs
bottleneck forces network to learn a compact representation of the data

 

Variational Auto Encoder

probabilistic model

hidden variable of VAE can be thought of as intermediate representations of the data in 
the bottle neck of an auto encoder

during training, inject noise into the intermediate layer

KL-divergence term makes posterior close to the prior

 regularizing effect
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When noise is reduced to zero, VAE = AE

 

7-3. Advancements in VAEs  
Lots of extensions have been proposed

Summarize as below : extensions that modify the..

1) variational approximations 
2) model 
3) dying units problem

 

(a) Flexible Variational Distributions  

 can be explicit distn ( ex. Gaussian, discrete distn... )

More flexible distn can be made by transforming a simple parametric distn

Implicit distributions
Normalizing Flow (NF)
Importance Weighted VAE (IWAE)

 

Implicit distributions

can be used, since closed-form density is not required

( only need them to be able to sample from! )

reparameterization gradients can still be computed

VI requires the computation of log density ratio ( =  )

 can use GAN style discriminator , that discriminate prior & variational distn

 

Normalizing Flow (NF)

transform simple approximate posterior  into more expressive distn

transform it using an invertible function

 , 

 

necessary that we compute the determinant!

choose transformation function  such that  is easily computable!

variants : 

Linear time transformations, Langevin and Hamlitonian flow
IAF ( Inverse Autoregressive Flow )
Autoregressive Flow
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Implicit distribution & Normalizing Flow

both share common idea of using transformations, to transform simple into complicated!
difference ) NF : density of  can be estimated due to invertible transformation function

 

Importance Weighted VAE (IWAE)

originally proposed to tighten the ELBO

reinterpreted to sample from a more flexible distn

require  samples from approximate posteriors, weighted by the ratio

bigger , tighter ELBO

same as VAE, but sample from a more expressive distn 

( which converges pointwise to the true posterior as  )

introduce a biased esitmator

( better variance-bias trade-offs can be taken )

 

(b) Modeling Choices of  

improving the prior in VAE can lead to more interpretable fits & better model performance!

ex) Structured Prior for VAE

overcome the intractability by learning variational params with a recognition model

 

Other approaches tackle the assumption "likelihood factorizes over dimensions"

ex) Deep Recurrent Attentive Writer ( relies on a recurrent structure )

ex) PixelVAE ( dependencies between pixels, using conditional model below )

.

 

(c) Dying units problem  

= Learning a good low-dim representation fails!

2 main effects are responsible!

1) TOO powerful decoder
2) KL-divergence term

 

TOO powerful decoder

so strong that some dimensions of  are ignored

( might model  independently of  )

in this case, "true posterior = prior", thus variational distn tries to match prior
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solve ) Lossy VAE

by conditioning the decoding distn for each output dimension on partial input 
information
force the distn to encode global info in the latent variables

 

KL-divergence term

ELBO can be rewritten as sum of 2 KL-div

if the model is expressive enough  second term = 0

then, will try to satisfy only the first term

  thus, inference model places its probability mass to match the prior
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