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1. Abstract

NF : provide expressive distn, require 2 things

e (1) base distn
e (2) series of bijective transformation

Provide a perspective by describing flows through the lens of probabilistic modeling and
inference

2. Introduction

How is the data generated (produced) ?
Build probability distn as NF!

e Section 2) formal & conceptual structure of NF

Section 3) in detail for finite & infinitesimal variants
Section 4) general perspective

Section 5) extensions to structured domains & geometries
Section 6) oft-encountered applications

3. Normalizing Flow

3-1. Definition & Basics
x = T'(u) where u ~ py(u)
* pyu(u):base distn

® params

o ¢:fortransformation T'
o @:for base distn py (u)
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e T :must be invertible & differentiable
T~ : must be differentiable

— such T are called diffeomorphisms

Change of variables
® px(x) = pu(u)|det JT(u)|71 where u=T"1(x).
(=px(x) = pu (T (x)) |det Jp-1 (x)])

Jacobian Jr(u)

e isthe D x D matrix of all partial derivatives of T'

o on
ouy Oup
JT (u) = : :
oIp . 9Ip
ouy Oup

Typically, T : NN & p,, (u) : MVN

Absolute Jacobian determinant : |det Jr (u)|

e quantifies the relative change of volume of a small neighbourhood around u due to 7.

Property of "invertible" + "differentiable" transformation = composable

(TyoTy) ' =T 0Tyt
det Jp,or, (u) = det Jg, (T} (u)) - det Jg, (u).

"Normalizing" "Flow"

e (1) Flow : trajectory, that a collection of samples from p, (u) follow
by the sequence of transformations 71, ..., Tk
e (2) Normalizing : inverse flow through TK’,I, ceey Tfl takes a collection of samples from py (x)

transforms it back ( =normalize them ) into a collection of samples from py (u)

Flow-based model provides 2 operations
e (1) SAMPLING from the model ( forward transformation )
— x = T'(u) where u ~ py (u)
e (2) EVALUATING the model's density ( Inverse transformation & Jacobian determinant)

— px (%) = pu (T (x)) |det Jp1 (x)]
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3-2. Expressive power of flow-based models

How expressive is it?

— universal representation is possible, under reasonable conditions on p, (x)

3-3. Using flows for modeling & inference

how to fit flow-based model px (x; 0) to a target distn p%(x) ?

e by minimizing some divergence/discrepancy ( ex. KL-div)

e params: 6 = {¢, ¥}

where ¢ are the parameters of 7" and 4 are the parameters of p, (u)

3-3-1. Forward KL & MLE

L(0) = Dxr, [px(x)|[px(x; 6)]
= —Ep(x) [log px(x; 0)] + const.

) .
= —Epx [logpu (Tﬁl(x; d)),z,b) + log|det J-1 (x; gi))\] + const.

e suitable when we have samples from the target distn
e unsuitable when we cannot evaluate target density pi (x)

Using MC samples...

L£(0) ~ —% 27]:7:1 logpu (T (%,; @) ;) + log|det Jp1 (x5 P)| + const. .

Minimizing KL-div

= Fitting flow-based model to the samples {x,, }5:1 by MLE

How to optimize? Iteratively with SGD

VsL(0) ~ —% 3N Vylogpy (T (%a58) ;9) + Vg log|det Jp1 (xn;9)]
VyL(0) ~ —+ SN Vylogpy (T (xn30) ;%)

e V4L(6):can be done in closed-form if p, (u; ) admits closed-form MLE

( ex. Gaussian distn)

Fitting by MLE

e need to compute T}, Jacobian determinant, density p, (u; %)
& different those three

e no need to compute 7', or sample from py, (u; 1)
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3-3-2. Reverse KL

L(6) = Dk [px(x; 0)||px (x)]
=K, (x;0) [log px(x; 0) — log px (x)] .
=K, (uy) [log pu(u;9) — log|det Jr (u; ¢)| — log px (T'(u; ¢))]

e suitable when we can evaluate target density p} (x)
e no need to samples from the target distn

Rewrite reverse KL

*

e pi(x) = Py (x)/C (where py(x) is unnormalized density )
o L(6) =E, () [logpu(u;9) — log|det Jr(u; ¢)| — logp, (T'(u; ¢))] + const.

Minimize reverse KL iteratively with SGD & Reparam Trick & MC estmation
o {u,}): samples from p, (u; )
e minimizew.r.t¢:
VsL(0) ~ — 4 Yoy Vo logldet Jr (s @)| + Vs log By (T (wni 6).
e minimize w.r.t¢:
use reparameterizion..u=17" (u’;4) where u’ ~py (u’)

but we can absorb 7" into T' & replace the base distn with p, (u’)

3-3-3. Duality between Forward & Reverse KL

Think of

e target px(x) as "base distribution”
e inverse flow as "inducing a distn p} (u; ¢)"

pi(u;¢) = pu(u;v) if and only if pi (x) = px(x;0).... Thus (a) & (b) are equivalent!

¢ (a) fitting model px (x; @) to target p%(x)
¢ (b) fitting induced distn pj; (u; @) to base p, (u; 1)

Using change of variables... Dk, [pi (%) ||px (x; 0)] = Dxkw [p% (u; ¢) ||pe (w; 9)).

— "fitting the model to the target using the forward KL divergence
= fitting the induced distribution p} (u; ¢) to the base p, (u; 1) under the reverse KL
divergence."

3-3-4. Alternative Divergences

not restricted to KL-divergence

e 1) f-divergence : use density ratios to compare models
e 2)Integral Probability Metrics (IPMs) : use differences for comparison
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f-divergence Dy [p%(x)||px(x;60)] = E, (x6) [f (pﬁgg) )]
IPM 85 [p% (%) [|Px (%3 0)] = Epy ) [s(x)] = By (xi0) [5(x)]

4. Constructing Flows Part 1 : Finitie
Compositions

NF are composable : T =Tk o--- 0T}

e idea: use simple transformation as building blocks

Evaluation

e forward evaluation: zy, = T} (zr—1) fork=1:K
e inverse evaluation:z 1 =T} ' (zx) fork=K:1

Jacobian-determinant ( in log domain ) : log|Jr(z)| = log’Hi{Zl Jr, (zk_l)‘ = 25:1 log|Jz, (z—1)|

e increase depth — only O(K) growth in computational complexity

Implement Ty, or Tk_]L using NN with param ¢ = fg,

(ensure network is invertible & tractable Jacobian determinant )
Ensuring fg, is invertible # Explicitly calculating its inverse

Tractable Jacobian determinant

e we can always find it ..... but cost O(D?) (with D inputs & D outputs )
— intractable for large D
¢ should be at most O(D)

will describe NN design that allow Jacobian determinant to be computed in linear time

4-1. Autoregressive Flow

under certain conditions, we can transform any distn p, (x) into a uniform distn using maps
with triangular Jacobian

Autoregressive Flow
2, = 7 (z;; h;) where h; = ¢; (z<;).

e T :transformer
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o strictly monotonic function of z; ( thus invertible )
o parameterized by h;
o specifies how the flow acts on z; to output 2/

e ¢; :i-th conditioner

o determines the parameters of the transformer
o DOES NOT need to be a bijection

The above is invertible for any choice of 7 and ¢;, as long as "transformer is invertible"
z; =71 (z;;hi) where h; =c¢; (z<;).

e (forward: z; — zx ) can be done in parallel
e (inverse:zp — 21 )all z-; need to be computed before z;

Triangular Jacobian — tractable ( O(D) time )
I (215 hy) 0

Jy, () =

L(z) " (zp; hp)

dzp

log‘det Jt, (z)‘ = log‘Hi’;l g—;(zi;hi)

=37, log | & (75 hi)

Autoregressive flows are Universal approximators , provided that the transformer & conditioner
are flexible enough!

Alternative : conditioner ¢; take in z’<i instead of z;

( mathematically equivalent)

4-1-1. Implementing the Transformer
What to choose as a transformer?

(a) Affine autoregressive flows

( = location-scale transformation )

flow: 7(zi;h;) = aiz; + 8;  where h; = {a;, 5}

Jacobian : log‘det Jy, (z)‘ =7, logles| = X7, di.

Pros & Cons

e Pros) simplicity & analytical tractability

e (Cons) expressivity is limited


af://n259
af://n261

(ex.let z : Gaussian — output is also Gaussian ....Thus need to stack multiple affine AF layers

)

Widely used

e NICE, Real NVP, IAF, MAF, Glow

(b) Non-Affine neural transformers

conic combinations & compositions of monotonic functions are also monotonic

e Conic combination: 7(z) = Zle wy, Tk (z), where wy, > 0 for all k.
e Composition: 7(z) = 7 0 -+ - o 71 (2)

Non-Affine neural transformers can be constructed...
"using conic combination of monotonically increasing activation functon o(-)"

7 (235 hi) = wip + Zszl wiko (anz; + Bix)  where  h; = {wi, ..., wik, ok, Bir }-

Jacobian determinant

e analytically obtainable ( but more commonly computed by back-propagation )

Drawback

e (in general)can not be inverted analytically

(can be inverted only iteratively... e.g. bijection search )

Variants : NAF, B-NAF, Flow++

(c) Integration-based transformers

The integral of some positive function = monotonically increasing function

ex) 7(z;;h;) = Ozi 9(z;;)dz+ B; where h; ={a;, [}
e g(;;a;): any positive-valued NN
e derivative of transformer = g (z;; a;)
¢ g(-; ;) to be a positive polynomial of degree 2L ( then integral will be 2L + 1in z; )

— Sum-of-squares polynomial transformer

_ 2
7(zi;h;) = o Zi{:l (Zf:o aiMZZ) dz + B;.

Affine transformer : L = ( of above
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i K 2 K Zi
Oz Dbt (aikozo) dz+ B; = (Zk:1 O‘?ko) z‘o + B = a;z; + B;.
(for large enough L) can approximate arbitrarily well any monotonic increasing function

(d) Neural spline flows

Non-affine transformers...don't have analytic inverse

But since all transformers are monotonic, can be inverted by bijections search
* 7(zia;h;) <z, <7 (zi;hy).
e keep halving, such that solution z; is always contained

e Bijection search computes z; with accuracy € in O (log 1)

— trade-off btw accuracy & computation

Overcome this trade-off with monotonic spline
(= piecewise function consisting of K segments , which are easy to invert)

e given K + linput locations z;g, ..., zg
e transformer 7 (z;; h;) : simple monotonic function in each interval [zi(k,l),zik}

e parameters h; :

o inputlocations z,..., zik
o corresponding output locations 2}, ..., 2}
o derivatives (i.e. slopes) at zio, - . ., ZiK

Spline-based transformers

e distinguished by the type of spline they use
e fastto invert as to evaluate, while maintaining exact analytical invertibility
e Evaluating or inverting

o (step 1) locate right segment ( O(log K) using binary search)
o (step 2) evaluate / invert that segment ( = analytically tractable)

4-1-2. Implementing the Conditioner
Conditioner : ¢; (z;)
e can be any function (NN ok)
e each ¢; (z;) having its separate NN — scale poorly with dim D
( cost of storing, learning params of D independent networks... )

e should SHARE params! how?

o 1) Recurrent Autoregressive Flows
o 2) Masked Autoregressive Flows
o 3) Coupling Layer
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(a) Recurrent Autoregressive Flows

conditioner = RNN

s1 = initial state

h; = c(s;) where . .
S; = RNN(Zi,hSi,l) fori >1

<1> <2> <t> <t+1>|
y Yy Y v

r1 t t

— — a<t—1> <t> | g <t

z<1> z(2> <t> <>

share params across conditional distributions of autoregressive models!
Downside?

e parallel computation into sequential one
¢ involves O(D) steps...slow for high-dim data

(b) Maksed Autoregressive Flows

"Share params + avoid sequential computation of RNN by MAKSING "

by Masking...

single feedforward! ( takes in z , outputs the entire sequence (hy,hs,...,hp))
e only requirement : autoregressive structure
(output h; can not depend on inputs z-; )
e remove connections from input z; to outputs (hy, ha, ..., h;)
( by multiplying each weight matrix elementwise, with binary matrix of same size )
e will have same architecture as original NN
e evaluate efficiently using GPU

o ex) MADE ( Masked Autoencoder for Distribution Estimation ), CNN, Self-attention...

MADE ( Masked Autoencoder for Distribution Estimation )

e assign a "degree" between 1~D for each input/hidden/output node
e mask-out the weights between subsequent layers

2 main advantages

e 1) Efficient to evaluate ( one NN pass & can be computed parallel )
e 2) Universal approximators

Disadvantage
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e Not as efficient to invert as to evaluate

/.
7

(*. params h; are needed to obtain 7! (z
is obtained)

Pseudocode

Initialize z to an arbitrary value
fori=1:D

(hl,.. .,hD) = C(Z)

Z; = 71 (Z;; hz)

e inverse: D times more expansive than evaluating forward transformation

Examples of masking to implementing autoregressive flows
e |AF, MAF, NAF, B-NAF, MintNet, MaCow
Examples of masking to implementing non-flow based autoregressive models

o MADE, PixelCNN, WaveNet

(c) Coupling Layers
Masked Autoregressive Flows : computational asymmetry

(either (1) sampling or (2) density evaluation will be D times slower .... IAF vs MAF )

— for both to be fast, different conditioner is needed! ... COUPLING LAYER

Coupling layer
e choose index d (commonly, D/2)

e design the conditioner such that

o params (hy,....hq) are constnats
o params (hqy1,....hp) are functions of zq (ex. NN)
( coupling layer ) splits into 2 parts

(fully autoregressive flow ) splits into D parts
(intermediate ) split into K parts

— inverting the transformation will be O(K) times more expensive than evaluating

[ forward ]

z’gd =z<d
(hd+1,...,hD) :NN(ZSd)
z, = 7(z;; h;) fori > d.

1

[inverse]

Z<g :zlgd

(hd+1,"~ahD) =NN (ng) :
z; =7 " (z;;hi) for i > d.

Jacobian :

hi), thus can not be computed until (z;, ... 2;-1)
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Ay

°

| o
- [A D]

I':d x dmatrix

0:d x (D — d) matrix

A : (D — d) x d matrix

D: (D —d) x (D — d) matrix

o thus, jacobian : product of diagonals of D = 7 (; hg11),...,7 (;hp)

e but due to efficiency...reduced expressive power

O O O O

single coupling layer # universal approximator
— need to compose multiple composing layers!

(when composing, elements of z need to be permuted! so that all dim have chance to be
transformed)

e D coupling layers is an universal approximator
(setindex d of the i-th coupling layer =4 — 1)
e Summary
o coupling layers = most popular method for flow-based models
(-.- allow both density evaluation & sampling to be done in single NN pass)
o widely used in generative models of high-dim data

( NICE, Real NVP, Glow, WaveGlow, FloWaveNet, Flow++)

4-1-3. Relationship with Autoregressive Models

Alongside NF, autoregressive models are another popular model for high-dim distribution

px(x) = [T2, x (xi | x<i)-
e model each conditional as px (x; | x<;) = px (xi;hi), where h; =¢; (x<;)
* ex) py (x;; h;) : Gaussian, parameterized by its mean & var
¢ ¢; (x;):analogous to conditioners of autoregresssive flow
(= typically implemented with NN )

e can also be used for discrete/mixed data

Autoregressive models of continuous variables = Autoregressive flows with single layer

let 7 (x;; h;) = cumulative distribution of py (x;; h;)
=7 (xi3h) = [M px (X)5 ;) dx]

and the vector u = (uy,...,up)

—w; =7(x;5h;)  where h; =¢; (x<;)

is always distributed uniformly in (0, 1)”.

"same as autoregressive flow" with z = x and 2’ = u.
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Log probability :

log py (x) = log Hf; Uniform(7 (x;; h;);0,1) + log H£1 Dx (x55h;) = Eﬁl log px (x; | x<;).

IAF : z; = 1 ('I.li; hz) where h; =¢; (X<i)

e corresponds exactly to sampling from autoregressive model ( inverse transform sampling )

Transformer : not limited to being the inverse CDF
exX) px (xi3hi) = N (xi5pi,0?)  where  h; = {p;,0:}

e reparam:x; = o;u; + u; where u; ~N(0,1)
e thus, entire autoregressive model = affine autoregressive flow

Conclusion
e 1) AF = extnending AM for continuous variables
e 2)Benefits of viewing AM as flows?

o (a) provides a framework for their composition — enhance flexibility
o (b) gives us freedom in specifying the base distn ( base distn can be learend)
o (c) compose AM with other types of flows ( ex. non-autoregressive flows)

4-2. Linear Flows

Autoregressive flows : restrict z;. to depend only on inputs z_;

e dependent on the order of input var
e in the limit of capacity, no limit in flexibility, but in practice , itisn't
e So use permutation!

Permutation
e (1) easily invertible transformation
(2) absolute Jacobian determinant = 1

e general idea of permutation = "Linear Flow"
7 = Wz

o where WisaD x D invertible matrix that parameterizes the transformation
o Jacobian determinant = det W

e special case of linear flow, where W is a permutation matrix
e Commonly... alternate "invertible linear transformation" & "autoregressive/coupling layers"

Parameterize and learn matrix W?

e problem 1) W is not guaranteed to be invertible

problem 2) solving Wz = 2’ takes O(D?)
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problem 3) det W takes O(D?) in general
e goal 1) W thatis invertible ( & inversion cost O(Dz) )

goal 2) computing its determinant costs O(D)

4-3. Residual Flows

invertible transformation of the from : 2z’ = z + g,4(z)

* g4 : NN that outputs D dim translation vector
e ¢ :NN parameter

2 general approaches

e 1) contractive maps
e 2) matrix determinant lemma

4-3-1. Contractive RF

RF is not always invertible, but invertible when g, can be made contractive w.r.t some
distance function

® 0(F(za),F (zp)) <Lé(za,2B).
e meaning ) contractive map brings any 2 inputs close together, by at least a factor L

Banach fixed-point theorem

e contractive map has exactly one fixed point z, = F (z,)

* Zp1 = F(z)

Residual transformation : 2’ = f,(z) = z + g, (2)
o F(z)=12"—gy4(2)
e If g4 is contractive with Lipschitz constant L, then F'is also ~.

e by Banach fixed-point theorem,

o there exists a unique z, such thatz, =z’ — g, (z.)

o

starting from arbitrary input z, iteratively apply F' as follows:

Zp1 =2 — gy (2) fork>0

o guarantees that the procedure above converges to z, = f(;l (z)
k

o rate of convergence : § (zx, z.) < lf—Lé(zo,zl)

smaller L, faster zx converges to z,

( trading off flexibility for efficiency )

Challenge of contractive RF
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how to make contractive, without impinging upon its flexibility?

e composition of K Lipschitz-cont func F, ... Fx = Lipschitz cont with constant equal to
HkK:I Ly

o where L, is the Lipschitz constant of F},
o make each layer Lipschtiz continuous with L;, < 1 & atleasone Lj, < 1
o ex)sigmoid, tanh, ReLU : Lipschitz continuous with a constant < 1

e linear layer can be made contractive, by dividing them with operator norm

o ex) Spectral normalization : use euclidean norm

Drawback of contractive RF

* no known general, efficient procedure for computing Jacobian .... costs O(D?)
e nonetheless, able to obtain unbiased estimate of log absolute Jacobian

( by power series)

log|det J;, ()| = log‘det (I + (z))‘ = P T (2))

° Jéfﬁ (z): k -th power of the Jacobian of g4 evaluated at z

( by Hutchinson trace estimator ) efficiently estimate Trace
Tr{J} (z)} = v Jj (2)v

o v :D-dim random vector with zero mean & unit cov
o vl Jgk¢ (z) can be computed with & backprop

( by Russian-roulette estimator)

infinite sum can be estimated as finite sum of re-weighted terms

contractive RF (vs AF)

e dense Jacobian ... allows all input variables to affect all output variables
— thus can be very flexible
e but exact density evaluation is computationally expensive &

sampling is done iteratively

4-3-2. RF based on the matrix determinant lemma
Matrix determinant lemma (= MD lemma)
det(A+ VW ') =det(I+ W' A'V)detA

e lefty O(D® + D*M)
e right) O (M3 + DM?)
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(a) Planar Flow
g is a one-layer NN with a single hidden unit:
z :z+va(sz+b)

e veRP weRPandb e R,and ois a differentiable activation function

Jacobian :

o Ji(z)=1+0 (Wwz+b)vw'.
* (using MD lemma) det Jy, (z) =1+ 0’ (w'z+b)w'v

Conditions of Planar Flow to be invertible

e 1)0’ :positive & bounded above

1
sup, o’ (z)

° Z)WTV>—

— ensures det Jy, (z) is always non-zero

(b) Sylvester Flow

extend Planar Flow to M hidden units
7z = Z+VU(WTZ+b).

e Ve RDXM, W e RPM gnd b e RM, and activation function o to be elementwise

Jacobian

° Jp(z) =1+ VS(z)W'
e (by MD lemma) det J, (z) = det (I + S(z)W ' V)

QR decomposition

e V=QUand W =QL

o Q:D x M matrix...whose columns are orthonormal (Q7 Q =1I)
o U:M x M upper triangle
o L:M x M lower triangle

e Thus, Jacobian determinant :

det Jy, (z) = det (I+ S(z)L' U) = [, (1 + Sii(z)LiUs)

(c) Radial flow

z’:z+%i(z)(z—z0) where 7(z) = ||z — z||

e ae(0,+),8€Randzy € R” and | - is the norm
e (meaning) contraction/expansion radially with center zq
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Jacobian:

° = g — —ﬁ — - !
J1,(2) = (1 + a+r(2)) I 7(z)(a+1(2))’ (z—20)(z —20) -

. (usingMDIemma)detJf¢(z):(1+ af )(1+ P )Dfl

(atr(z))? a+r(z)

be computed in O(D)

The radial flow is not invertible for all S...condition?

e "B> —a"...ensures that det J;, (z) is always non-zero

Summary of planar, Sylvester, radial flows
e O(D) Jacobian determinant

e can be made invertible by suitably restricting their params
( but no analytical way to compute inverse )

e . mostly used to approximate posterior for VAE ( not in generative model )

4-4. Practical considerations when combining
transformations

compose many flows as possible?

Glow

e 320 sub-transformations & 40 GPUs
e challenging computation....

2 techniques to solve?

e 1) stabilize the optimization
e 2)ease with computational demands

(a) Batch Normalization

stabilize & improve NN
composition of 2 affine transformation

e 1)scale & translation params ( by batch statistics )
e 2)free params « (scale) & B (translation)

BN(z):a@\/Z(;_‘;—I—,B, BNfl(z’):ﬂ—FZ’;ﬂ@ 5 +e

easy to compute Jacobian determinant (due to acting element-wise)
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det Jpx (2z) = [[2, —==

=l Q/(AT?-FQ
Inserted between transformations! (7T, c BN o T},_1 )

ex) Glow

e employs a variant called activation normalization

e doesn't use batch statistics £z and 6.
(instead, before training, flow once & o and 3 are set so that batch has zero & unit var)
(= data-dependent initialization )
(aand B are optimized as model params)

e preferable when training with small-mini batches

(*.* batch norm's statistics can be noisy )

(b) Multi-scale architecture

x and u should have same dim & T}, must preserve dimensionality
Multi-scale architecture :

e when going from x to u, some sub-dim of z; are clamped!

( & no additional transformation)

just like skip-connection

these help optimization!

e encode more global & semantic info in the dimensions

5. Constructing Flows part 2:
Continuous-Time Transformations

(until now ) DISCRETE one-step transformation
(now ) CONTINUOUS time, by parameterizing flow's infinitesimal dynamics

— construct flow by defining ODE (Ordinary Differential Equation)
( describes flow's evolution over time...called "continuous time" )

5-1. Definition

z, . flow's state at time ¢
e time ¢ runs continuously from ¢, to t;
e 7z, =uandz, =x

* '"parameterize the time derivative of z¢" with NN g4
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d
% = g¢ (t7zt)-

. dz
ODE: —* = gy (t,2¢)
e requirement of g4 : uniformly Lipschitiz continuous in z; & continuous in t

(many NN meet those requirements )

e do not need invertibility & tractability of Jacobian determinant

to compute transformation (x = T'(u) )
e need to run dynamics forward in time
(=need to do integration )

e X — Zy, = u+ ftt;to g¢ (t,Zt) dt

inverse transform T~

11 t
s u=zy =x+[" g5 (t,z)dt =x— [}, g5 (t,2,)dt
e Unlike discrete compositions (in before sections)
continuous-time flows have the same computational complexity in each direction

change in log density

dlog p(z:)
gdf = *TI’{J‘%(t’.) (Zt)}.

o Tr{-}:trace operator
o Jy, () (2¢) : Jacobian of gy (t,-) at z
e but trace operatoor requiers O(D) back-prop!
use "Hutchinson's trace estimator"
Tr{Jgd)(t,.) (zt)} ~ vTJg¢(t7.) (z¢) v
o v:any D-dim random vector with zero mean & unit covariance
o vl Jy, () (z¢) : computed in a single back-prop pass

which D times more efficient!

Integrating the derivative of logp(zt)

e logpy(x) =logpy(u) — j;t;to Tr{Jg¢(t7,) (zt)}dt

e forward transform & log density can be done simultaneously
[ X ]_{ u }+ . 96 (t,2¢) u
logpx(x) |~ Llogpu(w) | 7 | = e {0 ()} |

e computation is not analytically feasible for general g, — use numerical integration

5-2. Solving & Optimizing continuous-time flow
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(1) Euler's method

(2) Adjoint method

5-2-1. Euler's method and equivalence to RF
Simplest numerical technique

Zire = fo (2) = 2¢ + €9y (t,2¢)

e ¢ can be optimized with gradients computed via back-prop
e looks like z' =z + g4(z) (= contractive residual flow )

Taylor series expansion

log absolute Jacobian determinant of f, as follows:

D Tr{J (z)}
k 9o

like log|det .J7, (z)| = log‘det (I + T, (z)){ —ye O

(—1)F!

log‘det Jy, (zt)‘ =1 % ¢ Tr{J;ﬁ(t’) (zt)} = eTr{J_%(t’) (zt)} + O ().

o logp(ztic) =logp(z) — eTr{J%(t,) (zt)} +0 (62)
log p(zt4.)—log p(z:
° —gp( )—log p(z:) = —TI‘{Jng(t’.) (Zt)} + 0(6)

€

e becomes dlogdf(zt) =— Tr{J%(t,.) (Zt)} ase — 0

5-2-2. The Adjoint Method

target L(x; ¢)

gradient of 0L /0z;
dfoc) _  (oc)' 99tz
dt\oz, ) —  \om 02

o 7z : flow's intermediate state

gradient w.r.t ¢

OL(x;9)  pty oL 09s(tz)

op  Jt=t, 9z, 0¢ dt

6. Applications

2 primitive operations :

e (1) density calculation
e (2)sampling
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application to

e 1) probabilistic

e 2) inference

e 3)supervised learning

e 4)reinforcement learning

6-1. Probabilistic Modeling

assume finite number of draws x from unknown generative process : p’ (x)

¢ goal ) make a good approximation to p%(x)
e popular method : MLE ( use forward KL div)

Dxu, [px (%) [|px (x;6)] = —Ep; (x) [log px (x; 0)] + const

Na¥

2|~
M=

3
Il
—

~ __
~

log px (xn,;0) + const

I

|
=~
[M]=

3
Il
—_

log py (T_1 (%n; D) ;¢) + log|Jp-1 (%n; ¢)| + const.

With the resulting model p, (x; 0)

e 1) density estimation
e 2)generation

(a) Density Estimation

use model to calculate densities

1) low-dim cases ...NF can represent skewed, multi-modal densities
2) use density function to perform one-class classification

3) detect rotations and corruptions of images

4) composition allows for better density estimation ( MADE, Real NVP )

(b) Generation

sampling from model ( use as it is sampled from p (x) )

image, video, etc...

6-2. Inference

modeling params to infer unknown quantities within a model

most common setting : [ m(n)dn

summarize the use of flows for
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e 1) sampling
e 2)variational inference
o 3)likelihood-free inference

6-2-1. Importance and Rejection sampling

Importance Sampling (IS)
e auxiliary distn g(n)

_ w(n) 5 ] 1S 7))
Jnln)dn = [ alm) Zrdn =By | 30] ~ & S0 53

o g(n) is a user-specified density function
o 1), is asample from ¢(n)
¢ choice of ¢(n)

o ifit doesn't contain m(n) 's, estimate becomes impractical
o ifitistoo broad :inefficiency
¢ Importance of using expressive proposals g(n)!

— employ NFs

e Requires both sampling & density evaluation to be tractable for many flows

2 alternatives to optimize flow's params

e 1) minimize KL div
e 2)minimize the variance of IS estimator

Rejection sampling (RS)
e aims to draw samples from p(n) = n(n)/Z

e use Real NVP to parameterize proposal distn

( since coupling layers allow for fast density evaluation & sampling )

6-2-2. Reparameterizing models for MCMC

NF can be integrated into MCMC
— by using the flow to reparam the target distn

( can effectively smooth away pathologies, by allowing MCMC to be run on the simpler & better-
behaved base density )

Metropolis-Hastings ratio to the reparameterized model

py (1) w(T(4;¢))|det Jr(f.;0)]

(85 0) = DT = wTaie) et @)

e 11, :proposed value
e 1 :current value
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6-2-3. Variational Inference

use NF to fit distn over latent variables

"flows can usefully serve as posterior approximations"

Use a (trained) flow-based model

p(n | x) ~ a(n; ¢) = qu(u)|det Jr(u; )|

. qu(u) base distn
T(+;¢) : transformation

By maximizing ELBO

log p(x) > Ey(y4) [log p(x, n)] — Eqg(g) [log q(m; )]
= By, (w [log p(x, T(u; ¢))] — Eg, (u) [log gu(u)] + Eq, () [log|det J7 (u; ¢)]]
gu(u) 108 P(x, T'(1; @))] + H [gu (u)] + Ey ) [log|det J7(u; ¢)|]
e H gy, (u)]: differential entropy ( constantw.r.t ¢ )
e with MC estimation...
Eq,(w[logp(x, T(w; )] ~ § S5, logp (x, T (i; 6))
w(w [logldet Jr(w; ¢)[] ~ + 35, log|det Jr (ity; ¢)|
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