[Paper review 48]

Normalizing Flows for Probabilistic Modeling and Inference

(Papamakarios, et al., 2019)

[Contents]

1. Abstract

NF: provide expressive distn, require 2 things

- (1) base distn
- (2) series of bijective transformation

Provide a perspective by describing flows through the lens of **probabilistic modeling and inference**

2. Introduction

How is the data generated (produced)?

Build probability distn as NF!

- Section 2) formal & conceptual structure of NF
- Section 3) in detail for finite & infinitesimal variants
- Section 4) general perspective
- Section 5) extensions to structured domains & geometries
- Section 6) oft-encountered applications

3. Normalizing Flow

3-1. Definition & Basics

 $\mathbf{x} = T(\mathbf{u})$ where $\mathbf{u} \sim p_{\mathbf{u}}(\mathbf{u})$

- $p_{\mathbf{u}}(\mathbf{u})$: base distn
- params
 - \circ ϕ : for transformation T
 - \circ θ : for base distn $p_{\mathbf{u}}(\mathbf{u})$

• T: must be invertible & differentiable

 T^{-1} : must be differentiable

ightarrow such T are called **diffeomorphisms**

Change of variables

•
$$p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{u}}(\mathbf{u}) |\det J_T(\mathbf{u})|^{-1}$$
 where $\mathbf{u} = T^{-1}(\mathbf{x})$.
(= $p_{\mathbf{x}}(\mathbf{x}) = p_{\mathbf{u}} (T^{-1}(\mathbf{x})) |\det J_{T^{-1}}(\mathbf{x})|$)

Jacobian $J_T(\mathbf{u})$

• is the $D \times D$ matrix of all partial derivatives of T

$$J_T(\mathbf{u}) = egin{bmatrix} rac{\partial T_1}{\partial \mathrm{u}_1} & \cdots & rac{\partial T_1}{\partial \mathrm{u}_D} \ dots & \ddots & dots \ rac{\partial T_D}{\partial \mathrm{u}_1} & \cdots & rac{\partial T_D}{\partial \mathrm{u}_D} \end{bmatrix}.$$

Typically, T: NN & $p_u(\mathbf{u})$: MVN

Absolute Jacobian determinant : $|\det J_T(\mathbf{u})|$

• quantifies the relative change of volume of a small neighbourhood around ${\bf u}$ due to T.

Property of "invertible" + "differentiable" transformation = composable

$$egin{aligned} (T_2 \circ T_1)^{-1} &= T_1^{-1} \circ T_2^{-1} \ \det J_{T_2 \circ T_1}(\mathbf{u}) &= \det J_{T_2} \left(T_1(\mathbf{u})
ight) \cdot \det J_{T_1}(\mathbf{u}). \end{aligned}$$

"Normalizing" "Flow"

- (1) Flow : trajectory, that a collection of samples from $p_{
 m u}({f u})$ follow by the sequence of transformations T_1,\dots,T_K
- (2) Normalizing : inverse flow through T_K^{-1},\dots,T_1^{-1} takes a collection of samples from $p_{\mathbf{x}}(\mathbf{x})$ transforms it back (=normalize them) into a collection of samples from $p_{\mathbf{u}}(\mathbf{u})$

Flow-based model provides 2 operations

• (1) SAMPLING from the model (forward transformation)

$$\rightarrow$$
 x = T (**u**) where **u** $\sim p_{\mathbf{u}}$ (**u**)

• (2) EVALUATING the model's density (Inverse transformation & Jacobian determinant)

$$ightarrow p_{\mathrm{x}}(\mathrm{x}) = p_{\mathrm{u}}\left(T^{-1}(\mathrm{x})
ight) \left|\det J_{T^{-1}}(\mathrm{x})
ight|$$

3-2. Expressive power of flow-based models

How expressive is it?

ightarrow universal representation is possible, under reasonable conditions on $p_x(\mathbf{x})$

3-3. Using flows for modeling & inference

how to fit **flow-based model** $p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta})$ to a **target distn** $p_{\mathbf{x}}^*(\mathbf{x})$?

- by minimizing some divergence/discrepancy (ex. KL-div)
- params : $\theta=\{\phi,\psi\}$ where ϕ are the parameters of T and ψ are the parameters of $p_{\mathbf{u}}(\mathbf{u})$

3-3-1. Forward KL & MLE

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= D_{\mathrm{KL}}\left[p_{\mathrm{x}}^{*}(\mathrm{x}) \| p_{\mathrm{x}}(\mathrm{x}; \boldsymbol{\theta}) \right] \\ &= -\mathbb{E}_{p_{\mathrm{x}}^{*}(\mathrm{x})}\left[\log p_{\mathrm{x}}(\mathrm{x}; \boldsymbol{\theta}) \right] + \mathrm{const.} \\ &= -\mathbb{E}_{p_{\mathrm{x}}^{*}(\mathrm{x})}\left[\log p_{\mathrm{u}}\left(T^{-1}(\mathrm{x}; \phi); \psi\right) + \log |\mathrm{det}\, J_{T^{-1}}(\mathrm{x}; \phi)| \right] + \mathrm{const.} \end{split}$$

- suitable when we have samples from the target distn
- unsuitable when we cannot evaluate target density $p_{\mathbf{x}}^*(\mathbf{x})$

Using MC samples...

$$\mathcal{L}(oldsymbol{ heta}) pprox -rac{1}{N} \sum_{n=1}^{N} \log p_{\mathrm{u}}\left(T^{-1}\left(\mathbf{x}_{n}; oldsymbol{\phi}
ight) + \log ert \det J_{T^{-1}}\left(\mathbf{x}_{n}; oldsymbol{\phi}
ight) ert + \mathrm{const.} \ .$$

Minimizing KL-div

= Fitting flow-based model to the samples $\left\{\mathbf{x}_{n}\right\}_{n=1}^{N}$ by MLE

How to optimize? Iteratively with SGD

$$egin{aligned}
abla_{\phi} \mathcal{L}(oldsymbol{ heta}) &pprox -rac{1}{N} \sum_{n=1}^{N}
abla_{\phi} \log p_{\mathrm{u}} \left(T^{-1} \left(\mathbf{x}_{n}; \phi
ight) ; oldsymbol{\psi}
ight) +
abla_{\phi} \log \left| \det J_{T^{-1}} \left(\mathbf{x}_{n}; \phi
ight)
ight|
onumber \
abla_{\psi} \mathcal{L}(oldsymbol{ heta}) &pprox -rac{1}{N} \sum_{n=1}^{N}
abla_{\psi} \log p_{\mathrm{u}} \left(T^{-1} \left(\mathbf{x}_{n}; \phi
ight) ; oldsymbol{\psi}
ight) \end{aligned}$$

• $\nabla_{\psi} \mathcal{L}(\theta)$: can be done in closed-form if $p_{\mathrm{u}}(\mathbf{u}; \boldsymbol{\psi})$ admits closed-form MLE (ex. Gaussian distn)

Fitting by MLE

- need to compute T^{-1} , Jacobian determinant, density $p_{\mathrm{u}}(\mathbf{u}; \pmb{\psi})$ & different those three
- no need to compute T , or sample from $p_{\mathrm{u}}(\mathbf{u}; oldsymbol{\psi})$

3-3-2. Reverse KL

$$\begin{split} \mathcal{L}(\boldsymbol{\theta}) &= D_{\mathrm{KL}}\left[p_{\mathrm{x}}(\mathrm{x}; \boldsymbol{\theta}) \| p_{\mathrm{x}}^{*}(\mathrm{x})\right] \\ &= \mathbb{E}_{p_{\mathrm{x}}(\mathrm{x}; \boldsymbol{\theta})}\left[\log p_{\mathrm{x}}(\mathrm{x}; \boldsymbol{\theta}) - \log p_{\mathrm{x}}^{*}(\mathrm{x})\right] \\ &= \mathbb{E}_{p_{\mathrm{u}}(\mathrm{u}; \boldsymbol{\psi})}\left[\log p_{\mathrm{u}}(\mathbf{u}; \boldsymbol{\psi}) - \log |\mathrm{det}\, J_{T}(\mathbf{u}; \boldsymbol{\phi})| - \log p_{\mathrm{x}}^{*}(T(\mathbf{u}; \boldsymbol{\phi}))\right] \end{split}.$$

- suitable when we can evaluate target density $p_{\mathbf{x}}^*(\mathbf{x})$
- no need to samples from the target distn

Rewrite reverse KL

- $p_{\mathbf{x}}^*(\mathbf{x}) = \tilde{p}_{\mathbf{x}}(\mathbf{x})/C$ (where $\tilde{p}_{\mathbf{x}}(\mathbf{x})$ is unnormalized density)
- $\bullet \ \ \mathcal{L}(\boldsymbol{\theta}) = \mathbb{E}_{p_{\mathrm{u}}(\mathrm{u};\boldsymbol{\psi})} \left[\log p_{\mathrm{u}}(\mathbf{u};\boldsymbol{\psi}) \log \lvert \det J_T(\mathbf{u};\boldsymbol{\phi}) \rvert \log \tilde{p}_{\mathrm{x}}(T(\mathbf{u};\boldsymbol{\phi})) \right] + \ \mathrm{const.}$

Minimize reverse KL iteratively with SGD & Reparam Trick & MC estmation

- $\{\mathbf{u}_n\}_{n=1}^N$: samples from $p_{\mathbf{u}}(\mathbf{u}; \boldsymbol{\psi})$
- minimize w.r.t ϕ :

$$abla_{\phi}\mathcal{L}(oldsymbol{ heta}) pprox -rac{1}{N}\sum_{n=1}^{N}
abla_{\phi}\log\!\left|\det J_{T}\left(\mathbf{u}_{n};\phi
ight)
ight| +
abla_{\phi}\log ilde{p}_{_{\mathrm{X}}}\left(T\left(\mathbf{u}_{n};\phi
ight)
ight).$$

• minimize w.r.t ψ :

use reparameterizion ... $\mathbf{u}=T'\left(\mathbf{u}';oldsymbol{\psi}\right) \quad ext{ where } \quad \mathbf{u}'\sim p_{\mathbf{u}'}\left(\mathbf{u}'\right)$

but we can absorb T' into T & replace the base distn with $p_{\mathbf{u}'}\left(\mathbf{u}'\right)$

3-3-3. Duality between Forward & Reverse KL

Think of

- target $p_{\mathbf{x}}^*(\mathbf{x})$ as "base distribution"
- inverse flow as "inducing a distn $p_{ii}^*(\mathbf{u};\phi)$ "

 $p_{\mathrm{u}}^*(\mathbf{u};\phi)=p_{\mathrm{u}}(\mathbf{u};\psi)$ if and only if $p_{\mathrm{x}}^*(\mathbf{x})=p_{\mathrm{x}}(\mathbf{x};\theta)...$ Thus (a) & (b) are equivalent!

- (a) fitting model $p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta})$ to target $p_{\mathbf{x}}^*(\mathbf{x})$
- (b) fitting induced distn $p_{\mathrm{u}}^*(\mathbf{u};\phi)$ to base $p_{\mathrm{u}}(\mathbf{u};\psi)$

Using change of variables... $D_{\mathrm{KL}}[p_{\mathrm{x}}^*(\mathrm{x}) \| p_{\mathrm{x}}(\mathrm{x};\theta)] = D_{\mathrm{KL}}[p_{\mathrm{u}}^*(\mathbf{u};\phi) \| p_{\mathrm{u}}(\mathbf{u};\psi)].$

- \rightarrow "fitting the model to the target using the **forward KL divergence**
- = fitting the induced distribution $p_{\mathrm{u}}^*(\mathbf{u};\phi)$ to the base $p_{\mathrm{u}}(\mathbf{u};\psi)$ under the **reverse KL divergence**."

3-3-4. Alternative Divergences

not restricted to KL-divergence

- 1) f-divergence : use **density ratios** to compare models
- 2) Integral Probability Metrics (IPMs): use **differences** for comparison

$$\begin{split} f\text{-divergence} & \quad D_f\left[p_{\mathbf{x}}^*(\mathbf{x}) \| p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}) \right] = \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta})} \left[f\left(\frac{p_{\mathbf{x}}^*(\mathbf{x})}{p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta})}\right) \right] \\ \text{IPM} & \quad \delta_s\left[p_{\mathbf{x}}^*(\mathbf{x}) \| p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta}) \right] = \mathbb{E}_{p_{\mathbf{x}}^*(\mathbf{x})}[s(\mathbf{x})] - \mathbb{E}_{p_{\mathbf{x}}(\mathbf{x}; \boldsymbol{\theta})}[s(\mathbf{x})] \end{split}$$

4. Constructing Flows Part 1: Finitie Compositions

NF are **composable** : $T = T_K \circ \cdots \circ T_1$

• idea : use simple transformation as building blocks

Evaluation

- forward evaluation : $\mathbf{z}_k = T_k \left(\mathbf{z}_{k-1} \right)$ for k=1:K
- ullet inverse evaluation : $\mathbf{z}_{k-1} = T_k^{-1}\left(\mathbf{z}_k
 ight)$ for k=K:1

Jacobian-determinant (in log domain) : $\log \lvert J_T(\mathbf{z}) \rvert = \log \bigl\lvert \prod_{k=1}^K J_{T_k}\left(\mathbf{z}_{k-1}
ight) \bigr\rvert = \sum_{k=1}^K \log \lvert J_{T_k}\left(\mathbf{z}_{k-1}
ight)
vert$

ullet increase depth o only O(K) growth in computational complexity

Implement T_k or T_k^{-1} using NN with param $\phi_k = f_{\phi_k}$

(ensure network is invertible & tractable Jacobian determinant)

Ensuring f_{ϕ_k} is invertible eq Explicitly calculating its inverse

Tractable Jacobian determinant

- we can always find it but cost ${\cal O}(D^3)$ (with D inputs & D outputs)
 - ightarrow intractable for large D
- ullet should be at most O(D)

will describe NN design that allow Jacobian determinant to be computed in linear time

4-1. Autoregressive Flow

under certain conditions, we can transform **any distn** $p_x(\mathbf{x})$ into a **uniform distn** using maps with **triangular Jacobian**

Autoregressive Flow

$$z_i' = \tau\left(z_i; h_i\right) \text{ where } h_i = c_i\left(\mathbf{z}_{< i}\right).$$

• τ : transformer

- \circ strictly monotonic function of z_i (thus invertible)
- \circ parameterized by h_i
- specifies how the flow acts on z_i to output z_i'
- c_i : *i*-th conditioner
 - o determines the parameters of the transformer
 - DOES NOT need to be a bijection

The above is **invertible** for any choice of τ and c_i , as long as "transformer is invertible"

$$\mathbf{z}_i = au^{-1}\left(\mathbf{z}_i'; oldsymbol{h}_i
ight) \quad ext{ where } \quad oldsymbol{h}_i = c_i\left(\mathbf{z}_{< i}
ight).$$

- ullet (forward : $z_1
 ightarrow z_K$) can be done in parallel
- ullet (inverse : $z_k o z_1$) all $\mathbf{z}_{< i}$ need to be computed before $\mathbf{z_i}$

Triangular Jacobian ightarrow tractable ($\mathcal{O}(D)$ time)

$$J_{f_{\phi}}(\mathbf{z}) = egin{bmatrix} rac{\partial au}{\partial z_1}(\mathbf{z}_1;m{h}_1) & 0 \ & \ddots & \ \mathbf{L}(\mathbf{z}) & rac{\partial au}{\partial \mathbf{z}_D}(\mathbf{z}_D;m{h}_D) \end{bmatrix}\!.$$

$$\log\!\left|\det J_{f_\phi}(\mathbf{z})
ight| = \log\!\left|\prod_{i=1}^D rac{\partial au}{\partial z_i}(\mathbf{z}_i;m{h}_i)
ight| = \sum_{i=1}^D \log\mid rac{\partial au}{\partial z_i}(\mathbf{z}_i;m{h}_i)$$

Autoregressive flows are **Universal approximators** , provided that the transformer & conditioner are flexible enough!

Alternative : conditioner c_i take in $\mathbf{z}'_{< i}$ instead of $\mathbf{z}_{< i}$

(mathematically equivalent)

4-1-1. Implementing the Transformer

What to choose as a transformer?

(a) Affine autoregressive flows

(= **location-scale** transformation)

$$\mathsf{flow}$$
 : $au(\mathbf{z}_i; oldsymbol{h}_i) = lpha_i \mathbf{z}_i + eta_i \quad ext{ where } \quad oldsymbol{h}_i = \{lpha_i, eta_i\}.$

Jacobian :
$$\log\!\left|\det J_{f_\phi}(\mathbf{z})\right| = \sum_{i=1}^D \log\!\left|\alpha_i\right| = \sum_{i=1}^D \tilde{\alpha}_i.$$

Pros & Cons

- Pros) simplicity & analytical tractability
- Cons) expressivity is limited

(ex. let ${\bf z}$: Gaussian \to output is also GaussianThus need to stack multiple affine AF layers)

Widely used

• NICE, Real NVP, IAF, MAF, Glow

(b) Non-Affine neural transformers

conic combinations & compositions of monotonic functions are also monotonic

- Conic combination: $au(\mathbf{z}) = \sum_{k=1}^K w_k au_k(\mathbf{z}),$ where $w_k > 0$ for all k.
- Composition: $\tau(\mathbf{z}) = \tau_K \circ \cdots \circ \tau_1(\mathbf{z})$

Non-Affine neural transformers can be constructed...

"using conic combination of monotonically increasing activation functon $\sigma(\cdot)$ "

$$au\left(\mathbf{z}_i;oldsymbol{h}_i
ight) = w_{i0} + \sum_{k=1}^K w_{ik}\sigma\left(lpha_{ik}\mathbf{z}_i + eta_{ik}
ight) \quad ext{ where } \quad oldsymbol{h}_i = \{w_{i0},\dots,w_{iK},lpha_{ik},eta_{ik}\}.$$

Jacobian determinant

• analytically obtainable (but more commonly computed by back-propagation)

Drawback

(in general) can not be inverted analytically
 (can be inverted only iteratively... e.g. bijection search)

Variants: NAF, B-NAF, Flow++

(c) Integration-based transformers

The integral of some positive function = monotonically increasing function

ex)
$$au(\mathbf{z}_i; m{h}_i) = \int_0^{\mathbf{z}_i} g(\mathbf{z}; m{lpha}_i) \, d\mathbf{z} + eta_i$$
 where $m{h}_i = \{m{lpha}_i, eta_i\}.$

- $g(\cdot; \boldsymbol{\alpha}_i)$: any positive-valued NN
- derivative of transformer = $g(\mathbf{z_i}; \boldsymbol{\alpha}_i)$
- $g(\cdot; \alpha_i)$ to be a positive polynomial of degree 2L (then integral will be 2L+1 in z_i)
 - → Sum-of-squares polynomial transformer

$$au\left(\mathbf{z}_{i};oldsymbol{h}_{i}
ight)=\int_{0}^{\mathbf{z}_{i}}\sum_{k=1}^{K}\left(\sum_{\ell=0}^{L}lpha_{ik\ell}\mathbf{z}^{\ell}
ight)^{2}d\mathbf{z}+eta_{i}.$$

Affine transformer : L=0 of above

$$\int_0^{z_i} \sum_{k=1}^K \left(lpha_{ik0} z^0
ight)^2 dz + eta_i = \left(\sum_{k=1}^K lpha_{ik0}^2
ight) z \Big|_0^{z_i} + eta_i = lpha_i z_i + eta_i.$$

(for large enough L) can approximate arbitrarily well any monotonic increasing function

(d) Neural spline flows

Non-affine transformers...don't have analytic inverse

But since all transformers are monotonic, can be inverted by bijections search

- $au\left(\mathbf{z}_{iA}; oldsymbol{h}_{i}
 ight) < \mathbf{z}_{i}' < au\left(\mathbf{z}_{iB}; oldsymbol{h}_{i}
 ight).$
- ullet keep halving, such that solution \mathbf{z}_i is always contained
- Bijection search computes $\mathbf{z_i}$ with accuracy ϵ in $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$
 - \rightarrow trade-off btw accuracy & computation

Overcome this trade-off with monotonic spline

(= piecewise function consisting of K segments , which are easy to invert)

- given K+1 input locations $\mathbf{z}_{i0},\ldots,\mathbf{z}_{iK}$
- transformer $au\left(\mathbf{z}_{i}; m{h}_{i}\right)$: simple monotonic function in each interval $\left[\mathbf{z}_{i(k-1)}, \mathbf{z}_{ik}\right]$
- parameters $m{h}_i$:
 - \circ input locations z_{i0}, \ldots, z_{iK}
 - \circ corresponding output locations z'_{i0},\ldots,z'_{iK}
 - \circ derivatives (i.e. slopes) at $\mathbf{z}_{i0}, \dots, \mathbf{z}_{iK}$

Spline-based transformers

- distinguished by the type of spline they use
- fast to invert as to evaluate, while maintaining exact analytical invertibility
- Evaluating or inverting
 - \circ (step 1) locate right segment ($\mathcal{O}(\log K)$ using binary search)
 - (step 2) evaluate / invert that segment (= analytically tractable)

4-1-2. Implementing the Conditioner

Conditioner : c_i ($\mathbf{z}_{< i}$)

- can be any function (NN ok)
- each c_i ($\mathbf{z}_{< i}$) having its separate NN o scale poorly with dim D (cost of storing, learning params of D independent networks...)
- should SHARE params! how?
 - o 1) Recurrent Autoregressive Flows
 - o 2) Masked Autoregressive Flows
 - o 3) Coupling Layer

(a) Recurrent Autoregressive Flows

conditioner = RNN

$$oldsymbol{h}_i = c\left(oldsymbol{s}_i
ight) ext{ where } egin{aligned} s_1 &= ext{ initial state} \ s_i &= ext{RNN}(ext{z}_{i-1}, s_{i-1}) ext{ for } i > 1 \end{aligned}.$$

share params across conditional distributions of autoregressive models!

Downside?

- parallel computation into sequential one
- involves O(D) steps...slow for high-dim data

(b) Maksed Autoregressive Flows

"Share params + avoid sequential computation of RNN by MAKSING"

by Masking...

- single feedforward! (takes in z , outputs the entire sequence (h_1, h_2, \ldots, h_D))
- only requirement : ${f autoregressive\ structure}$ (output ${f h_i}$ can not depend on inputs ${f z}_{\geq i}$)
- remove connections from input z_i to outputs $(\mathbf{h_1}, \mathbf{h_2}, \dots, \mathbf{h_i})$ (by multiplying each weight matrix elementwise, with binary matrix of same size)
- will have same architecture as original NN
- evaluate efficiently using GPU
- ex) MADE (Masked Autoencoder for Distribution Estimation), CNN, Self-attention...

MADE (Masked Autoencoder for Distribution Estimation)

- ullet assign a "degree" between 1~D for each input/hidden/output node
- mask-out the weights between subsequent layers

2 main advantages

- 1) Efficient to evaluate (one NN pass & can be computed parallel)
- 2) Universal approximators

• Not as efficient to **invert** as to evaluate

(: params $\mathbf{h_i}$ are needed to obtain $\tau^{-1}\left(\mathbf{z}_i'; \boldsymbol{h}_i\right)$, thus can not be computed until $(z_i, \ldots z_{i-1})$ is obtained)

Pseudocode

Initialize z to an arbitrary value

$$egin{aligned} & ext{for } i=1:D \ (oldsymbol{h}_1,\ldots,oldsymbol{h}_D) = c(\mathbf{z}) \ \mathbf{z}_i = au^{-1}\left(\mathbf{z}_i';oldsymbol{h}_i
ight) \end{aligned}$$

• inverse : *D* times more expansive than evaluating forward transformation

Examples of masking to implementing autoregressive flows

• IAF, MAF, NAF, B-NAF, MintNet, MaCow

Examples of masking to implementing non-flow based autoregressive models

• MADE, PixelCNN, WaveNet

(c) Coupling Layers

Masked Autoregressive Flows: computational asymmetry

(either (1) sampling or (2) density evaluation will be D times slower IAF vs MAF)

 \rightarrow for both to be fast, different conditioner is needed! ... **COUPLING LAYER**

Coupling layer

- choose index d (commonly, D/2)
- design the conditioner such that
 - \circ params $(\mathbf{h_1}, \dots, \mathbf{h_d})$ are constnats
 - $\circ \;\;$ params $(h_{d+1}, \ldots h_D)$ are functions of $\mathbf{z}_{< d}$ (ex. NN)
- (coupling layer) splits into 2 parts

(fully autoregressive flow) splits into D parts

(intermediate) split into K parts

- \rightarrow inverting the transformation will be O(K) times more expensive than evaluating
- [forward]

$$egin{aligned} \mathbf{z}'_{\leq d} &= \mathbf{z} \leq d \ (m{h}_{d+1}, \dots, m{h}_D) &= ext{NN}\left(\mathbf{z}_{\leq d}
ight) \ \mathbf{z}'_i &= au\left(\mathbf{z}_i; m{h}_i
ight) ext{ for } i > d. \end{aligned}$$

• [inverse]

$$egin{aligned} \mathbf{z}_{\leq d} &= \mathbf{z}_{\leq d}' \ (m{h}_{d+1}, \dots, m{h}_D) &= \mathrm{NN}\left(\mathbf{z}_{\leq d}
ight) \ \mathbf{z}_i &= au^{-1}\left(\mathbf{z}_i'; m{h}_i
ight) ext{ for } i > d. \end{aligned}$$

• Jacobian:

$$J_{f_\phi} = egin{bmatrix} \mathbf{I} & \mathbf{0} \ \mathbf{A} & \mathbf{D} \end{bmatrix}$$

- \circ $I: d \times d$ matrix
- $\mathbf{0}: d \times (D-d)$ matrix
- $\mathbf{A}: (D-d) \times d$ matrix
- $\mathbf{D}: (D-d) \times (D-d)$ matrix
- thus, jacobian: product of diagonals of $\mathbf{D} = \tau(\cdot; h_{d+1}), \dots, \tau(\cdot; h_D)$
- but due to efficiency...reduced expressive power

single coupling layer \neq universal approximator

 \rightarrow need to compose multiple composing layers!

(when composing, elements of ${\bf z}$ need to be permuted! so that all dim have chance to be transformed)

- D coupling layers is an universal approximator (set index d of the i-th coupling layer = i-1)
- Summary
 - coupling layers = most popular method for flow-based models
 (: allow both density evaluation & sampling to be done in single NN pass)
 - widely used in generative models of high-dim data
 (NICE, Real NVP, Glow, WaveGlow, FloWaveNet, Flow++)

4-1-3. Relationship with Autoregressive Models

Alongside NF, autoregressive models are another popular model for high-dim distribution

$$p_{\mathrm{x}}(\mathrm{x}) = \prod_{i=1}^{D} p_{\mathrm{x}} \left(\mathrm{x}_i \mid \mathrm{x}_{< i}
ight).$$

- ullet model each conditional as $p_{\mathrm{x}}\left(\mathbf{x}_{i}\mid\mathbf{x}_{< i}
 ight)=p_{\mathrm{x}}\left(\mathbf{x}_{i};oldsymbol{h}_{i}
 ight), \quad ext{ where } \quad oldsymbol{h}_{i}=c_{i}\left(\mathbf{x}_{< i}
 ight)$
- ex) $p_{\mathrm{x}}\left(\mathbf{x}_{i};\boldsymbol{h}_{i}\right)$: Gaussian, parameterized by its mean & var
- $c_i\left(\mathbf{x}_{< i}\right)$: analogous to **conditioners** of autoregresssive flow (= typically implemented with NN)
- can also be used for discrete/mixed data

Autoregressive models of continuous variables = Autoregressive flows with single layer

let
$$au\left(\mathbf{x}_i; \boldsymbol{h}_i\right)$$
 = cumulative distribution of $p_{\mathbf{x}}\left(\mathbf{x}_i; \boldsymbol{h}_i\right)$ $\rightarrow au\left(\mathbf{x}_i; \boldsymbol{h}_i\right) = \int_{-\infty}^{\mathbf{x}_i} p_{\mathbf{x}}\left(\mathbf{x}_i'; \boldsymbol{h}_i\right) d\mathbf{x}_i'$ and the vector $\mathbf{u} = (\mathbf{u}_1, \dots, \mathbf{u}_D)$ $\rightarrow \mathbf{u}_i = au\left(\mathbf{x}_i; \boldsymbol{h}_i\right)$ where $\boldsymbol{h}_i = c_i\left(\mathbf{x}_{< i}\right)$ is always distributed uniformly in $(0, 1)^D$.

"same as autoregressive flow" with $\mathbf{z}=\mathbf{x}$ and $\mathbf{z}'=\mathbf{u}$.

Log probability:

$$\log p_{\mathrm{x}}(\mathrm{x}) = \log \prod_{i=1}^{D} \mathrm{Uniform}(au\left(\mathrm{x}_{i};oldsymbol{h}_{i}
ight);0,1) + \log \prod_{i=1}^{D} p_{\mathrm{x}}\left(\mathrm{x}_{i};oldsymbol{h}_{i}
ight) = \sum_{i=1}^{D} \log p_{\mathrm{X}}\left(\mathrm{x}_{i} \mid \mathrm{x}_{< i}
ight).$$

$$\mathsf{IAF}: \mathbf{z}_i = au^{-1}\left(\mathbf{u}_i; oldsymbol{h}_i
ight) \quad ext{ where } \quad oldsymbol{h}_i = c_i\left(\mathbf{x}_{< i}
ight)$$

• corresponds exactly to sampling from autoregressive model (inverse transform sampling)

Transformer: not limited to being the inverse CDF

ex)
$$p_{\mathrm{x}}\left(\mathrm{x}_{i};oldsymbol{h}_{i}
ight)=\mathcal{N}\left(\mathrm{x}_{i};\mu_{i},\sigma_{i}^{2}
ight) \quad ext{ where } \quad oldsymbol{h}_{i}=\left\{ \mu_{i},\sigma_{i}
ight\}$$

- reparam : $\mathbf{x}_i = \sigma_i \mathbf{u}_i + \mu_i$ where $\mathbf{u}_i \sim \mathcal{N}(0,1)$
- thus, entire autoregressive model = affine autoregressive flow

Conclusion

- 1) AF = extnending AM for continuous variables
- 2) Benefits of viewing AM as flows?
 - \circ (a) provides a framework for their composition \rightarrow enhance flexibility
 - o (b) gives us freedom in specifying the base distn (base distn can be learend)
 - o (c) compose AM with other types of flows (ex. non-autoregressive flows)

4-2. Linear Flows

Autoregressive flows : restrict $z_i^{'}$ to depend only on inputs $\mathbf{z}_{\neq i}$

- dependent on the order of input var
- in the limit of capacity, no limit in flexibility, but in practice, it isn't
- So use **permutation**!

Permutation

- (1) easily invertible transformation
 - (2) absolute Jacobian determinant = 1
- general idea of permutation = "Linear Flow"

$$z' = Wz$$

- \circ where **W** is a $D \times D$ invertible matrix that parameterizes the transformation
- Jacobian determinant = det W
- ullet special case of linear flow, where f W is a **permutation matrix**
- Commonly... alternate "invertible linear transformation" & "autoregressive/coupling layers"

Parameterize and learn matrix W?

• problem 1) ${\bf W}$ is not guaranteed to be invertible problem 2) solving ${\bf W}z=z'$ takes $O(D^3)$

problem 3) det \mathbf{W} takes $O(D^3)$ in general

• goal 1) ${\bf W}$ that is invertible (& inversion cost $O(D^2)$) goal 2) computing its determinant costs O(D)

4-3. Residual Flows

invertible transformation of the from : $\mathbf{z}' = \mathbf{z} + g_{\phi}(\mathbf{z})$

- g_{ϕ} : NN that outputs D dim translation vector
- ϕ : NN parameter

2 general approaches

- 1) contractive maps
- 2) matrix determinant lemma

4-3-1. Contractive RF

RF is not always invertible, but invertible when $\,g_{\phi}$ can be made contractive w.r.t some distance function

- $\delta(F(\mathbf{z}_A), F(\mathbf{z}_B)) \leq L\delta(\mathbf{z}_A, \mathbf{z}_B).$
- ullet meaning) contractive map brings any 2 inputs close together, by at least a factor L

Banach fixed-point theorem

- contractive map has exactly one fixed point $\mathbf{z}_* = F(\mathbf{z}_*)$
- $\mathbf{z}_{k+1} = F(\mathbf{z}_k)$

Residual transformation : $\mathbf{z}' = f_{\phi}(\mathbf{z}) = \mathbf{z} + g_{\phi}(\mathbf{z})$

- $F(\hat{\mathbf{z}}) = \mathbf{z}' g_{\phi}(\hat{\mathbf{z}})$
- If g_{ϕ} is contractive with Lipschitz constant L, then F is also ~.
- by Banach fixed-point theorem,
 - there exists a unique \mathbf{z}_* such that $\mathbf{z}_* = \mathbf{z}' g_{\phi}(\mathbf{z}_*)$
 - starting from arbitrary input \mathbf{z}_0 , iteratively apply F as follows:

$$\mathbf{z}_{k+1} = \mathbf{z}' - g_{\phi}(\mathbf{z}_k) \quad \text{ for } k \geq 0$$

- $\circ~$ guarantees that the procedure above converges to $\mathbf{z}_* = f_\phi^{-1}\left(\mathbf{z}'
 ight)$
- $\text{o} \quad \text{rate of convergence}: \delta\left(\mathbf{z}_{k}, \mathbf{z}_{*}\right) \leq \frac{L^{k}}{1-L} \delta\left(\mathbf{z}_{0}, \mathbf{z}_{1}\right)$ $\text{smaller } L \text{, faster } \mathbf{z}_{k} \text{ converges to } \mathbf{z}_{*}$

(trading off flexibility for efficiency)

how to make contractive, without impinging upon its flexibility?

- composition of K Lipschitz-cont func $F_1, \ldots F_K$ = Lipschitz cont with constant equal to $\prod_{k=1}^K L_k$
 - \circ where L_k is the Lipschitz constant of F_k
 - \circ make each layer Lipschtiz continuous with $L_k \leq 1$ & at leas one $L_k < 1$
 - \circ ex) sigmoid, tanh, ReLU : Lipschitz continuous with a constant ≤ 1
- linear layer can be made **contractive**, by dividing them with operator norm
 - o ex) Spectral normalization: use euclidean norm

Drawback of contractive RF

- no known general, efficient procedure for computing Jacobian costs $O(D^3)$
- nonetheless, able to obtain unbiased estimate of log absolute Jacobian
 (by power series)

$$\left|\log\left|\det J_{f_{\phi}}(\mathbf{z})
ight|=\log\left|\det\left(\mathbf{I}+J_{g_{\phi}}(\mathbf{z})
ight)
ight|=\sum_{k=1}^{\infty}rac{(-1)^{k+1}}{k}\mathrm{Tr}ig\{J_{g_{\phi}}^{k}(\mathbf{z})ig\}$$

 $\circ \ J_{g_{\phi}}^{k}(\mathbf{z})$: k -th power of the Jacobian of g_{ϕ} evaluated at \mathbf{z}

(by Hutchinson trace estimator) efficiently estimate Trace

$$ext{Tr}ig\{J_{g_\phi}^k(\mathbf{z})ig\}pprox \mathbf{v}^ op J_{g_\phi}^k(\mathbf{z})\mathbf{v}$$

- v: D-dim random vector with zero mean & unit cov
- $\circ \ \mathbf{v}^{\top}J_{g_{\phi}}^{k}(\mathbf{z})$ can be computed with k backprop

(by Russian-roulette estimator)

infinite sum can be estimated as finite sum of re-weighted terms

contractive RF (vs AF)

- dense Jacobian ... allows all input variables to affect all output variables
 - \rightarrow thus can be very flexible
- but exact density evaluation is computationally expensive & sampling is done iteratively

4-3-2. RF based on the matrix determinant lemma

Matrix determinant lemma (= MD lemma)

$$\det \! \left(\mathbf{A} + \mathbf{V} \mathbf{W}^\top \right) = \det \! \left(\mathbf{I} + \mathbf{W}^\top \mathbf{A}^{-1} \mathbf{V} \right) \det \mathbf{A}$$

- left) $\mathcal{O}\left(D^3+D^2M\right)$
- right) $\mathcal{O}\left(M^3 + DM^2\right)$

(a) Planar Flow

 g_ϕ is a one-layer NN with a single hidden unit:

$$\mathbf{z}' = \mathbf{z} + \mathbf{v}\sigma\left(\mathbf{w}^{\top}\mathbf{z} + b\right)$$

• $\mathbf{v} \in \mathbb{R}^D, \mathbf{w} \in \mathbb{R}^D$ and $b \in \mathbb{R},$ and σ is a differentiable activation function

Jacobian:

- $J_{f_{\phi}}(\mathbf{z}) = \mathbf{I} + \sigma' \left(\mathbf{w}^{\top} \mathbf{z} + b \right) \mathbf{v} \mathbf{w}^{\top}.$
- (using MD lemma) $\det J_{f_\phi}(\mathbf{z}) = 1 + \sigma' \left(\mathbf{w}^\top \mathbf{z} + b \right) \mathbf{w}^\top \mathbf{v}$

Conditions of Planar Flow to be invertible

- 1) σ' : positive & bounded above
- 2) $\mathbf{w}^{\top} \mathbf{v} > -\frac{1}{\sup_{x} \sigma'(x)}$
 - ightarrow ensures $\det J_{f_\phi}(\mathbf{z})$ is always non-zero

(b) Sylvester Flow

extend Planar Flow to ${\cal M}$ hidden units

$$\mathbf{z}' = \mathbf{z} + \mathbf{V}\sigma \left(\mathbf{W}^{\top}\mathbf{z} + \mathbf{b}\right).$$

• $\mathbf{V} \in \mathbb{R}^{D \times M}, \mathbf{W} \in \mathbb{R}^{D \times M}$ and $\mathbf{b} \in \mathbb{R}^{M},$ and activation function σ to be elementwise

Jacobian

- $\bullet \ \ J_{f_\phi}(\mathbf{z}) = \mathbf{I} + \mathbf{V}\mathbf{S}(\mathbf{z})\mathbf{W}^\top$
- (by MD lemma) $\det J_{f_\phi}(\mathbf{z}) = \det \left(\mathbf{I} + \mathbf{S}(\mathbf{z}) \mathbf{W}^{ op} \mathbf{V} \right)$

QR decomposition

- $ullet \ \mathbf{V} = \mathbf{Q} \mathbf{U}$ and $\mathbf{W} = \mathbf{Q} \mathbf{L}$
 - ullet \mathbf{Q} : D imes M matrix....whose columns are orthonormal ($\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$)
 - \circ **U** : $M \times M$ upper triangle
 - $\circ \ \mathbf{L}: M \times M$ lower triangle
- Thus, Jacobian determinant:

$$\det J_{f_\phi}(\mathbf{z}) = \det \left(\mathbf{I} + \mathbf{S}(\mathbf{z})\mathbf{L}^ op \mathbf{U} \right) = \prod_{i=1}^D \left(1 + S_{ii}(\mathbf{z})L_{ii}U_{ii} \right)$$

(c) Radial flow

$$\mathbf{z}' = \mathbf{z} + rac{eta}{lpha + r(\mathbf{z})} (\mathbf{z} - \mathbf{z}_0) \quad ext{ where } \quad r(\mathbf{z}) = \|\mathbf{z} - \mathbf{z}_0\|$$

- $\alpha \in (0,+\infty), eta \in \mathbb{R}$ and $\mathbf{z}_0 \in \mathbb{R}^D,$ and $\|\cdot\|$ is the norm
- (meaning) contraction/expansion radially with center $\mathbf{z}_{\mathbf{0}}$

Jacobian:

$$\bullet \ \ J_{f_{\phi}}(\mathbf{z}) = \left(1 + \frac{\beta}{\alpha + r(\mathbf{z})}\right)\mathbf{I} - \frac{\beta}{r(\mathbf{z})(\alpha + r(\mathbf{z}))^2}(\mathbf{z} - \mathbf{z}_0)\left(\mathbf{z} - \mathbf{z}_0\right)^{\top}.$$

• (using MD lemma) $\det J_{f_\phi}(\mathbf{z}) = \left(1+\frac{\alpha\beta}{(\alpha+r(\mathbf{z}))^2}\right)\left(1+\frac{\beta}{\alpha+r(\mathbf{z})}\right)^{D-1}$ be computed in $\mathcal{O}(D)$

The radial flow is not invertible for all β ...condition?

• "eta > -lpha"ensures that $\det J_{f_\phi}(\mathbf{z})$ is always non-zero

Summary of planar, Sylvester, radial flows

- O(D) Jacobian determinant
- can be made invertible by suitably restricting their params
 (but no analytical way to compute inverse)
- .: mostly used to **approximate posterior** for VAE (not in generative model)

4-4. Practical considerations when combining transformations

compose many flows as possible?

Glow

- 320 sub-transformations & 40 GPUs
- challenging computation....

2 techniques to solve?

- 1) stabilize the optimization
- 2) ease with computational demands

(a) Batch Normalization

stabilize & improve NN

composition of 2 affine transformation

- 1) scale & translation params (by batch statistics)
- 2) free params α (scale) & β (translation)

$$\mathrm{BN}(\mathbf{z}) = lpha \odot rac{\mathbf{z} - \hat{\mu}}{\sqrt{\hat{\sigma}^2 + \epsilon}} + eta, \quad \mathrm{BN}^{-1}\left(\mathbf{z}'
ight) = \hat{\mu} + rac{\mathbf{z}' - eta}{lpha} \odot \sqrt{\hat{\sigma}^2 + \epsilon}.$$

easy to compute Jacobian determinant (due to acting element-wise)

$$\det J_{ ext{BN}}(\mathbf{z}) = \prod_{i=1}^D rac{lpha_i}{\sqrt{\hat{\sigma}_i^2 + \epsilon_i}}$$

Inserted between transformations! ($T_k \circ \mathrm{BN} \circ T_{k-1}$)

ex) Glow

- employs a variant called activation normalization
- doesn't use batch statistics $\hat{\mu}$ and $\hat{\sigma}$. (instead, before training, flow once & α and β are set so that batch has zero & unit var) (= data-dependent initialization) (α and β are optimized as model params)
- preferable when training with small-mini batches
 (· · batch norm's statistics can be noisy)

(b) Multi-scale architecture

 ${\bf x}$ and ${\bf u}$ should have same dim & T_k must preserve dimensionality

Multi-scale architecture:

- when going from x to u, some sub-dim of z_k are clamped!
 (& no additional transformation)
- just like skip-connection
- these help optimization!
- encode more global & semantic info in the dimensions

5. Constructing Flows part 2: Continuous-Time Transformations

(until now) DISCRETE one-step transformation

(now) CONTINUOUS time, by parameterizing flow's infinitesimal dynamics

ightarrow construct flow by defining **ODE** (Ordinary Differential Equation) (describes flow's evolution over time...called "continuous time")

5-1. Definition

 \mathbf{z}_t : flow's state at time t

- ullet time t runs continuously from t_0 to t_1
- $ullet \ \mathbf{z}_{t_0} = \mathbf{u} \ \mathsf{and} \ \mathbf{z}_{t_1} = \mathbf{x}$
- "parameterize the time derivative of $\mathbf{z_t}$ " with NN g_ϕ

$$rac{d\mathbf{z}_{t}}{dt}=g_{\phi}\left(t,\mathbf{z}_{t}
ight).$$

ODE :
$$rac{d\mathbf{z}_{t}}{dt}=g_{\phi}\left(t,\mathbf{z}_{t}
ight)$$

- requirement of g_ϕ : uniformly Lipschitiz continuous in ${\bf z_t}$ & continuous in ${\bf t}$ (many NN meet those requirements)
- do not need invertibility & tractability of Jacobian determinant

to compute transformation ($\mathbf{x} = T(\mathbf{u})$)

- need to run dynamics forward in time(= need to do integration)
- $ullet \mathbf{x} = \mathbf{z}_{t_1} = \mathbf{u} + \int_{t=t_0}^{t_1} g_\phi\left(t, \mathbf{z}_t
 ight) dt.$

inverse transform T^{-1}

- $\mathbf{u} = \mathbf{z}_{t_0} = \mathbf{x} + \int_{t=t_1}^{t_0} g_{\phi}\left(t, \mathbf{z}_t\right) dt = \mathbf{x} \int_{t=t_0}^{t_1} g_{\phi}\left(t, \mathbf{z}_t\right) dt$
- Unlike discrete compositions (in before sections)
 continuous-time flows have the same computational complexity in each direction

change in log density

$$ullet rac{d \log p(\mathbf{z}_t)}{dt} = -\operatorname{Tr} \Bigl\{ J_{g_{\phi}(t,\cdot)}\left(\mathbf{z}_t
ight) \Bigr\}.$$

- \circ Tr $\{\cdot\}$: trace operator
- $\circ \;\; J_{g_{\phi}(t,\cdot)}\left(\mathbf{z}_{t}
 ight)$: Jacobian of $g_{\phi}(t,\cdot)$ at \mathbf{z}_{t}
- but trace operatoor requiers $\mathcal{O}(D)$ back-prop!

use "Hutchinson's trace estimator"

$$ext{Tr} \Big\{ J_{g_{\phi}(t,\cdot)}\left(\mathbf{z}_{t}
ight) \Big\} pprox \mathbf{v}^{ op} J_{g_{\phi}(t,\cdot)}\left(\mathbf{z}_{t}
ight) \mathbf{v}$$

- $\circ \ \mathbf{v}$: any D-dim random vector with zero mean & unit covariance
- $oldsymbol{\circ} oldsymbol{\mathbf{v}}^ op J_{g_\phi(t,\cdot)}\left(\mathbf{z}_t
 ight)$: computed in a single back-prop pass which D times more efficient!

Integrating the derivative of $\log p(\mathbf{z_t})$

•
$$\log p_{\mathrm{x}}(\mathrm{x}) = \log p_{\mathrm{u}}(\mathrm{\mathbf{u}}) - \int_{t=t_0}^{t_1} \mathrm{Tr} \Big\{ J_{g_{\phi}(t,\cdot)}\left(\mathbf{z}_t
ight) \Big\} dt$$

• forward transform & log density can be done simultaneously

$$egin{bmatrix} \mathbf{x} \ \log p_{\mathrm{x}}(\mathbf{x}) \end{bmatrix} = egin{bmatrix} \mathbf{u} \ \log p_{\mathrm{u}}(\mathbf{u}) \end{bmatrix} + \int_{t=t_0}^{t_1} egin{bmatrix} g_{\phi}\left(t,\mathbf{z}_t
ight) \ -\operatorname{Tr}\!\left\{J_{g_{\phi}\left(t,\cdot
ight)}\left(\mathbf{z}_t
ight)
ight\} \end{bmatrix} dt.$$

ullet computation is not analytically feasible for general $g_\phi o$ use numerical integration

5-2. Solving & Optimizing continuous-time flow

- (1) Euler's method
- (2) Adjoint method

5-2-1. Euler's method and equivalence to RF

Simplest numerical technique

$$\mathbf{z}_{t+\epsilon}pprox f_{\phi}\left(\mathbf{z}_{t}
ight)=\mathbf{z}_{t}+\epsilon g_{\phi}\left(t,\mathbf{z}_{t}
ight)$$

- ϕ can be optimized with gradients computed via back-prop
- looks like $\mathbf{z}' = \mathbf{z} + g_{\phi}(\mathbf{z})$ (= contractive residual flow)

Taylor series expansion

log absolute Jacobian determinant of f_ϕ as follows:

like
$$\log\!\left|\det J_{f_\phi}(\mathbf{z})\right| = \log\!\left|\det\!\left(\mathbf{I} + J_{g_\phi}(\mathbf{z})\right)\right| = \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k} \mathrm{Tr}\!\left\{J_{g_\phi}^k(\mathbf{z})\right\}$$

$$\left. \log \left| \det J_{f_{\phi}}\left(\mathbf{z}_{t}
ight)
ight| = \sum_{k=1}^{\infty} rac{\left(-1
ight)^{k+1} \epsilon^{k}}{k} \mathrm{Tr} \Big\{ J_{g_{\phi}\left(t,
ight)}^{k}\left(\mathbf{z}_{t}
ight) \Big\} = \epsilon \, \mathrm{Tr} \Big\{ J_{g_{\phi}\left(t,
ight)}\left(\mathbf{z}_{t}
ight) \Big\} + \mathcal{O}\left(\epsilon^{2}
ight).$$

$$\bullet \ \log p\left(\mathbf{z}_{t+\epsilon}\right) = \log p\left(\mathbf{z}_{t}\right) - \epsilon \operatorname{Tr}\!\left\{J_{g_{\phi}\left(t,\right)}\left(\mathbf{z}_{t}\right)\right\} + \mathcal{O}\left(\epsilon^{2}\right)$$

$$\bullet \ \ \frac{\log p(\mathbf{z}_{t+\epsilon}) - \log p(\mathbf{z}_t)}{\epsilon} = -\operatorname{Tr} \Big\{ J_{g_{\phi}(t,\cdot)} \left(\mathbf{z}_t \right) \Big\} + \mathcal{O}(\epsilon)$$

$$\begin{array}{ll} \bullet & \frac{\log p(\mathbf{z}_{t+\epsilon}) - \log p(\mathbf{z}_t)}{\epsilon} = -\operatorname{Tr} \Big\{ J_{g_{\phi}(t,\cdot)} \left(\mathbf{z}_t \right) \Big\} + \mathcal{O}(\epsilon) \\ \bullet & \operatorname{becomes} \frac{d \log p(\mathbf{z}_t)}{dt} = -\operatorname{Tr} \Big\{ J_{g_{\phi}(t,\cdot)} \left(\mathbf{z}_t \right) \Big\} \operatorname{as} \epsilon \to 0 \end{array}$$

5-2-2. The Adjoint Method

target $\mathcal{L}(\mathbf{x}; \phi)$

gradient of $\partial \mathcal{L}/\partial \mathbf{z}_t$

$$\frac{d}{dt} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{z}_t} \right) = - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{z}_t} \right)^\top \frac{\partial g_{\boldsymbol{\phi}}(t, \mathbf{z}_t)}{\partial \mathbf{z}_t}$$

ullet \mathbf{z}_t : flow's intermediate state

gradient w.r.t ϕ

$$rac{\partial \mathcal{L}(\mathbf{x};\phi)}{\partial \phi} = \int_{t=t_1}^{t_0} rac{\partial \mathcal{L}}{\partial \mathbf{z}_t} rac{\partial g_\phi(t,\mathbf{z}_t)}{\partial \phi} dt$$

6. Applications

2 primitive operations:

- (1) density calculation
- (2) sampling

application to

- 1) probabilistic
- 2) inference
- 3) supervised learning
- 4) reinforcement learning

6-1. Probabilistic Modeling

assume finite number of draws ${f x}$ from unknown generative process : $p_X^*({f x})$

- goal) make a good approximation to $p_{\mathbf{x}}^*(\mathbf{x})$
- popular method: MLE (use forward KL div)

$$\begin{split} D_{\mathrm{KL}}\left[p_{\mathrm{x}}^{*}(\mathrm{x})\|p_{\mathrm{x}}(\mathrm{x};\theta)\right] &= -\mathbb{E}_{p_{\mathrm{x}}^{*}(\mathrm{x})}\left[\log p_{\mathrm{x}}(\mathrm{x};\theta)\right] + \mathrm{const} \\ &\approx -\frac{1}{N}\sum_{n=1}^{N}\log p_{\mathrm{x}}\left(\mathrm{x}_{n};\theta\right) + \mathrm{const} \\ &= -\frac{1}{N}\sum_{n=1}^{N}\log p_{\mathrm{u}}\left(T^{-1}\left(\mathrm{x}_{n};\phi\right);\psi\right) + \log |J_{T^{-1}}\left(\mathrm{x}_{n};\phi\right)| + \mathrm{const}. \end{split}$$

With the resulting model $p_{\mathbf{x}}(\mathbf{x}; \theta)$

- 1) density estimation
- 2) generation

(a) Density Estimation

use model to calculate densities

- 1) low-dim cases ...NF can represent skewed, multi-modal densities
- 2) use density function to perform one-class classification
- 3) detect rotations and corruptions of images
- 4) composition allows for better density estimation (MADE, Real NVP)

(b) Generation

sampling from model (use as it is sampled from $p_x^*(\mathbf{x})$)

image, video, etc...

6-2. Inference

modeling params to infer unknown quantities within a model

most common setting : $\int \pi(\eta) d\eta$

- 1) sampling
- 2) variational inference
- 3) likelihood-free inference

6-2-1. Importance and Rejection sampling

Importance Sampling (IS)

• auxiliary distn $q(\eta)$

$$\int \pi(\eta) d\eta = \int q(\eta) rac{\pi(\eta)}{q(\eta)} d\eta = \mathbb{E}_{q(\eta)} \left[rac{\pi(\eta)}{q(\eta)}
ight] pprox rac{1}{S} \sum_{s=1}^{S} rac{\pi(\hat{\eta}_s)}{q(\hat{\eta}_s)}.$$

- $\circ q(\eta)$ is a user-specified density function
- $\hat{\eta}_s$ is a sample from $q(\eta)$
- choice of $q(\eta)$
 - \circ if it doesn't contain $\pi(\eta)$'s, estimate becomes impractical
 - o if it is too broad: inefficiency
- Importance of using expressive proposals $q(\eta)$!
 - \rightarrow employ NFs
- Requires both sampling & density evaluation to be tractable for many flows

2 alternatives to optimize flow's params

- 1) minimize KL div
- 2) minimize the variance of IS estimator

Rejection sampling (RS)

- aims to draw samples from $p(\eta) = \pi(\eta)/Z$
- use Real NVP to parameterize proposal distn
 (since coupling layers allow for fast density evaluation & sampling)

6-2-2. Reparameterizing models for MCMC

NF can be integrated into MCMC

 \rightarrow by using the flow to **reparam the target distn**

(can effectively smooth away pathologies, by allowing MCMC to be run on the simpler & better-behaved base density)

Metropolis-Hastings ratio to the reparameterized model

$$r\left(\hat{\mathbf{u}}_*;\hat{\mathbf{u}}_t
ight) = rac{p_{\mathrm{u}}(\hat{\mathbf{u}}_*)}{p_{\mathrm{u}}(\hat{\mathbf{u}}_t)} = rac{\pi(T(\hat{\mathbf{u}}_*;\phi))|\mathrm{det}\ J_T(\hat{\mathbf{u}}_*;\phi)|}{\pi(T(\hat{\mathbf{u}}_t;\phi))|\mathrm{det}\ J_T(\hat{\mathbf{u}}_t;\phi)|}$$

• $\hat{\mathbf{u}}_*$: proposed value

• $\hat{\mathbf{u}}_t$: current value

6-2-3. Variational Inference

use NF to fit distn over latent variables

"flows can usefully serve as posterior approximations"

Use a (trained) flow-based model

$$p(\eta \mid \mathbf{x}) pprox q(\eta; \phi) = q_{\mathrm{u}}(\mathbf{u}) |\mathrm{det}\, J_T(\mathbf{u}; \phi)|^{-1}$$

- $q_{\mathrm{u}}(\mathbf{u})$: base distn
- $T(\cdot; \phi)$: transformation

By maximizing ELBO

$$\begin{split} \log p(\mathbf{x}) &\geq \mathbb{E}_{q(\eta;\phi)}[\log p(\mathbf{x},\eta)] - \mathbb{E}_{q(\eta;\phi)}[\log q(\eta;\phi)] \\ &= \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}[\log p(\mathbf{x},T(\mathbf{u};\phi))] - \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}\left[\log q_{\mathbf{u}}(\mathbf{u})\right] + \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}\left[\log|\det J_T(\mathbf{u};\phi)|\right] \\ &= \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}[\log p(\mathbf{x},T(\mathbf{u};\phi))] + \mathbb{H}\left[q_{\mathbf{u}}(\mathbf{u})\right] + \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}\left[\log|\det J_T(\mathbf{u};\phi)|\right] \end{split}$$

- $\mathbb{H}\left[q_{\mathrm{u}}(\mathbf{u})
 ight]$: differential entropy (constant w.r.t ϕ)
- with MC estimation...

$$\begin{split} & \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}[\log p(\mathbf{x}, T(\mathbf{u}; \phi))] \approx \frac{1}{S} \sum_{s=1}^{S} \log p\left(\mathbf{x}, T\left(\hat{u}_{s}; \phi\right)\right) \\ & \mathbb{E}_{q_{\mathbf{u}}(\mathbf{u})}\left[\log |\det J_{T}(\mathbf{u}; \phi)|\right] \approx \frac{1}{S} \sum_{s=1}^{S} \log |\det J_{T}\left(\hat{u}_{s}; \phi\right)| \end{split}$$