
[Paper review 48]

Normalizing Flows for Probabilistic
Modeling and Inference

(Papamakarios, et al., 2019)

[Contents]

1. Abstract
NF : provide expressive distn, require 2 things

(1) base distn
(2) series of bijective transformation

Provide a perspective by describing flows through the lens of probabilistic modeling and
inference

2. Introduction
How is the data generated (produced) ?

Build probability distn as NF!

Section 2) formal & conceptual structure of NF
Section 3) in detail for finite & infinitesimal variants
Section 4) general perspective
Section 5) extensions to structured domains & geometries
Section 6) oft-encountered applications

3. Normalizing Flow
3-1. Definition & Basics

 : base distn

params

 : for transformation
 : for base distn

af://n0
af://n2
af://n3
af://n5
af://n7
af://n17
af://n32
af://n33

 : must be invertible & differentiable

 : must be differentiable

 such are called diffeomorphisms

Change of variables

.

(=)

Jacobian

is the matrix of all partial derivatives of

.

Typically, : NN & : MVN

Absolute Jacobian determinant :

quantifies the relative change of volume of a small neighbourhood around due to .

Property of "invertible" + "differentiable" transformation = composable

.

"Normalizing" "Flow"

(1) Flow : trajectory, that a collection of samples from follow

 by the sequence of transformations

(2) Normalizing : inverse flow through takes a collection of samples from

 transforms it back (=normalize them) into a collection of samples from

Flow-based model provides 2 operations

(1) SAMPLING from the model (forward transformation)

(2) EVALUATING the model's density (Inverse transformation & Jacobian determinant)

af://n90

3-2. Expressive power of flow-based models
How expressive is it?

 universal representation is possible, under reasonable conditions on

3-3. Using flows for modeling & inference
how to fit flow-based model to a target distn ?

by minimizing some divergence/discrepancy (ex. KL-div)

params :

where are the parameters of and are the parameters of

3-3-1. Forward KL & MLE

.

suitable when we have samples from the target distn
unsuitable when we cannot evaluate target density

Using MC samples...

.

Minimizing KL-div

= Fitting flow-based model to the samples by MLE

How to optimize? Iteratively with SGD

.

 : can be done in closed-form if admits closed-form MLE

(ex. Gaussian distn)

Fitting by MLE

need to compute , Jacobian determinant, density

& different those three

no need to compute , or sample from

af://n90
af://n94
af://n103

3-3-2. Reverse KL

.

suitable when we can evaluate target density
no need to samples from the target distn

Rewrite reverse KL

 (where is unnormalized density)

Minimize reverse KL iteratively with SGD & Reparam Trick & MC estmation

: samples from

minimize w.r.t :

.

minimize w.r.t :

use reparameterizion ...

but we can absorb into & replace the base distn with

3-3-3. Duality between Forward & Reverse KL
Think of

target as "base distribution"
inverse flow as "inducing a distn "

 if and only if Thus (a) & (b) are equivalent!

(a) fitting model to target
(b) fitting induced distn to base

Using change of variables... .

 "fitting the model to the target using the forward KL divergence
 = fitting the induced distribution to the base under the reverse KL
divergence."

3-3-4. Alternative Divergences

not restricted to KL-divergence

1) -divergence : use density ratios to compare models
2) Integral Probability Metrics (IPMs) : use differences for comparison

af://n132
af://n159
af://n176

4. Constructing Flows Part 1 : Finitie
Compositions

NF are composable :

idea : use simple transformation as building blocks

Evaluation

forward evaluation :
inverse evaluation :

Jacobian-determinant (in log domain) :

.

increase depth only growth in computational complexity

Implement or using NN with param =

(ensure network is invertible & tractable Jacobian determinant)

Ensuring is invertible Explicitly calculating its inverse

Tractable Jacobian determinant

we can always find it but cost (with inputs & outputs)

 intractable for large

should be at most

will describe NN design that allow Jacobian determinant to be computed in linear time

4-1. Autoregressive Flow
under certain conditions, we can transform any distn into a uniform distn using maps
with triangular Jacobian

Autoregressive Flow

.

 : transformer

af://n187
af://n219

strictly monotonic function of (thus invertible)
parameterized by
specifies how the flow acts on to output

 : -th conditioner

determines the parameters of the transformer
DOES NOT need to be a bijection

The above is invertible for any choice of and , as long as "transformer is invertible"

.

(forward :) can be done in parallel
(inverse :) all need to be computed before

Triangular Jacobian tractable (time)

.

Autoregressive flows are Universal approximators , provided that the transformer & conditioner
are flexible enough!

Alternative : conditioner take in instead of

(mathematically equivalent)

4-1-1. Implementing the Transformer

What to choose as a transformer?

(a) Affine autoregressive flows

(= location-scale transformation)

flow : .

Jacobian : .

Pros & Cons

Pros) simplicity & analytical tractability

Cons) expressivity is limited

af://n259
af://n261

(ex. let : Gaussian output is also GaussianThus need to stack multiple affine AF layers
)

Widely used

NICE, Real NVP, IAF, MAF, Glow

(b) Non-Affine neural transformers

conic combinations & compositions of monotonic functions are also monotonic

Conic combination: where for all .
Composition:

Non-Affine neural transformers can be constructed...

 "using conic combination of monotonically increasing activation functon "

.

Jacobian determinant

analytically obtainable (but more commonly computed by back-propagation)

Drawback

(in general) can not be inverted analytically

(can be inverted only iteratively... e.g. bijection search)

Variants : NAF, B-NAF, Flow++

(c) Integration-based transformers

The integral of some positive function = monotonically increasing function

ex) .

: any positive-valued NN

derivative of transformer =

 to be a positive polynomial of degree (then integral will be in)

 Sum-of-squares polynomial transformer

.

Affine transformer : of above

af://n279
af://n304

.

(for large enough) can approximate arbitrarily well any monotonic increasing function

(d) Neural spline flows

Non-affine transformers...don't have analytic inverse

But since all transformers are monotonic, can be inverted by bijections search

.

keep halving, such that solution is always contained

Bijection search computes with accuracy in

 trade-off btw accuracy & computation

Overcome this trade-off with monotonic spline

(= piecewise function consisting of segments , which are easy to invert)

given input locations

transformer : simple monotonic function in each interval

parameters :

input locations
corresponding output locations
derivatives (i.e. slopes) at

Spline-based transformers

distinguished by the type of spline they use

fast to invert as to evaluate, while maintaining exact analytical invertibility

Evaluating or inverting

(step 1) locate right segment (using binary search)
(step 2) evaluate / invert that segment (= analytically tractable)

4-1-2. Implementing the Conditioner

Conditioner :

can be any function (NN ok)

each having its separate NN scale poorly with dim

(cost of storing, learning params of independent networks...)

should SHARE params! how?

1) Recurrent Autoregressive Flows
2) Masked Autoregressive Flows
3) Coupling Layer

af://n322
af://n365

(a) Recurrent Autoregressive Flows

conditioner = RNN

.

share params across conditional distributions of autoregressive models!

Downside?

parallel computation into sequential one
involves steps...slow for high-dim data

(b) Maksed Autoregressive Flows

"Share params + avoid sequential computation of RNN by MAKSING "

by Masking...

single feedforward! (takes in , outputs the entire sequence)

only requirement : autoregressive structure

(output can not depend on inputs)

remove connections from input to outputs

(by multiplying each weight matrix elementwise, with binary matrix of same size)

will have same architecture as original NN

evaluate efficiently using GPU

ex) MADE (Masked Autoencoder for Distribution Estimation), CNN, Self-attention...

MADE (Masked Autoencoder for Distribution Estimation)

assign a "degree" between 1~ for each input/hidden/output node
mask-out the weights between subsequent layers

2 main advantages

1) Efficient to evaluate (one NN pass & can be computed parallel)
2) Universal approximators

Disadvantage

af://n383
af://n396

Not as efficient to invert as to evaluate

(params are needed to obtain , thus can not be computed until
is obtained)

Pseudocode

inverse : times more expansive than evaluating forward transformation

Examples of masking to implementing autoregressive flows

IAF, MAF, NAF, B-NAF, MintNet, MaCow

Examples of masking to implementing non-flow based autoregressive models

MADE, PixelCNN, WaveNet

(c) Coupling Layers

Masked Autoregressive Flows : computational asymmetry

(either (1) sampling or (2) density evaluation will be times slower IAF vs MAF)

 for both to be fast, different conditioner is needed! ... COUPLING LAYER

Coupling layer

choose index (commonly,)

design the conditioner such that

params are constnats
params are functions of (ex. NN)

(coupling layer) splits into 2 parts

(fully autoregressive flow) splits into parts

(intermediate) split into parts

 inverting the transformation will be times more expensive than evaluating

[forward]

.

[inverse]

.

Jacobian :

af://n450

 : matrix
 : matrix
 : matrix
 : matrix

thus, jacobian : product of diagonals of =
but due to efficiency...reduced expressive power

single coupling layer universal approximator

 need to compose multiple composing layers!

(when composing, elements of need to be permuted! so that all dim have chance to be
transformed)

 coupling layers is an universal approximator

(set index of the -th coupling layer =)

Summary

coupling layers = most popular method for flow-based models

(allow both density evaluation & sampling to be done in single NN pass)

widely used in generative models of high-dim data

(NICE, Real NVP, Glow, WaveGlow, FloWaveNet, Flow++)

4-1-3. Relationship with Autoregressive Models

Alongside NF, autoregressive models are another popular model for high-dim distribution

.

model each conditional as

ex) : Gaussian, parameterized by its mean & var

 : analogous to conditioners of autoregresssive flow

(= typically implemented with NN)

can also be used for discrete/mixed data

Autoregressive models of continuous variables = Autoregressive flows with single layer

let = cumulative distribution of

and the vector

is always distributed uniformly in

"same as autoregressive flow" with and .

af://n509

Log probability :

 .

IAF :

corresponds exactly to sampling from autoregressive model (inverse transform sampling)

Transformer : not limited to being the inverse CDF

ex)

reparam :
thus, entire autoregressive model = affine autoregressive flow

Conclusion

1) AF = extnending AM for continuous variables

2) Benefits of viewing AM as flows?

(a) provides a framework for their composition enhance flexibility
(b) gives us freedom in specifying the base distn (base distn can be learend)
(c) compose AM with other types of flows (ex. non-autoregressive flows)

4-2. Linear Flows
Autoregressive flows : restrict to depend only on inputs

dependent on the order of input var
in the limit of capacity, no limit in flexibility, but in practice , it isn't
So use permutation!

Permutation

(1) easily invertible transformation

(2) absolute Jacobian determinant = 1

general idea of permutation = "Linear Flow"

where is a invertible matrix that parameterizes the transformation
Jacobian determinant = det

special case of linear flow, where is a permutation matrix
Commonly... alternate "invertible linear transformation" & "autoregressive/coupling layers"

Parameterize and learn matrix ?

problem 1) is not guaranteed to be invertible

problem 2) solving takes

af://n562

problem 3) det takes in general

goal 1) that is invertible (& inversion cost)

goal 2) computing its determinant costs

4-3. Residual Flows
invertible transformation of the from :

 : NN that outputs dim translation vector
 : NN parameter

2 general approaches

1) contractive maps
2) matrix determinant lemma

4-3-1. Contractive RF

RF is not always invertible, but invertible when can be made contractive w.r.t some
distance function

.
meaning) contractive map brings any 2 inputs close together, by at least a factor

Banach fixed-point theorem

contractive map has exactly one fixed point

Residual transformation :

If is contractive with Lipschitz constant then is also ~.

by Banach fixed-point theorem,

there exists a unique such that

starting from arbitrary input , iteratively apply as follows:

guarantees that the procedure above converges to

rate of convergence :

smaller , faster converges to

(trading off flexibility for efficiency)

Challenge of contractive RF

af://n681
af://n566

how to make contractive, without impinging upon its flexibility?

composition of Lipschitz-cont func = Lipschitz cont with constant equal to

where is the Lipschitz constant of
make each layer Lipschtiz continuous with & at leas one
ex) sigmoid, tanh, ReLU : Lipschitz continuous with a constant 1

linear layer can be made contractive, by dividing them with operator norm

ex) Spectral normalization : use euclidean norm

Drawback of contractive RF

no known general, efficient procedure for computing Jacobian costs

nonetheless, able to obtain unbiased estimate of log absolute Jacobian

(by power series)

: -th power of the Jacobian of evaluated at

(by Hutchinson trace estimator) efficiently estimate Trace

 : D-dim random vector with zero mean & unit cov
 can be computed with backprop

(by Russian-roulette estimator)

infinite sum can be estimated as finite sum of re-weighted terms

contractive RF (vs AF)

dense Jacobian ... allows all input variables to affect all output variables

 thus can be very flexible

but exact density evaluation is computationally expensive &

sampling is done iteratively

4-3-2. RF based on the matrix determinant lemma

Matrix determinant lemma (= MD lemma)

left)
right)

af://n568

(a) Planar Flow

 is a one-layer NN with a single hidden unit:

 and and is a differentiable activation function

Jacobian :

.

(using MD lemma)

Conditions of Planar Flow to be invertible

1) : positive & bounded above

2)

 ensures is always non-zero

(b) Sylvester Flow

extend Planar Flow to hidden units

.

 and and activation function to be elementwise

Jacobian

(by MD lemma)

QR decomposition

 and

 : matrix....whose columns are orthonormal ()
 : upper triangle
 : lower triangle

Thus, Jacobian determinant :

(c) Radial flow

 and and is the norm
(meaning) contraction/expansion radially with center

af://n963
af://n956
af://n1092

Jacobian :

.

(using MD lemma)

be computed in

The radial flow is not invertible for all ...condition?

" "ensures that is always non-zero

Summary of planar, Sylvester, radial flows

 Jacobian determinant

can be made invertible by suitably restricting their params

(but no analytical way to compute inverse)

 mostly used to approximate posterior for VAE (not in generative model)

4-4. Practical considerations when combining
transformations

compose many flows as possible?

Glow

320 sub-transformations & 40 GPUs
challenging computation....

2 techniques to solve?

1) stabilize the optimization
2) ease with computational demands

(a) Batch Normalization

stabilize & improve NN

composition of 2 affine transformation

1) scale & translation params (by batch statistics)
2) free params (scale) & (translation)

.

easy to compute Jacobian determinant (due to acting element-wise)

af://n570
af://n1197

Inserted between transformations! ()

ex) Glow

employs a variant called activation normalization

doesn't use batch statistics and .

(instead, before training, flow once & and are set so that batch has zero & unit var)

(= data-dependent initialization)

(and are optimized as model params)

preferable when training with small-mini batches

(batch norm's statistics can be noisy)

(b) Multi-scale architecture

 and should have same dim & must preserve dimensionality

Multi-scale architecture :

when going from to , some sub-dim of are clamped!

(& no additional transformation)

just like skip-connection

these help optimization!

encode more global & semantic info in the dimensions

5. Constructing Flows part 2 :
Continuous-Time Transformations

(until now) DISCRETE one-step transformation

(now) CONTINUOUS time, by parameterizing flow's infinitesimal dynamics

 construct flow by defining ODE (Ordinary Differential Equation)
 (describes flow's evolution over time...called "continuous time")

5-1. Definition
 : flow's state at time

time runs continuously from to

 and

"parameterize the time derivative of " with NN

af://n1201
af://n572
af://n1297

.

ODE :

requirement of : uniformly Lipschitiz continuous in & continuous in

(many NN meet those requirements)

do not need invertibility & tractability of Jacobian determinant

to compute transformation ()

need to run dynamics forward in time

(= need to do integration)

.

inverse transform

Unlike discrete compositions (in before sections)
continuous-time flows have the same computational complexity in each direction

change in log density

.

 : trace operator
 : Jacobian of at

but trace operatoor requiers back-prop!

use "Hutchinson's trace estimator"

 : any -dim random vector with zero mean & unit covariance

 : computed in a single back-prop pass

which times more efficient!

Integrating the derivative of

forward transform & log density can be done simultaneously

.

computation is not analytically feasible for general use numerical integration

5-2. Solving & Optimizing continuous-time flow

af://n1427

(1) Euler's method

(2) Adjoint method

5-2-1. Euler's method and equivalence to RF

Simplest numerical technique

 can be optimized with gradients computed via back-prop
looks like (= contractive residual flow)

Taylor series expansion

log absolute Jacobian determinant of as follows:

like

.

becomes as

5-2-2. The Adjoint Method

target

gradient of

 : flow's intermediate state

gradient w.r.t

6. Applications
2 primitive operations :

(1) density calculation
(2) sampling

af://n1481
af://n1494
af://n1574

application to

1) probabilistic
2) inference
3) supervised learning
4) reinforcement learning

6-1. Probabilistic Modeling
assume finite number of draws from unknown generative process :

goal) make a good approximation to
popular method : MLE (use forward KL div)

.

With the resulting model

1) density estimation
2) generation

(a) Density Estimation

use model to calculate densities

1) low-dim cases ...NF can represent skewed, multi-modal densities

2) use density function to perform one-class classification

3) detect rotations and corruptions of images

4) composition allows for better density estimation (MADE, Real NVP)

(b) Generation

sampling from model (use as it is sampled from)

image, video, etc...

6-2. Inference
modeling params to infer unknown quantities within a model

most common setting :

summarize the use of flows for

af://n1560
af://n1640
af://n1658
af://n1666

1) sampling
2) variational inference
3) likelihood-free inference

6-2-1. Importance and Rejection sampling

Importance Sampling (IS)

auxiliary distn

.

 is a user-specified density function
 is a sample from

choice of

if it doesn't contain 's, estimate becomes impractical
if it is too broad : inefficiency

Importance of using expressive proposals !

 employ NFs

Requires both sampling & density evaluation to be tractable for many flows

2 alternatives to optimize flow's params

1) minimize KL div
2) minimize the variance of IS estimator

Rejection sampling (RS)

aims to draw samples from

use Real NVP to parameterize proposal distn

(since coupling layers allow for fast density evaluation & sampling)

6-2-2. Reparameterizing models for MCMC

NF can be integrated into MCMC

 by using the flow to reparam the target distn

(can effectively smooth away pathologies, by allowing MCMC to be run on the simpler & better-
behaved base density)

Metropolis-Hastings ratio to the reparameterized model

.

 : proposed value
 : current value

af://n1704
af://n1706
af://n1764
af://n1781

6-2-3. Variational Inference

use NF to fit distn over latent variables

"flows can usefully serve as posterior approximations"

Use a (trained) flow-based model

 : base distn
 : transformation

By maximizing ELBO

 : differential entropy (constant w.r.t)

with MC estimation...

.

af://n1816

	[Paper review 48]
	Normalizing Flows for Probabilistic Modeling and Inference
	(Papamakarios, et al., 2019)

	[Contents]
	1. Abstract
	2. Introduction
	3. Normalizing Flow
	3-1. Definition & Basics
	3-2. Expressive power of flow-based models
	3-3. Using flows for modeling & inference
	3-3-1. Forward KL & MLE
	3-3-2. Reverse KL

	3-3-3. Duality between Forward & Reverse KL
	3-3-4. Alternative Divergences

	4. Constructing Flows Part 1 : Finitie Compositions
	4-1. Autoregressive Flow
	4-1-1. Implementing the Transformer
	(a) Affine autoregressive flows
	(b) Non-Affine neural transformers
	(c) Integration-based transformers
	(d) Neural spline flows

	4-1-2. Implementing the Conditioner
	(a) Recurrent Autoregressive Flows
	(b) Maksed Autoregressive Flows
	(c) Coupling Layers
	4-1-3. Relationship with Autoregressive Models

	4-2. Linear Flows
	4-3. Residual Flows
	4-3-1. Contractive RF
	4-3-2. RF based on the matrix determinant lemma
	(a) Planar Flow
	(b) Sylvester Flow
	(c) Radial flow

	4-4. Practical considerations when combining transformations
	(a) Batch Normalization
	(b) Multi-scale architecture

	5. Constructing Flows part 2 : Continuous-Time Transformations
	5-1. Definition
	5-2. Solving & Optimizing continuous-time flow
	5-2-1. Euler's method and equivalence to RF
	5-2-2. The Adjoint Method

	6. Applications
	6-1. Probabilistic Modeling
	(a) Density Estimation
	(b) Generation

	6-2. Inference
	6-2-1. Importance and Rejection sampling
	Importance Sampling (IS)
	Rejection sampling (RS)
	6-2-2. Reparameterizing models for MCMC
	6-2-3. Variational Inference

