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1. Abstract  
NF : provide expressive distn, require 2 things

(1) base distn
(2) series of bijective transformation

 

Provide a perspective by describing flows through the lens of probabilistic modeling and 
inference

 

2. Introduction  
How is the data generated (produced) ?

Build probability distn as NF!

Section 2) formal & conceptual structure of NF
Section 3) in detail for finite & infinitesimal variants
Section 4) general perspective
Section 5) extensions to structured domains & geometries
Section 6) oft-encountered applications

 

3. Normalizing Flow  
3-1. Definition & Basics  

 : base distn

params

 : for transformation 
 : for base distn 
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 : must be invertible & differentiable

 : must be differentiable

 such  are called diffeomorphisms

 

Change of variables

.

( =  )

 

Jacobian  

is the  matrix of all partial derivatives of  

.

 

Typically,  : NN &  : MVN

 

Absolute Jacobian determinant : 

quantifies the relative change of volume of a small neighbourhood around  due to .

 

Property of "invertible" + "differentiable" transformation = composable

.

 

"Normalizing" "Flow"

(1) Flow : trajectory, that a collection of samples from  follow

    by the sequence of transformations 

(2) Normalizing : inverse flow through  takes a collection of samples from 

    transforms it back ( =normalize them ) into a collection of samples from  

 

Flow-based model provides 2 operations

(1) SAMPLING from the model ( forward transformation )

 

(2) EVALUATING the model's density ( Inverse transformation & Jacobian determinant )
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3-2. Expressive power of flow-based models  
How expressive is it?

 universal representation is possible, under reasonable conditions on 

 

3-3. Using flows for modeling & inference  
how to fit flow-based model  to a target distn  ?

by minimizing some divergence/discrepancy ( ex. KL-div )

params : 

where  are the parameters of  and  are the parameters of 

 

3-3-1. Forward KL & MLE  

.

suitable when we have samples from the target distn
unsuitable when we cannot evaluate target density 

 

Using MC samples...

.

 

Minimizing KL-div 

= Fitting flow-based model to the samples  by MLE

 

How to optimize? Iteratively with SGD

.

 : can be done in closed-form if  admits closed-form MLE

( ex. Gaussian distn )

 

Fitting by MLE

need to compute , Jacobian determinant, density 

& different those three

no need to compute  , or sample from 
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3-3-2. Reverse KL  

.

suitable when we can evaluate target density 
no need to  samples from the target distn

 

Rewrite reverse KL

 ( where  is unnormalized density )

 

Minimize reverse KL iteratively with SGD & Reparam Trick & MC estmation

:  samples from 

minimize w.r.t  : 

.

minimize w.r.t  : 

use reparameterizion ... 

but we can absorb  into  & replace the base distn with 

 

3-3-3. Duality between Forward & Reverse KL  
Think of 

target  as "base distribution"
inverse flow as "inducing a distn "

 if and only if .... Thus (a) & (b) are equivalent!

(a) fitting model  to target 
(b) fitting induced distn  to base 

 

Using change of variables... .

 "fitting the model to the target using the forward KL divergence
       = fitting the induced distribution  to the base  under the reverse KL 
divergence."

 

3-3-4. Alternative Divergences  

not restricted to KL-divergence

1) -divergence : use density ratios to compare models
2) Integral Probability Metrics (IPMs) : use differences for comparison
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4. Constructing Flows Part 1 : Finitie
Compositions

 

NF are composable  : 

idea : use simple transformation as building blocks

 

Evaluation

forward evaluation : 
inverse evaluation : 

 

Jacobian-determinant ( in log domain ) : 

.

increase depth  only  growth in computational complexity

 

Implement  or  using NN with param   = 

( ensure network is invertible & tractable Jacobian determinant )

 

Ensuring  is invertible  Explicitly calculating its inverse

 

Tractable Jacobian determinant

we can always find it ..... but cost  ( with  inputs &  outputs )

 intractable for large 

should be at most 

will describe NN design that allow Jacobian determinant to be computed in linear time

 

4-1. Autoregressive Flow  
under certain conditions, we can transform any distn  into a uniform distn using maps 
with triangular Jacobian

Autoregressive Flow

.

 : transformer 
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strictly monotonic function of  ( thus invertible )
parameterized by 
specifies how the flow acts on  to output 

 : -th conditioner

determines the parameters of the transformer
DOES NOT need to be a bijection

 

The above is invertible for any choice of  and , as long as "transformer is invertible"

.

( forward :    ) can be done in parallel
( inverse :  ) all  need to be computed before 

 

Triangular Jacobian  tractable (  time )

.

 

 

Autoregressive flows are Universal approximators , provided that the transformer & conditioner 
are flexible enough!

 

Alternative : conditioner  take in  instead of 

( mathematically equivalent )

 

4-1-1. Implementing the Transformer  

What to choose as a transformer?

(a) Affine autoregressive flows  

( = location-scale transformation )

flow : .

Jacobian : .

 

Pros & Cons

Pros) simplicity & analytical tractability

Cons) expressivity is limited
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( ex. let  : Gaussian  output is also Gaussian ....Thus need to stack multiple affine AF layers 
)

 

Widely used 

NICE, Real NVP, IAF, MAF, Glow

 

(b) Non-Affine neural transformers  

conic combinations & compositions of monotonic functions are also monotonic

Conic combination:  where  for all .
Composition: 

 

Non-Affine neural transformers can be constructed...

 "using conic combination of monotonically increasing activation functon "

.

 

Jacobian determinant

analytically obtainable ( but more commonly computed by back-propagation ) 

 

Drawback

( in general ) can not be inverted analytically

( can be inverted only iteratively... e.g. bijection search )

 

Variants : NAF, B-NAF, Flow++

 

(c) Integration-based transformers  

The integral of some positive function = monotonically increasing function

ex)  .

:  any positive-valued NN

derivative of transformer = 

 to be a positive polynomial of degree  ( then integral will be  in  )

 Sum-of-squares polynomial transformer

.

 

Affine transformer :  of above
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.

 

( for large enough  ) can approximate arbitrarily well any monotonic increasing function

 

(d) Neural spline flows  

Non-affine transformers...don't have analytic inverse

But since all transformers are monotonic, can be inverted by bijections search

.

keep halving, such that solution  is always contained

Bijection search computes  with accuracy  in 

 trade-off btw accuracy  & computation

 

Overcome this trade-off with monotonic spline

( = piecewise function consisting of  segments , which are easy to invert )

given  input locations 

transformer  : simple monotonic function in each interval 

parameters   :

input locations  
corresponding output locations 
derivatives (i.e. slopes) at 

 

Spline-based transformers 

distinguished by the type of spline they use

fast to invert as to evaluate, while maintaining exact analytical invertibility

Evaluating or inverting

(step 1) locate right segment  (  using binary search )
(step 2) evaluate / invert that segment ( = analytically tractable )

 

4-1-2. Implementing the Conditioner  

Conditioner : 

can be any function ( NN ok )

each  having its separate NN  scale poorly with dim 

( cost of storing, learning params of  independent networks... )

should SHARE params! how?

1) Recurrent Autoregressive Flows
2) Masked Autoregressive Flows
3) Coupling Layer
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(a) Recurrent Autoregressive Flows  

conditioner = RNN

.

share params across conditional distributions of autoregressive models!

Downside?

parallel computation into sequential one
involves  steps...slow for high-dim data

 

 

(b) Maksed Autoregressive Flows  

"Share params + avoid sequential computation of RNN by MAKSING "

by Masking...

single feedforward! ( takes in  , outputs the entire sequence  )

only requirement : autoregressive structure

( output  can not depend on inputs  )

remove connections from input  to outputs  

( by multiplying each weight matrix elementwise, with binary matrix of same size )

will have same architecture as original NN

evaluate efficiently using GPU

ex) MADE ( Masked Autoencoder for Distribution Estimation ), CNN, Self-attention...

 

MADE ( Masked Autoencoder for Distribution Estimation )

assign a "degree" between 1~  for each input/hidden/output node
mask-out the weights between subsequent layers 

 

2 main advantages

1) Efficient to evaluate ( one NN pass & can be computed parallel )
2) Universal approximators

 

Disadvantage
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Not as efficient to invert as to evaluate

(  params  are needed to obtain , thus can not be computed until  
is obtained )

 

Pseudocode

inverse :  times more expansive than evaluating forward transformation

 

Examples of masking to implementing autoregressive flows

IAF, MAF, NAF, B-NAF, MintNet, MaCow

Examples of masking to implementing non-flow based autoregressive models

MADE, PixelCNN, WaveNet

 

(c) Coupling Layers  

Masked Autoregressive Flows : computational asymmetry

( either (1) sampling or (2) density evaluation will be  times slower .... IAF vs MAF )

 for both to be fast, different conditioner is needed! ... COUPLING LAYER

 

Coupling layer

choose index  ( commonly,  )

design the conditioner such that

params  are constnats
params  are functions of  ( ex. NN )

( coupling layer ) splits into 2 parts

( fully autoregressive flow ) splits into  parts

( intermediate ) split into  parts

  inverting the transformation will be  times more expensive than evaluating

[ forward ]

.

[inverse]

.

Jacobian :
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 :  matrix
 :  matrix
 :  matrix
 :  matrix

thus, jacobian : product of diagonals of  = 
but due to efficiency...reduced expressive power

single coupling layer  universal approximator

 need to compose multiple composing layers!

( when composing, elements of  need to be permuted! so that all dim have chance to be 
transformed )

 coupling layers is an universal approximator

( set index  of the -th coupling layer =  )

Summary

coupling layers = most popular method for flow-based models

(  allow both density evaluation & sampling to be done in single NN pass )

widely used in generative models of high-dim data

( NICE, Real NVP, Glow, WaveGlow, FloWaveNet, Flow++ )

 

4-1-3. Relationship with Autoregressive Models  

Alongside NF, autoregressive models are another popular model for high-dim distribution

.

model each conditional as 

ex)  : Gaussian, parameterized by its mean & var

 : analogous to conditioners of autoregresssive flow

( = typically implemented with NN )

can also be used for discrete/mixed data

 

Autoregressive models of continuous variables = Autoregressive flows with single layer

 

let  = cumulative distribution of  

 

and the vector 

 

is always distributed uniformly in 

"same as autoregressive flow" with  and .
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Log probability :

 .

 

IAF : 

corresponds exactly to sampling from autoregressive model ( inverse transform sampling )

 

Transformer : not limited to being the inverse CDF

ex) 

reparam : 
thus, entire autoregressive model = affine autoregressive flow

 

Conclusion

1) AF = extnending AM for continuous variables

2) Benefits of viewing AM as flows?

(a) provides a framework for their composition  enhance flexibility
(b) gives us freedom in specifying the base distn  ( base distn can be learend )
(c) compose AM with other types of flows ( ex. non-autoregressive flows)

 

4-2. Linear Flows  
Autoregressive flows : restrict  to depend only on inputs 

dependent on the order of input var
in the limit of capacity, no limit in flexibility, but in practice , it isn't
So use permutation!

 

Permutation 

(1) easily invertible transformation

(2) absolute Jacobian determinant = 1

general idea of permutation = "Linear Flow"

where  is a  invertible matrix that parameterizes the transformation
Jacobian determinant = det 

special case of linear flow, where  is a permutation matrix
Commonly... alternate "invertible linear transformation" & "autoregressive/coupling layers"

 

Parameterize and learn matrix ?

problem 1)  is not guaranteed to be invertible

problem 2) solving  takes 
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problem 3) det  takes  in general

goal 1)  that is invertible ( & inversion cost  )

goal 2) computing its determinant costs 

 

4-3. Residual Flows  
invertible transformation of the from : 

 : NN that outputs  dim translation vector
 : NN parameter

 

2 general approaches

1) contractive maps
2) matrix determinant lemma

 

4-3-1. Contractive RF  

RF is not always invertible, but invertible when   can be made contractive w.r.t some 
distance function

.
meaning ) contractive map brings any 2 inputs close together, by at least a factor 

 

Banach fixed-point theorem

contractive map has exactly one fixed point 

 

Residual transformation : 

If  is contractive with Lipschitz constant  then  is also ~.

by Banach fixed-point theorem, 

there exists a unique  such that 

starting from arbitrary input , iteratively apply  as follows:

guarantees that the procedure above converges to 

rate of convergence : 

smaller , faster  converges to 

( trading off flexibility for efficiency )

 

Challenge of contractive RF
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how to make contractive, without impinging upon its flexibility?

composition of  Lipschitz-cont func  = Lipschitz cont with constant equal to 

where  is the Lipschitz constant of 
make each layer Lipschtiz continuous with  & at leas one 
ex) sigmoid, tanh, ReLU : Lipschitz continuous with a constant  1

linear layer can be made contractive, by dividing them with operator norm

ex) Spectral normalization : use euclidean norm

 

Drawback of contractive RF

no known general, efficient procedure for computing Jacobian .... costs 

nonetheless, able to obtain unbiased estimate of log absolute Jacobian

( by power series )

:   -th power of the Jacobian of  evaluated at 

( by Hutchinson trace estimator ) efficiently estimate Trace

 : D-dim random vector with zero mean & unit cov
 can be computed with  backprop

( by Russian-roulette estimator )

infinite sum can be estimated as finite sum of re-weighted terms

 

contractive RF ( vs AF)

dense Jacobian ... allows all input variables to affect all output  variables

 thus can be very flexible

but exact density evaluation is computationally expensive & 

sampling is done iteratively

 

4-3-2. RF based on the matrix determinant lemma  

Matrix determinant lemma ( = MD lemma )

left)  
right)  
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(a) Planar Flow  

 is a one-layer NN with a single hidden unit:

  and  and  is a differentiable activation function 

 

Jacobian :

.

(using MD lemma) 

 

Conditions of Planar Flow to be invertible

1)   : positive & bounded above

2) 

 ensures  is always non-zero

 

(b) Sylvester Flow  

extend Planar Flow to  hidden units

.

  and  and activation function  to be elementwise

 

Jacobian

(by MD lemma) 

 

QR decomposition

 and 

 :  matrix....whose columns are orthonormal (  )
 :  upper triangle
 :  lower triangle

Thus, Jacobian determinant :

 

(c) Radial flow  

  and  and  is the norm
(meaning) contraction/expansion radially with center 
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Jacobian : 

.

( using MD lemma )  

be computed in  

 

The radial flow is not invertible for all ...condition?

"  " .....ensures that  is always non-zero 

 

Summary of planar, Sylvester, radial flows

  Jacobian determinant

can be made invertible by suitably restricting their params

( but no analytical way to compute inverse )

 mostly used to approximate posterior for VAE ( not in generative model )

 

4-4. Practical considerations when combining
transformations

 

compose many flows as possible?

Glow

320 sub-transformations & 40 GPUs
challenging computation....

 

2 techniques to solve?

1) stabilize the optimization
2) ease with computational demands

 

(a) Batch Normalization  

stabilize & improve NN

composition of 2 affine transformation

1) scale & translation params ( by batch statistics )
2) free params  (scale) &  (translation)

.

 

easy to compute Jacobian determinant (due to acting element-wise)
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Inserted between transformations! (  )

 

ex) Glow

employs a variant called activation normalization

doesn't use batch statistics  and . 

( instead, before training, flow once &  and  are set so that batch has zero & unit var )

( = data-dependent initialization )

(  and  are optimized as model params )

preferable when training with small-mini batches

(  batch norm's statistics can be noisy )

 

(b) Multi-scale architecture  

 and  should have same dim &  must preserve dimensionality

Multi-scale architecture :

when going from  to , some sub-dim of  are clamped!

( & no additional transformation)

just like skip-connection

these help optimization!

encode more global & semantic info in the dimensions

 

5. Constructing Flows part 2 :
Continuous-Time Transformations

 

( until now ) DISCRETE one-step transformation

( now ) CONTINUOUS time, by parameterizing flow's infinitesimal dynamics 

 construct flow by defining ODE (Ordinary Differential Equation) 
 ( describes flow's evolution over time...called "continuous time" )

 

5-1. Definition  
 :  flow's state at time  

time  runs continuously from  to 

 and  

"parameterize the  time derivative of " with NN  
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.

 

ODE : 

requirement of  : uniformly Lipschitiz continuous in  & continuous in  

( many NN meet those requirements )

do not need invertibility & tractability of Jacobian determinant

 

to compute transformation (  )

need to run dynamics forward in time 

( = need to do integration )

.

 

inverse transform 

Unlike discrete compositions (in before sections) 
continuous-time flows have the same computational complexity in each direction

 

change in log density

.

 : trace operator
 : Jacobian of  at 

but trace operatoor requiers  back-prop!

use "Hutchinson's trace estimator"

 : any -dim random vector with zero mean & unit covariance

 : computed in a single back-prop pass

which  times more efficient!

 

Integrating the derivative of 

forward transform & log density can be done simultaneously

.

computation is not analytically feasible for general   use numerical integration

 

5-2. Solving & Optimizing continuous-time flow  
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(1) Euler's method

(2) Adjoint method

 

5-2-1. Euler's method and equivalence to RF  

Simplest numerical technique

 can be optimized with gradients computed via back-prop
looks like  ( = contractive residual flow )

 

Taylor series expansion

log absolute Jacobian determinant of  as follows:

like 

.

becomes  as 

 

5-2-2. The Adjoint Method  

target 

 

gradient of 

 : flow's intermediate state

 

gradient w.r.t 

 

6. Applications  
2 primitive operations :

(1) density calculation
(2) sampling
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application to

1) probabilistic
2)  inference
3) supervised learning
4) reinforcement learning

 

6-1. Probabilistic Modeling  
assume finite number of draws  from unknown generative process : 

goal ) make a good approximation to 
popular method : MLE ( use forward KL div )

.

With the resulting model 

1) density estimation
2) generation

 

(a) Density Estimation  

use model to calculate densities

1) low-dim cases ...NF can represent skewed, multi-modal densities

2) use density function to perform one-class classification

3) detect rotations and corruptions of images

4) composition allows for better density estimation ( MADE, Real NVP )

 

(b) Generation  

sampling from model ( use as it is sampled from  )

image, video, etc...

 

6-2. Inference  
modeling params to infer unknown quantities within a model

most common setting : 

 

summarize the use of flows for
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1) sampling
2) variational inference
3) likelihood-free inference

 

6-2-1. Importance and Rejection sampling  

Importance Sampling (IS)  

auxiliary distn 

.

 is a user-specified density function 
  is a sample from 

choice of 

if it doesn't contain  's, estimate becomes impractical
if it is too broad : inefficiency

Importance of using expressive proposals !

 employ NFs

Requires both sampling & density evaluation to be tractable for many flows

 

2 alternatives to optimize flow's params

1) minimize KL div
2) minimize the variance of IS estimator

 

Rejection sampling (RS)  

aims to draw samples from 

use Real NVP to parameterize proposal distn

( since coupling layers allow for fast density evaluation & sampling )

 

6-2-2. Reparameterizing models for MCMC  

NF can be integrated into MCMC

 by using the flow to reparam the target distn

( can effectively smooth away pathologies, by allowing MCMC to be run on the simpler & better-
behaved base density )

 

Metropolis-Hastings ratio to the reparameterized model

.

 : proposed value
 : current value
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6-2-3. Variational Inference  

use NF to fit distn over latent variables

"flows can usefully serve as posterior approximations"

 

Use a (trained) flow-based model 

 : base distn
  : transformation 

 

By maximizing ELBO

 : differential entropy  ( constant w.r.t  )

with MC estimation...

.
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