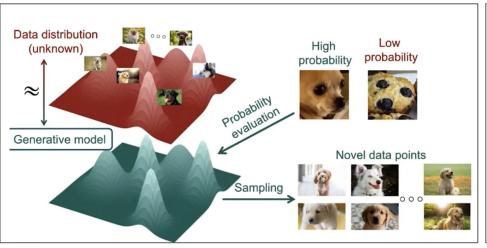
All About Score-based Models

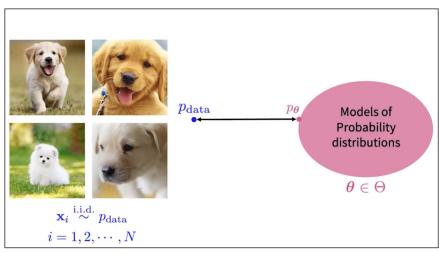
Seunghan Lee

Department of Statistics and Data Science, Yonsei University

Outlines

- 1. Introduction
- 2. Score-based Models
 - a. Flexible Model
 - b. Improved Generation
 - c. Probability Evaluation

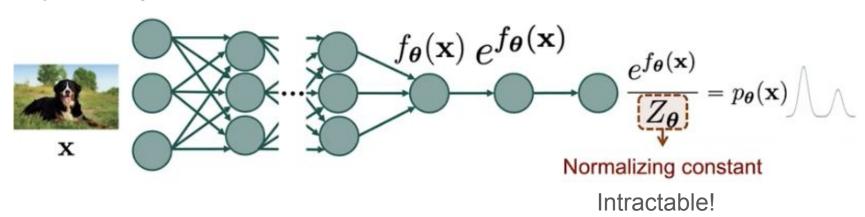




Generative Model

Approximate p_data using the model!

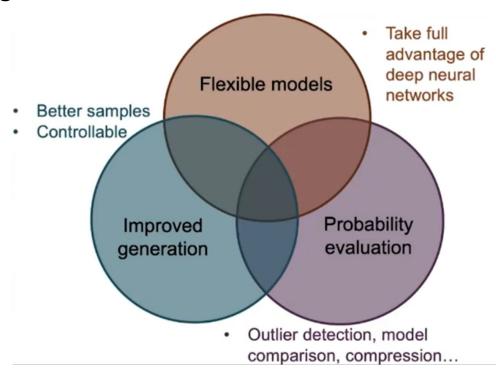
Key challenge: **HIGH**-dimensional data



- (1) Approximate normalizing constant
- (2) Restricted NN
- (3) Model only the generation process

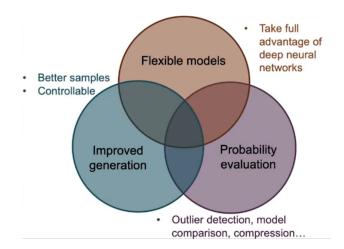
- (1) Approximate normalizing constant
 - ex) EBMs (Energy-Based Models)
 - limitation: inaccurate probability evaluation
- (2) Restricted NN
 - ex) AR models, Flow-based models, VAE
 - limitation: restricted model family
- (3) Model only the generation process
 - ex) GAN
 - limitation: can not evaluate probabilities

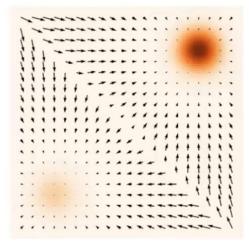
Desiderata of generative model



 $p(\mathbf{x})$: pdf

 $abla_{\mathbf{x}} \log p(\mathbf{x})$: (Stein) score function





Score vs. density function

Score-based model satisfies the below!

- 1. Flexible Model
- 2. Improved Generation
- 3. Probability Evaluation

Score-based model satisfies the below!

Flexible Model

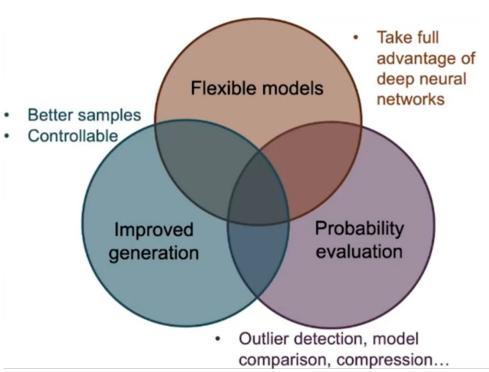
- Bypass the normalizing constant
- Principled statistical methods

2. Improved Generation

- Higher sample quality (vs. GANs)
- Controllable generation

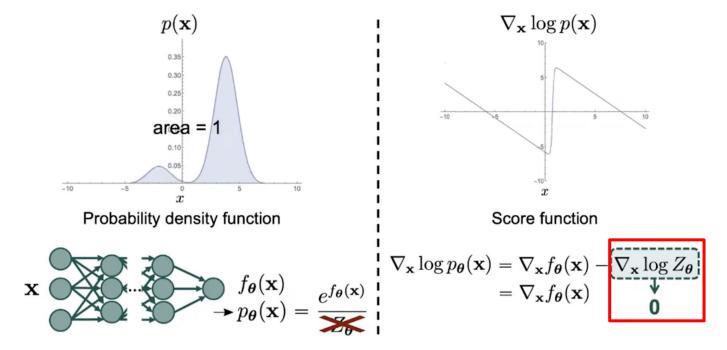
3. Probability Evaluation

- Accurate probability evaluation
- Estimate data probability well

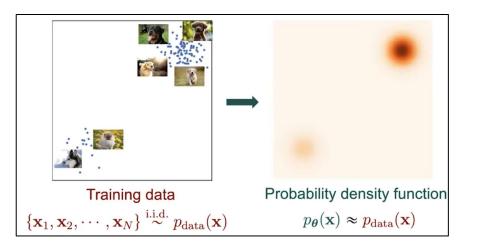


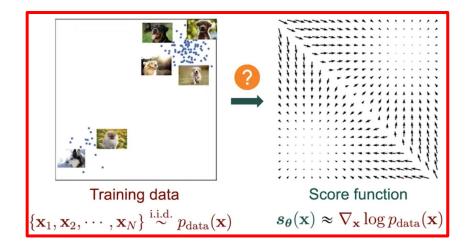
2. Score-based Models

- Bypass the normalizing constant
- Principled statistical methods

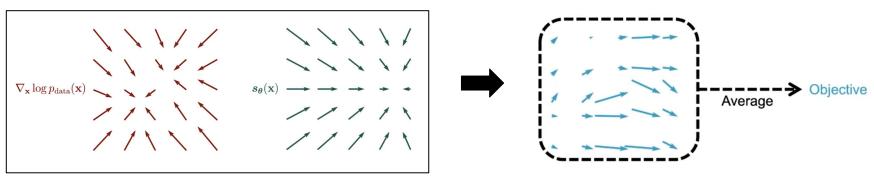


- Bypass the normalizing constant
- Principled statistical methods





- Input: $\{\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_N\} \overset{ ext{i.i.d.}}{\sim} p_{ ext{data}}\left(\mathbf{x}
 ight)$
- Output: $abla_{\mathbf{x}} \log p_{ ext{data}}\left(\mathbf{x}
 ight)$
- Model: $s_{ heta}(extbf{x}): \mathbb{R}^d o \mathbb{R}^d pprox
 abla_{ extbf{x}} \log p_{ ext{data}}\left(extbf{x}
 ight)$



Loss Function

Loss Function

$$rac{1}{2}\mathbb{E}_{p_{ ext{data}}\left(\mathbf{x}
ight)}\Big[\| \overline{
abla_{\mathbf{x}} \log p_{ ext{data}}\left(\mathbf{x}
ight)} - s_{oldsymbol{ heta}}(\mathbf{x})\|_{2}^{2}\Big]$$
 Fisher Divergence

But we don't know the target! How to solve?

- Score Matching
- 2. Sliced Score Matching
- 3. Denoising Score Matching

Loss Function

(1) Score Matching

$$\frac{1}{2}\mathbb{E}_{p_{\mathrm{data}}\left(\mathbf{x}\right)}\left[\left\|\nabla_{\mathbf{x}}\log p_{\mathrm{data}}\left(\mathbf{x}\right)-s_{\boldsymbol{\theta}}(\mathbf{x})\right\|_{2}^{2}\right] \text{ Fisher Divergence} \\ \mathbb{E}_{p_{\mathrm{data}}\left(\mathbf{x}\right)}\left[\frac{1}{2}\|s_{\boldsymbol{\theta}}(\mathbf{x})\|_{2}^{2}+\operatorname{trace}(\underbrace{\nabla_{\mathbf{x}}s_{\boldsymbol{\theta}}(\mathbf{x})}_{\mathrm{Jacobian of }s_{\boldsymbol{\theta}}(\mathbf{x})})\right] \approx \frac{1}{N}\sum_{i=1}^{N}\left[\frac{1}{2}\|s_{\boldsymbol{\theta}}(\mathbf{x}_{i})\|_{2}^{2}+\operatorname{trace}(\nabla_{\mathbf{x}}s_{\boldsymbol{\theta}}(\mathbf{x}_{i}))\right]$$

Score Matching!

- Do not need the ground truth!
- Limitation: "not scalable"

Loss Function

(1) Score Matching

$$rac{1}{2}\mathbb{E}_{p_{ ext{data}}\left(\mathbf{x}
ight)}\Big[\|
abla_{\mathbf{x}}\log p_{ ext{data}}$$

Deep score models



Compute $\|\mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2}$ and $\operatorname{trace}(\nabla_{\mathbf{x}}\mathbf{s}_{\theta}(\mathbf{x}))$

$$\frac{\partial s_{\theta,1}(\mathbf{x})}{\partial x_1} \qquad x_1 \qquad s_{\theta,1} \\
\frac{\partial s_{\theta,2}(\mathbf{x})}{\partial x_2} \qquad x_2 \qquad s_{\theta,2} \\
\frac{\partial s_{\theta,3}(\mathbf{x})}{\partial x_2} \qquad x_3 \qquad s_{\theta,3}$$

 $O(\# \text{dimensions of } \mathbf{x})$ Backprops!

$$\mathbf{x}\mathbf{s}_{\boldsymbol{ heta}}(\mathbf{x}) = egin{pmatrix} \partial s_{oldsymbol{ heta},1}(\mathbf{x}) & \partial s_{oldsymbol{ heta},1}(\mathbf{x}) \ \partial s_{oldsymbol{ heta},2}(\mathbf{x}) \ \partial s_{oldsymbol{ heta},2}(\mathbf{x}) \ \partial s_{oldsymbol{ heta},2}(\mathbf{x}) \ \partial s_{oldsymbol{ heta},3}(\mathbf{x}) \ \partial s_{oldsymbol{ heta},3}(\mathbf{x$$

 $\begin{array}{c}
(\mathbf{x}) \\
(\mathbf{x}) \\
2 \\
(\mathbf{x}) \\
2
\end{array}
\qquad
\begin{array}{c}
\partial x_3 \\
\partial s_{\theta,2}(\mathbf{x}) \\
\partial x_2 \\
\partial s_{\theta,3}(\mathbf{x}) \\
\partial x_3
\end{array}$

$$\mathbb{E}_{p_{ ext{data }}(ext{x})} \left[rac{1}{2} \|s_{ heta}(ext{x})\|_{2}^{2} + ext{trace}(\underbrace{
abla_{ ext{x}} s_{ heta}(ext{x})}_{ ext{Jacobian of } s_{ heta}(ext{x})})
ight] pprox rac{1}{N} \sum_{i=1}^{N} \left[rac{1}{2} \|s_{ heta}(ext{x}_{i})\|_{2}^{2} + egin{array}{c} ext{trace}(
abla_{ ext{x}} s_{ heta}(ext{x}_{i}))
ight]$$

Score Matching!

- Do not need the ground truth!
- Limitation: "not scalable"

Loss Function

(2) Sliced Score Matching

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\|\nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - s_{\boldsymbol{\theta}}(\mathbf{x})\|_{2}^{2} \right] \text{ Fisher Divergence}$$

$$\frac{1}{2}\mathbb{E}_{p_{\mathbf{v}}}\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\left(\mathbf{v}^{\top} \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) - \mathbf{v}^{\top} \mathbf{S}_{\boldsymbol{\theta}}(\mathbf{x}) \right)^{2} \right] \text{ Sliced Fisher Divergence}$$

$$= \mathbb{E}_{p_{\mathbf{v}}}\mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\mathbf{v}^{\top} \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x}) + \frac{1}{2} \left(\mathbf{v}^{\top} \mathbf{S}_{\boldsymbol{\theta}}(\mathbf{x}) \right)^{2} \right] \text{ (Integration by parts)}$$

 $\mathbf{v}^ op
abla_{\mathbf{x}} \mathbf{s}_{oldsymbol{ heta}}(\mathbf{x}) \mathbf{v} = \mathbf{v}^ op
abla_{\mathbf{x}} ig(\mathbf{v}^ op \mathbf{s}_{oldsymbol{ heta}}(\mathbf{x}) ig)$

Project onto random directions for scalability!

$$\mathbf{v}^\intercal \nabla_{\mathbf{x}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) \mathbf{v} = \mathbf{v}^\intercal \nabla_{\mathbf{x}} (\mathbf{v}^\intercal \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}))$$

One Backprop! Sliced Score Matching is scalable $\mathbf{v}^{\mathsf{T}} \nabla_{\mathbf{x}} (\mathbf{v}^{\mathsf{T}} \mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}))$

$$\mathbb{E}_{p_{\mathbf{v}}} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \left[\mathbf{v}^{\top} \nabla_{\mathbf{x}} \mathbf{S}_{\theta}(\mathbf{x}) \mathbf{v} + \frac{1}{2} \left(\mathbf{v}^{\top} \mathbf{S}_{\theta}(\mathbf{x}) \right)^{2} \right] \text{ (Integration by parts)}$$

 $\mathbf{v}^ op
abla_\mathbf{x} \mathbf{s}_{oldsymbol{ heta}}(\mathbf{x}) \mathbf{v} = \mathbf{v}^ op
abla_\mathbf{x} ig(\mathbf{v}^ op \mathbf{s}_{oldsymbol{ heta}}(\mathbf{x}) ig)$

Project onto random directions for scalability!

Denoising Score Matching!

Match the score of a noise-perturbed distribution

2-(a). Flexible Modé

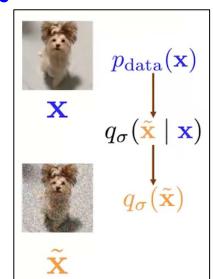
Loss Function

(3) Denoising Score Matching

$$\frac{1}{2}\mathbb{E}_{p_{ ext{data}}\left(\mathbf{x}
ight)}\Big[\|
abla_{\mathbf{x}}\log p_{ ext{data}}\left(\mathbf{x}
ight)-s_{m{ heta}}(\mathbf{x})\|_{2}^{2}\Big]$$
 Fisher Divergence

$$rac{1}{2} \mathbb{E}_{p_{ ext{data}}\left(\mathbf{x}
ight)} \mathbb{E}_{q_{\sigma}\left(ilde{\mathbf{x}} \mid \mathbf{x}
ight)} \Big[\left\|
abla_{ ilde{\mathbf{x}}} \log q_{\sigma}(ilde{\mathbf{x}} \mid \mathbf{x}) - \mathrm{s}_{ heta}(ilde{\mathbf{x}})
ight\|_{2}^{2} \Big]$$

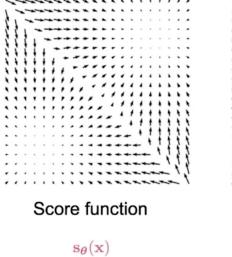
if Gaussian noise
$$\dots \left\| \frac{1}{2n} \sum_{i=1}^n \left[\left\| \boldsymbol{s}_{\theta}(\mathbf{\tilde{x}}_i) + \frac{\mathbf{\tilde{x}}_i - \mathbf{x}_i}{\sigma^2} \right\|_2^2 \right]$$

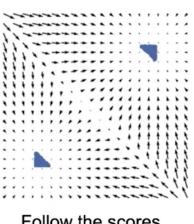


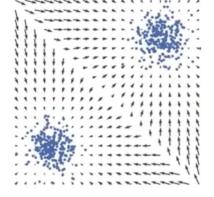
How to sample from score function?

Data examples Score functions New data

Langevin Dynamics







Follow the scores

$$\tilde{\mathbf{x}}_{t+1} \leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}_t)$$

Follow the noisy scores

$$\begin{aligned} \mathbf{z}_t &\sim \mathcal{N}(\mathbf{0}, \mathbf{I}) & \text{Add randomness} \\ \tilde{\mathbf{x}}_{t+1} &\leftarrow \tilde{\mathbf{x}}_t + \frac{\epsilon}{2} \mathbf{s}_{\theta}(\tilde{\mathbf{x}}_t) + \sqrt{\epsilon} \ \mathbf{z}_t \end{aligned}$$

How to sample from score function?

Langevin Dynamics

Sample from
$$p(\mathbf{x})$$
 using only the score $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

Step 1) Initialize
$$x^0 \sim \pi(x)$$

Step 2) Repeat
$$t \leftarrow 1, 2, \cdots, T$$

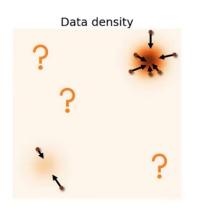
$$\mathbf{z}^t \sim \mathcal{N}(\mathbf{0}, oldsymbol{I})$$

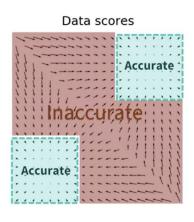
$$\mathbf{x}^t \leftarrow \mathbf{x}^{t-1} + rac{\epsilon}{2}
abla_{\mathbf{x}} \log p ig(\mathbf{x}^{t-1} ig) + \sqrt{\epsilon} \mathbf{z}^t$$

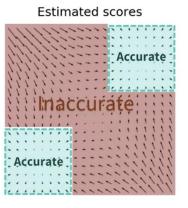
How to sample from score function?

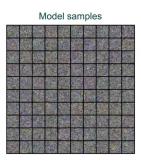
- Langevin Dynamics

Limitations: Bad quality in **LOW score region!**



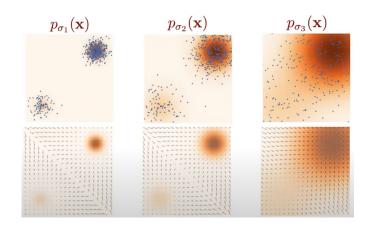




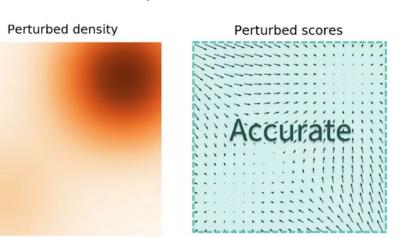


How to sample from score function?

Langevin Dynamics



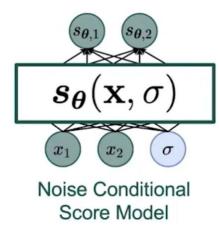
Solution: **ADD noise** to improve score estimation!



Multiple noise level

How to sample from score function?

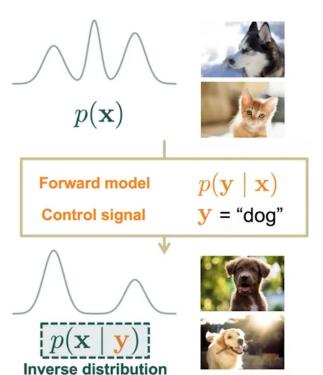
- Annealed Langevin Dynamics



positive weighting function $\frac{1}{N}\sum_{i=1}^{N} \overbrace{\lambda(\sigma_i)}^{\mathbb{E}_{p_{\overline{\sigma_i}}(\mathbf{x})}} \Big[\| \nabla_{\mathbf{x}} \log p_{\overline{\sigma_i}}(\mathbf{x}) - s_{ heta}(\mathbf{x}, \overline{\sigma_i}) \|_2^2 \Big]$ Score matching loss

Generalization of DDPM loss

Controlling the generation process



Class-conditional generation

$$\nabla_{\mathbf{x}} \log p(\mathbf{x} \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{y})$$

$$= \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x}) - 0$$
(Unconditional) Score Forward Model (=classifier)

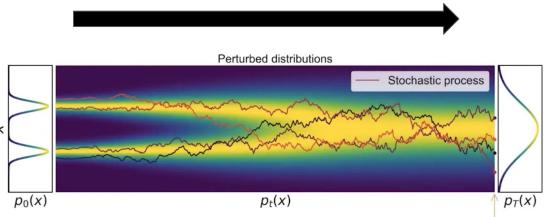
$$pprox s_{ heta}(\mathrm{x})$$

Applications

- Image inpainting
- Image colorization
- Stroke painting to image
- Language guided image generation

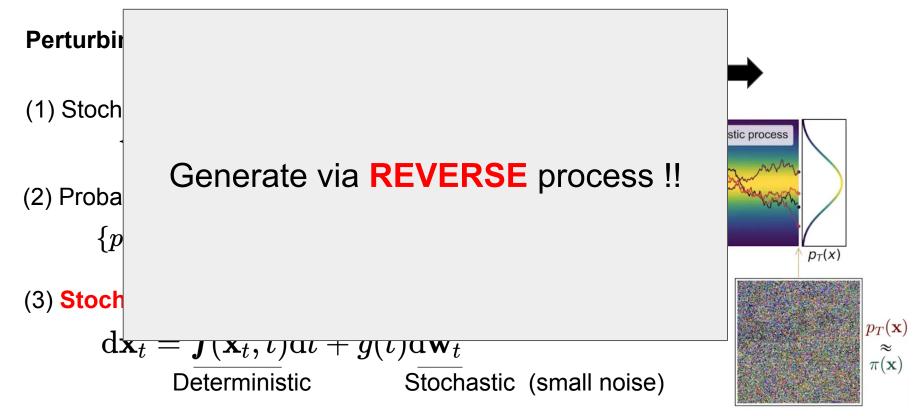
Perturbing Data (Forward)

- (1) Stochastic Process $\{\mathbf{x}_t\}_{t\in[0,T]}$
- (2) Probability Densities $\{p_t(\mathbf{x})\}_{t\in[0,T]}$



(3) Stochastic Differential Equation (SDE)

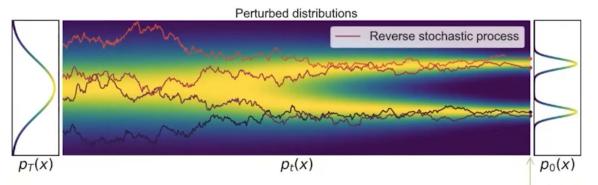
$$\mathrm{d}\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t,t)\mathrm{d}t + g(t)\mathrm{d}\mathbf{w}_t$$
Deterministic Stochastic (small noise)



Generating Data (Reverse)

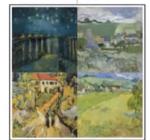
(1) Forward SDE (0->T)

$$\mathrm{d}\mathbf{x}_t = \sigma(t)\mathrm{d}\mathbf{w}_t$$

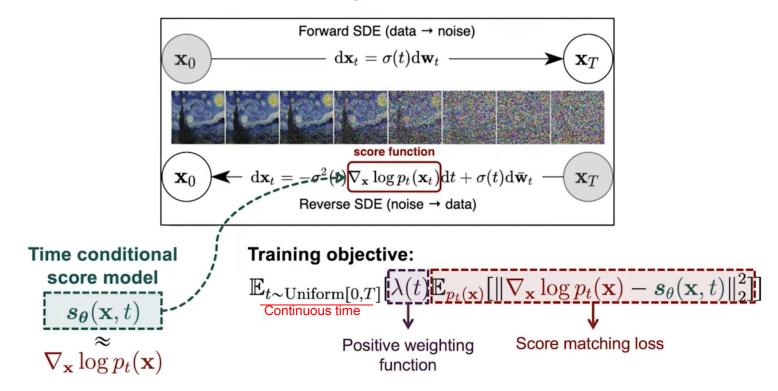


(2) Backward SDE (0->T)

$$\mathrm{d}\mathbf{x}_t = -\sigma(t)^2
abla_{\mathbf{x}} \log p_t(\mathbf{x}_t) \mathrm{d}t + \sigma(t) \mathrm{d}\overline{\mathbf{w}}_t$$
 small noise during backward



Score-based Generative Modeling via SDEs



Score-based Generative Modeling via SDEs

(1) Model (= Time-dependent score model)
$$\mathbf{s}_{\theta}(\mathbf{x}, t) \approx \nabla_{\mathbf{x}} \log p_{t}(\mathbf{x})$$

(2) Training: Loss Function

$$\mathbb{E}_{t \in \mathcal{U}(0,T]} \left[\!\!\! \boldsymbol{\lambda}(t) \mathbb{E}_{p_t(\mathbf{x})} \! \left[\| \nabla_{\mathbf{x}} \log p_{t}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x}, t) \|_2^2 \right] \right]$$

(3) Sampling: Reverse-time SDE

$$\mathrm{d}\mathbf{x} = -\sigma^2(t)\mathrm{s}_{ heta}(\mathbf{x},t)\mathrm{d}t + \sigma(t)\mathrm{d}\overline{\mathbf{w}}$$

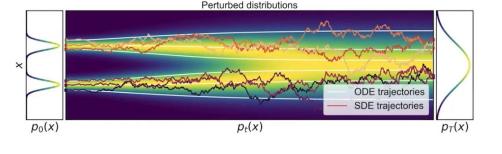
(3) Sampling: Euler-Maruyama

$$\mathbf{x} \leftarrow \mathbf{x} - \sigma(t)^2 \mathbf{s}_{\theta}(\mathbf{x}, t) \Delta t + \sigma(t) \mathbf{z} \quad (\mathbf{z} \sim \mathcal{N}(\mathbf{0}, |\Delta t| \mathbf{I}))$$

$$t \leftarrow t + \Delta t$$

SDE -> ODE

To evaluate the probability!



(1) SDE

$$\mathrm{d}\mathbf{x}_t = \sigma(t)\mathrm{d}\mathbf{w}_t$$

(2) ODE

$$rac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -rac{1}{2}\sigma(t)^2 \,\,\,
abla_{\mathbf{x}} \log p_t(\mathbf{x}_t)$$

Compute the exact likelihood with ODEs

$$\log p_{m{ heta}}(\mathbf{x}_0) = \log \pi(\mathbf{x}_T) - rac{1}{2} \int_0^T \sigma(t)^2 \operatorname{trace}(
abla_{\mathbf{x}} s_{m{ heta}}(\mathbf{x},t)) \mathrm{d}t$$

References

- https://www.youtube.com/watch?v=wMmqCMwuM2Q