Advanced Deep Learning (2022, 11, 09)

BEiT: BERT Pre-Training of Image Transformers (2021)

통계데이터사이언스학과 통합과정 5학기 이승한

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

BEiT (2021)

1. Introduction

- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

1. Introduction

BEiT = Bidirectional Encoder representation from Image Transformers

- Self-supervised vision representation model
- MIM (Masked Image Modeling) to pretrain ViT
 - MIM = recovering the masked image patches,
 based on encoding vectors
- Each Image has 2 views
 - view 1) image patches (ex. 16x16 pixels)
 - view 2) visual tokens (ex. discrete tokens)

1. Introduction

BEiT = Bidirectional Encoder representation from Image Transformers

- Procedure
 - step 1) tokenize image into visual tokens
 - step 2) randomly mask some image patches
 & fed them into backbone Transformer
- Objective : recover the original visual tokens,
 based on corrupted image patches
- Fine tune model params on downstream tasks

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

image: split into a sequence of patches

- ullet (from) image $oldsymbol{x} \in \mathbb{R}^{H imes W imes C}$
- (to) $N=HW/P^2$ patches $m{x}^p\in\mathbb{R}^{N imes(P^2C)}$ (P, P) = resolution of each patch

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

represent the image as a sequence of discrete tokens

(= obtained by an "image tokenizer")

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

represent the image as a sequence of discrete tokens

(= obtained by an "image tokenizer")

Tokenize ...

- (from) image $\boldsymbol{x} \in \mathbb{R}^{H \times W \times C}$
- ullet (to) $oldsymbol{z} = [z_1, \dots, z_N] \in \mathcal{V}^{h imes w}$
 - \circ where the vocabulary $\mathcal{V} = \{1, \dots, |\mathcal{V}|\}$ contains discrete token indices

Details:

- # of visual tokens = # of image patches
- ullet vocab size : $|\mathcal{V}| = 8192$

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

(1) tokenizer : $q_{\phi}(oldsymbol{z} \mid oldsymbol{x})$

- maps image pixels *x* into discrete tokens *z* (according to codebook (=vocab))
- uniform prior

Unused During

Reconstructed

2. BEiT: Bidirectional Encoder representation from Image Transformers

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

(1) tokenizer : $q_{\phi}(oldsymbol{z} \mid oldsymbol{x})$

- maps image pixels *x* into discrete tokens *z* (according to codebook (=vocab))
- uniform prior

lacksquare Reconstruction objective : $\mathbb{E}_{m{z} \sim q_{\phi}(m{z} \mid m{x})} \left[\log p_{\psi}(m{x} \mid m{z})
ight]$

(discrete? use **Gumbel Softmax Trick**)

Visual Tokens

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Visual Tokens Unused During Pre-Training Reconstructed Image 123 234 456 567 987 876 765 543 112 223 334 445 211 322 433 544 Decoder ---

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

learned by discrete variational autoencoder (dVAE)

• two modules (during visual token learning)

$$q(z = k|x) = \begin{cases} 1 & \text{for } k = \operatorname{argmin}_{j} ||z_{e}(x) - e_{j}||_{2} \\ 0 & \text{otherwise} \end{cases}$$

Codebook containing discrete vectors

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

learned by discrete variational autoencoder (dVAE)

• two modules (during visual token learning)

$$z_q(x) = e_k, \quad ext{where} \quad k = \operatorname{argmin}_j \|z_e(x) - e_j\|_2$$

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

a) 2 views of Representations

- (1) image patch (= serve as INPUT)
- (2) visual tokens (= serve as OUTPUT)

Image Tokenizer

- learned by discrete variational autoencoder (dVAE)
- two modules (during visual token learning)

Back-prop with **DISCRETE** variable?

→ use "Gumbel Softmax Relaxation"!

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

b) Model Architecture

b) Model Architecture

b) Model Architecture

Step 2) Random Masking

- Blockwise Masking
- random masking 40% of patches

$$egin{aligned} \mathcal{M} &\in \{1,\dots,N\}^{0.4N} \ x^{\mathcal{M}} &= \{x_i^p: i
otin \mathcal{M}\}_{i=1}^N igcup \{e_{[M]}: i \in \mathcal{M}\}_{i=1}^N \end{aligned}$$

Masked Image Model

b) Model Architecture

Step 2) Random Masking

- Blockwise Masking
- random masking 40% of patches

```
\mathcal{M} \in \{1,\dots,N\}^{0.4N} \ x^{\mathcal{M}} = \{x_i^p: i 
otin \mathcal{M}\}_{i=1}^N igcup \{e_{[M]}: i \in \mathcal{M}\}_{i=1}^N
```

- (1) Sample "mask size" (at least 16)
- (2) Sample "aspect ratio" (0.3:1 ~ 1:0.3)
- (3) Compute height / width
- (4) Compute Top.Left point of masking block
- (5) Augment with Masking information
- (6) if Masking ratio > 40%, STOP

b) Model Architecture

Step 2) Random Masking

- Blockwise Masking
- random masking 40% of patches

Mask ex 1)
$$\mathrm{s}=24, r=1.5, a=6, b=4, |\mathcal{M}|=24$$

Mask ex 2)
$$s = 20, r = 0.8, a = 4, b = 5, |\mathcal{M}| = 44$$

Mask ex 3)
$$s = 35, r = 0.7, a = 5, b = 7, |\mathcal{M}| = 79$$

b) Model Architecture

Step 3) Predict Visual Token

- predict the "masked image input"
- using ViT + Softmax CLS

$$p_{ ext{MIM}}\left(z'\mid x^{\mathcal{M}}
ight) = ext{softmax}_{z'}\left(oldsymbol{W}_{c}oldsymbol{h}_{i}^{L} + oldsymbol{b}_{c}
ight)$$

Masked Image Model

b) Model Architecture

b) Model Architecture

b) Model Architecture

b) Model Architecture

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function
- 3. Experiments

c) Objective Function

Maximize the log-likelihood of the correct visual tokens, given the corrupted image

$$\left[\max \sum_{x \in \mathcal{D}} \mathbb{E}_{\mathcal{M}} \left[\sum_{i \in \mathcal{M}} \log p_{ ext{MIM}} \left(z_i \mid x^{\mathcal{M}}
ight)
ight]$$

BEiT (2021)

- 1. Introduction
- 2. BEiT: Bidirectional Encoder representation from Image Transformers
 - a. Two views of Representations
 - b. Model Architecture
 - c. Objective Function

3. Experiments

3. Experiments

1) (Classification) Top-1 Accuracy

Table 2: Convergence curves of training DeiT from scratch and fine-tuning BEIT on ImageNet-1K.

Models	Model Size	Resolution	ImageNet
Training from scratch (i.e., rand	om initialization)		
ViT ₃₈₄ -B [DBK ⁺ 20]	86M	384^{2}	77.9
ViT ₃₈₄ -L [DBK ⁺ 20]	307M	384^{2}	76.5
DeiT-B [TCD ⁺ 20]	86M	224^2	81.8
DeiT ₃₈₄ -B [TCD ⁺ 20]	86M	384^{2}	83.1
Supervised Pre-Training on Imag	geNet-22K (using	labeled data)	
ViT ₃₈₄ -B [DBK ⁺ 20]	86M	384^{2}	84.0
ViT ₃₈₄ -L [DBK ⁺ 20]	307M	384^{2}	85.2
Self-Supervised Pre-Training on	ImageNet-1K (w	ithout labeled data)
iGPT-1.36B [†] [CRC ⁺ 20]	1.36B	224^2	66.5
ViT ₃₈₄ -B-JFT300M [‡] [DBK ⁺ 20]	86M	384^{2}	79.9
MoCo v3-B [CXH21]	86M	224^2	83.2
MoCo v3-L [CXH21]	307M	224^{2}	84.1
DINO-B [CTM ⁺ 21]	86M	224^2	82.8
BEIT-B (ours)	86M	224^{2}	83.2
BEIT ₃₈₄ -B (ours)	86M	384^{2}	84.6
BEIT-L (ours)	307M	224^2	85.2
BEIT ₃₈₄ -L (ours)	307M	384^{2}	86.3

Table 1: Top-1 accuracy on ImageNet-1K. We evaluate base- ("-B") and large-size ("-L") models at resolutions 224×224 and 384×384 . †: iGPT-1.36B contains 1.36 billion parameters, while others are base-size models. ‡: ViT₃₈₄-B-JFT300M is pretrained with the "masked patch prediction" task on Google's in-house 300M images, while others use ImageNet.

3. Experiments

2) (Semantic Segmentation)

Figure 2: Self-attention map for different reference points. The self-attention mechanism in BEIT is able to separate objects, although self-supervised pre-training does not use manual annotations.

Models	ADE20K
Supervised Pre-Training on ImageNet	45.3
DINO [CTM ⁺ 21] BEIT (ours)	44.1 45.6
BEIT + Intermediate Fine-Tuning (ours)	47.

Table 3: Results of semantic segmentation on ADE20K. We use SETR-PUP [ZLZ⁺20] as the task layer and report results of single-scale inference.

Thank You!