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Papers Conditional / Unconditional diffusion model
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1. Preliminaries: Diffusion Model



(1) GAN
(2) Diffusion

(3) VAE, Normalizing Flows

1-1. Generative Models

1. Preliminaries: Diffusion Model
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1. Preliminaries: Diffusion Model

1-2. Diffusion Model

- Forward Process: Add Noise

- Backward Process: Remove Noise

P
€
p(xolx1) p(Te-1]re) p(xe|zis) p(rr—1]2r)
q(x1]xo) q(we|zi-1) q(e1|ze) q(xr|rr-1)
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1. Preliminaries: Diffusion Model

1-2. Diffusion Model

Forward Process: Add Noise
q (Xt | Xt—l) = N (Xt; v 1- Bix¢—1, ﬁtl)

Backward Process: Remove Noise

Po (xe—1 | X¢) = N (X415 pto (X¢, 1) , 2 (Xt, 1))

B controls the strength of the noise — Noise Scheduling

ex) DDPM: Linear Scheduling 7" = 1000, 3y = 0.0001, B1990 = 0.02
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1. Preliminaries: Diffusion Model

1-3. Noise Scheduling

Noise Sched::l2:

Too SMALL noise!

Too BIG noise!

Linear scheduler

Cosine scheduler

Linear (top) vs Cosine (bottom)
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

- Unconditional Diffusion Model: “Draw a picture”

- Conditional Diffusion Model: “Draw a picture of a dog”

“a corgi wearing a red bowtie “rol “a fall landscape with a small
and a purple party hat” cottage next to a lake”

Anything can be a condition!

“a surrealist dream-like oil
painting by salvador dali sunset behind the grand
of a cat playing checkers” canyon”

https://arxiv.org/abs/2112.10741
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (1) Classifier guidance (CG): w/ classifier

- (2) Classifier-free guidance (CFG): w/o classifier

08 /47



1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (1) Classifier guidance (CG): w/ classifier

Viogp (x; | y) = Vlog (p(Xt)p(y | Xt))

Conditional Score p(y>
(Score of X; , under conditiongy) — ¥ 108 P (X¢) +Vlogp (y | x¢) — V logp(y)

= Vlogp (Xt) +v V loglp (y ‘ Xt) ——3p Classifier

-

unconditional score adversarial gradient
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model Viogp (x; | y) = Vlog (p (Xt)pp( g | Xf’)
How to guide the diffusion model under certain condition? = Vliogp (x¢) + Viogp (y | x;) — Vlogp(y)
= Vlogp(x) 4y Viegp(y|x)
= (1) CIaSSifier QUidance (CG) Wl ClaSSiﬁer unconditional score adversariz;lrgradient

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model iy (z+), Xo(x:)), classi-
fien p¢(y|:ct)l and gradient scale s.

Input: class label y, gradient scale s
x < sample from A (0, I)
for all ¢t from 7 to 1 do
p, X <= po(ze), Xo(xe)
41 « sample from N (u +{sX V,, log py (y|z:)} )
end for
return x

Guidance
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (2) Classifier-free guidance (CFG): w/o classifier

Viegp(x, |y) = Vlogp(x;) +v Vlogp(y|x)
N——— . _

TV
unconditional score adversarial gradient
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (2) Classifier-free guidance (CFG): w/o classifier

Viegp(xi |y)= Viegp(x) +7Viogp(y|x) ey Y108 [x) =Vliegp(x |y)— Vlogp(x,)

unconditional score adversarial gradient adversarial gradient

unconditional score
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (2) Classifier-free guidance (CFG): w/o classifier

7

Viegp(xi |y) = Vlegp(x) +7Vigp(y|x) pmy 7VI08P(Y[x)
— ~ ~

N~ hd
unconditional score adversarial gradient adversarial gradient

T

Viogp (x: | y) —

Vlog p (%)
——

unconditional score
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (2) Classifier-free guidance (CFG): w/o classifier

Viegp(xi |y)= Viegp(x) +7Viogp(y|x) ey Y108 [x) =Vliegp(x |y)— Vlogp(x,)

J/
~~ e
unconditional score adversarial gradient adversarial gradient unconditional score

Viogp (x; | y) = Viogp (x¢) + v (Viogp (x; | y) — Vlogp (x¢))
= Vlogp (x4) + 7Vlogp (%, | y) — vV logp (x;)
= :Yv logp(xt | yl‘f‘Sl — V)Vlogp(xtl

conditional score unconditional score

No need for an extra classifier!
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1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

How to guide the diffusion model under certain condition?

- (2) Classifier-free guidance (CFG): w/o classifier

Algorithm 1 Joint training a diffusion model with classifier-free guidance

Require: puncond: probability of unconditional training

1: repeat

2; (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset
3 c < & with probability puncond > Randomly discard conditioning to train unconditionally
4 A ~p(A) > Sample log SNR value
5: e€~N(0,I)

6: Z) = Q)X+ O)\€ > Corrupt data to the sampled log SNR value
7 Take gradient step on Vy ||€g(z >\ —¢|)? > Optimization of denoising model
8: until converged _—

Integrate condition inside the diffusion model!
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2. Conditional Time—series Diffusion Model:
TimeGrad, CSDI



2. Conditional Time-series Diffusion Model

Conditional Time-series Diffusion Model
- TimeGrad (ICML 2021): TS Forecasting

- CSDI (NeurlPS 2021): TS Imputation

16 /47



2. Conditional Time-series Diffusion Model

2-1. TimeGrad (ICML 2021)

- Diffusion model for TS forecasting a0t 1xi7)
x; [— ...+ n-1 n‘ L 1
- Conditional diffusion model , P 1% ?
hr-2 hr—l

- ‘“condition = past information”

' I

¢

t—1

)
t tOp 0 t t Figure 1. TimeGrad schematic: an RNN conditioned diffusion

probabilistic model at some time ¢ — 1 depicting the fixed forward
process that adds Gaussian noise and the learned reverse processes.

h; = RNNy (concat (xg , ct) , ht_l)

Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting 17 | 47



2. Conditional Time-series Diffusion Model
2-2. CSDI (NeurlPS 2021)
- Diffusion model for TS imputation

- Conditional diffusion model, where “condition = observed values”

Conditional observations x§° /
VA VIRV aaN

2 1L el |

— . x%a xga 1) —
; ta Im utation targets X§
Random noise X7 p [ 0

Conditional score-based diffusion models for probabilistic time series imputation
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2. Conditional Time-series Diffusion Model
2-2. CSDI (NeurlPS 2021)

- Inspired by masked modeling

minimize ||€ — €g(x2,t | x§%)||

Noise €
7 1 Masked certain portion of data for training!
Imputatic:: Noisy N .
Observeldilues Targets Xo targetsxi:: :,, ------------- - (1) Observed (= Traln)
] & _’ €g(xB2,t | x§° .
l J: Conditional | o ; = I - (1-1) unmasked (= Train X)
observations x5° t— € _’j
N g - (1-2) masked (= Train Y
l— Eﬂ— _____________ ] (1-2) masked (= Train Y)

Figure 2: The self-supervised training procedure of CSDI. On the middle left rectangle, the green and (2) U nObserved ( TeSt)
white areas represent observed and missing values, respectively. The observed values are separated
into red imputation targets x5 and blue conditional observations x5°, and used for training of €.
The colored areas in each rectangle mean the existence of values.

Conditional score-based diffusion models for probabilistic time series imputation 19/ 47
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3. Unconditional Time-series Diffusion Model
TSDiff (NeurlPS 2023)
- (Previous works) Conditional model
- condition depends on the task! (i.e. imputation, forecasting ... )
- Task-agnostic & Unconditional diffusion model for TS
- Self-guidance mechanism

- enables conditioning for downstream tasks “during inference”

- does not require auxiliary network or altering the training procedure

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 21/ 47



3. Unconditional Time-series Diffusion Model
TSDiff (NeurlPS 2023)
- Three tasks
- (1) Forecasting
- (2) Refinement
- refine the predictions of base forecasters efficiently
- (3) Synthetic data generation

- train downstream forecasters using synthetic samples generated from TSDiff

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 22 | 47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

Yta ™~ pG(YtaIYobs)

ANV

W Yobs B Yta

y ~ po(y)

Synthetic Samples

« Train
@ N5 po(x, 1), 07T) @ Y s Y& v oy
oo »(xi1) oo redic
~ a0V ogmlrade) R e o oot
Predict Refine Synthesize

Figure 1: An overview of TSDiff’s use cases. Predict: By utilizing observation self-guidance, TSDiff can be
conditioned during inference to perform predictive tasks such as forecasting (see Sec. 3.1). Refine: Predictions

of base forecasters can be improved by leveraging the implicit probability density of TSDiff (see Sec. 3.2).

Synthesize: Realistic samples generated by TSDiff can be used to train downstream forecasters achieving good
performance on real test data (see Sec. 4.3).

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
1) Self-Guidance

Observation Self-Guidance

5 . l >it_l : E
Condition : ¢ : > |  TsDif ‘—veo(xf,t) é_>@_> _.@
t —» L’ ,
¥ % 507V xt 10g o (Yobs|x") Yobs
S —/ :

Reverse process (denoising)

Condition during inference!

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
1) Self-Guidance

Seek to train a single unconditional generative model, py(y)

& Condition it during inference to drAw samples pg (¥ta | Yobs )-

N\

Algorithm 1 Observatlon -Guidance

Input observation yne/ scale s
xT ~ N(0,1)
fort = T to 1 do

xt 1~ N /-1'9(x t + SUt xt logp(YObslxt)
end for

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

1. Preliminaries: Diffusion Model

1-4. Conditional Diffusion Model

Vlogp (x; | y) = Vlog (’—’ () p(y | xt))

p(y)

How to guide the diffusion model under certain condition? = Vlogp (x¢) + Vlogp (y | x;) — Viogp(y)
= Vlogp(x)) Ay Viegp(y|x:)
_ge 2 e —— —/_/
(1) Classifier guidance (CG): w/ classifier unconditional score | adversarial gradient
Algori Classifier guided diffusion sampling, given a diffusion modeLifig (), Xg(z:)), classi-
fier|py(y|z:)} and gradient scale s.

Input: class label y, gradient scale s

x7 < sample from N(0,I)

for all ¢ from 7" to 1 do .
Guidance

By 24— pg(w), B (1)

zy_1 < sample from N (p +sX V, log ps(y|z: )} T)

end for
return z,

25/ 47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
1) Self-Guidance

Seek to train a single unconditional generative model, py(y) (1 ) Mean Square gl'“dance

& Condition it during mference to drAw samples pg (Yia | Yobs ) Do (Yobs | xt) = N (Yobs | f0 (xt, t), I)

Algorithm 1 Observatlon -Guidance (2) Quantile guidance

/\ N T i R e

X NNO I)
fort—Ttoldo

xt 1~ N (o (7, t ) + 507V xt log p(yobs|x") * Probabilistic forecasts are often evaluated using quantile-based metrics
end for

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 26 /47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
2) Backbone WM% W W W
Observation Self-Guidance A

|—>it E E
TSDiff eo(x',t) é—’@—b _@
L’S'—’safvxt log pg (Y obs|X") T ¥abs
), ;

TSDIff Architecture \

Ao

B © Ee
L |
L
J

N Residual Blocks

@: Swish @: RelU @: Sigmoid @: tanh @: Element-wise mult. @: Element-wise add.

T
Convixi N
Convix1 ‘

27 147
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

arXiv
https://arxiv.org» eess &

2) Backbone DiffWave: A Versatile Diffusion Model for Audio Synthesis

Z Kong M= - 2020 - 7453| 212 — Abstract:In this work, we propose DiffWave, a versatile diffusion
probabilistic model for conditional and unconditional waveform generation.

= (1 ) Dlﬁ:vvave Cite as: arXiv:2009.09761

arXiv
- (2) SSSD g https://arxiv.org>cs &
[2208.09399] Diffusion-based Time Series Imputation and ...

(3) TI meDIﬂ: JML Alcaraz A= - 2022 - 493| 218 — Diffusion-based Time Series Imputation and Forecasting with
Structured State Space Models. Authors:Juan Miguel Lopez Alcaraz, Nils Strodthoff.

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 28 147



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023) o] Lombetong’ i DiffWave

Bi-DilConv-2" | = Bi-directional Dilated Conv

(dilation = 27)

2) Backbone

+ o]

- C N —
- ( 1 ) D Iffwave \\ @ = Broadcast over length
===
1 : @ = Element-wise addition
1 1 _ i P
| . O = Element-wise multiplication
- (2 ) S S S D : : l = Connect to next residual layer
: : T = Input of each residual layer
| 1
. . 1 I
= n |e | ! 1
1 Skip connections |
1
1 @—'[ Convlx1 w Convlx1 ]

Residual layeri = 1 |
t t o esdwlaeri=y -1l S
EQ\[X |s|Lp|C | . N .
Figure 2: The network architecture of DiffWave in modeling ¢p : R x N — R~

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 29 /47




3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
2) Backbone

- (1) DifftwWave

I Input I

Diffusion-step
embedding

DiffWave

= Fully connected
= Convlx1
2T

Bi-DilConv-2 = Bi-directional Dilated Conv
(dilation = 27)
_____ FC [~
@ = Broadcast over length

&)

o]

= Element-wise addition

= Element-wise multiplication

- (2) SSSD

- (3) TimeDiff

€ (

X

t

t]

C

. r
1
Bi-DilCony-2{ med
1

S4 Layer

Convix1 = Connect to next residual layer

o
T = Input of each residual layer

Skip connections

1
1. @"[ Convix1 Convlx1 ]
Residual layer i = 0 1 | I
e i}
""""'":."(g l Residual layer i = 1| I
1 Residual layeri = N — 11 Output

Figure 2: The network architecture of Diff Wave in modeling €5 : RY x N — RZ.

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting




3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

Diffusion-step -
7 B DiffWave
) g ) 3
FH—fmamior [~ om0 E == —
) _ Lo EC = Fully connected
S S S D (B,K,.L) (N (1, 0%) (B,C,.L) { ,Cls D ' @ -
o ) '
s Convix1l | = Convlx1l
Conditional \DConv (.
L ) 1 !
(B,2*K,L) (B,C,L) ! i = Bi-directional Dilated Conv
(Mimp € [0, 122K, k<K 1D Conv [ I (dilation = 27)
= !
(B,2°C,.L) I D N N
Yy _ " a m _ 1D Conv ' h e -
@ = Addition lefusl(?n T-Emb FC @@ FC é ) FC ( J ! ' [ | @ = Broadcast over length
o embedding \) N ) (B, Skip/CL) v — £ r .
@@ = Sigmoid (B,128) (B,512) (B,512) (B,C,1) (B,:C L)\(‘} HE 1 = Element-wise addition
5 Residual ldyer o ot
@z) = Tanh :\ e Vo = Element-wise multiplication
= LI R RPN .c- '
\@@ = el 84 |= S4layer S e i e e =i o e ST f ___ 1 : . 3 = Connect to next residual layer
6(2) = Swish T-Emb = Diffusion T embedding 1D Conv k_@@‘_{ 1D Conv < Skip connections : : T = Input of each residual layer
N | B, Skip C,L
@ = Multiplication FC |= Fully connected BKL) ( ip C,L) i |
@ - ) 5 ) Output : !
Kti = Addition Assignment | 1D Conv = 1D convolution (BKL) ,skip connections!
1 '
I 1 Convlx1
1 1
1 S
I
t o fesdwlaveri=n-1l Satpt
E 0 J : 9 C Figure 2: The network architecture of Diff Wave in modeling €y : RE x N — RL.
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3. Unconditional Time-series Diffusion Model

DiffWave

TSDiff (NeurlPS 2023) ]

2) Backbone

Bi-DilConv-2 = Bi-directional Dilated Conv

(dilation = 27)
- ( 1 ) D iffvvave N, @ = Broadcast over length
:- = Element-wise addition
* 84 Layer = Element-wise multiplication
- (2 ) S S S D : , T = Connect to next residual layer
: : T = Input of each residual layer
! 1
' iff ' :
= (3) TImeDI :Skip connections!
1
| : 5 @—'[ Convlx1 Convlx1 ]
1 1
_

Output

t [ A
0 ( ) L w Figure 2: The network architecture of Diff Wave in modeling €5 : RY x N — RZ.
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

DiffWave
= Fully connected

= Convlx1

TS Piff

TSDiff Architecture N\

= Bi-DilConv-2* | = Bi-directional Dilated Conv
t - (dilation = 2%)
X > g R v _____ |
o ' | @ = Broadcast over length
i) |

= Element-wise addition

% %
(D> 2 +B®> & >eo(x1)
(G) o

= Element-wise multiplication

o~
|
B
Convix1
&

= Connect to next residual layer

N Residual Blocks /

@: Swish @: RelLU @: Sigmoid @: tanh @: Element-wise mult. @: Element-wise add.

T = Input of each residual layer

Skip connections

1. | @{ convixa |gei{ convix1
G
T ~ ! ——
Y2 - _l ______ Residuallayer =11 I

! Residual layer i = N — 11 Output

Figure 2: The network architecture of Diff Wave in modeling ¢ : R x N — RL,
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)
2) Backbone: S4 Layer

arXiv

https://arxiv.orgrcs ¢

Effluently Model[ng Long Sequences with Structured State ..

2 — S4 achieves strong empirical results across a diverse range of
established benchmarks, including (i) 91\% accuracy on sequential CIFAR-10 ...

Algorithm 1 S4 CONVOLUTION KERNEL (SKETCH)
Input: S4 parameters A, P,Q, B,C € CV and step size A

Output: SSM convolutlon kernel K KL(A,B,C) for A=A — PQ* (equation (5))

1:C<—(I-A) o]

> Truncate SSM generating function (SSMGF) to length 1

: [Z‘l’ggw; Z(ﬁgi ] € ] 2l2-a) ‘B P > Black-box Cauchy kerne
3 K(w) « 25 [koo(w) — ko1 (w)(1 + k11 (w)) " k1o(w)] > Woodbury Identity
4 K = {K(w) : w = exp(2mi &)} > Evaluate SSMGF at all roots of unity w € Q;
5. K « iFFT(K) > Inverse Fourier Transform

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

S4 = Model SSM (State-Space Model) with NN

9 raY

e -« ® 7 >
/\/ 10 0 . X .

Y]
< 1THHHHP
\

x = Ax + Bu A=11 2 0 x=Ax + Bu =
1 3 3 — — y=K=*xu
y =Cx+Du y =Cx+Du
Continuous Long-Range
State Space Dependencies Fast Discrete Representations

Figure 1: (Left) State Space Models (SSM) parameterized by matrices A, B,C, D map an input signal u(t) to
output y(t) through a latent state z(¢). (Center) Recent theory on continuous-time memorization derives special
A matrices that allow SSMs to capture LRDs mathematically and empirically. (Right) SSMs can be computed
either as a recurrence (left) or convolution (right). However, materializing these conceptual views requires utilizing
different representations of its parameters (red, blue, green) which are very expensive to compute. S4 introduces a
novel parameterization that efficiently swaps between these representations, allowing it to handle a wide range of
tasks, be efficient at both training and inference, and excel at long sequences.
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

3) Prediction Refinement
Goal: Refine the predictions of base forecasters

- Agnostic to the type of base forecaster

- Only assumes access to forecasts generated by them

How?

Iteratively refine the initial forecasts, using the implicit density learned by diffusion model
(serves as a prior)

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 35/ 47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

3) Prediction Refinement
Two interpretations of refinement

- (a) Sampling from an energy function

- (b) Maximizing the likelihood to find the most likely sequence

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 36 /47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

3) Prediction Refinement

(a) Sampling from an energy function

- Goal: draw samples from p(y, | Yobs)
- Base forecasterg
- Sample forecast from g: g(¥,ps ) --.. initial guess of a sample fromp(¥+, | Yobs)

— Improve this initial guess!

- Refinement = Sampling from the regularized energy-based model (EBM)

Ey(y;§) = —logpe(y) + AR(y,¥)

Regularizer TS obtained by combining Y ops and g(yobs )

Design the energy function s.t. LOW energy is assigned to samples that are LIKELY under the diffusion model

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 37 /47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

3) Prediction Refinement

(a) Sampling from an energy function

Use overdamped Langevin Monte Carlo (LMC) to sample from this EBM

Y1) = Ya — MVy, Eo (Y03 ¥) +v2mé& and & ~ N(0,1)

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 38 /47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

3) Prediction Refinement

(b) Maximizing the likelihood to find the most likely sequence

- Refinement = regularized optimization of finding the most likely TS that satisfies certain constraints

arg min|— log ps(y) + AR(y, ¥)]
y

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 39 /47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

Goal: Investigate whether “unconditional” TS diffusion model can be employed for downstream tasks
Three tasks

- (Predict) Probabilistic forecast (feat. Self-guidance)

- (Refine) Prediction refinement of base forecasters (feat. probability density learned by TSDiff)

- (Synthesize) Prediction results of downstream forecasters (feat. synthetic samples generated by TSDiff)

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 40/ 47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023) , -

4) Experiments
CRPS (F,y)

Dataset: 8 univariate TS from different domains
Metric: CRPS (Continuous ranked probability score) v
- approximate CRPS by normalized average \ Lo
quantile loss using 100 sample paths /

Table 5: Overview of the benchmark datasets used in our experiments. L

Dataset GluonTS Name Train Size  Test Size  Domain  Freq.  Median Seq. Length ~ Context Length  Prediction Length

-1 +1
Solar solar_nips 137 959 RT H 7009 336 24 Y Y 4
Electricity ~ electricity_nips 370 2590 Rt H 5833 336 24 2
Traffic traffic_nips 963 6741 (0,1) H 4001 336 2 CRPS (F,y) = [ (F(2) — 1{zxy}) dz
Exchange exchange_rate_nips 8 40 Rt D 6071 360 30
M4 m4_hourly 414 414 N H 960 312 48 . . . e . ,
KDDCup kdd_cup_2018_without_missing 270 270 N H 10850 312 48 Vl.sua.hzayon.ofthe CRES. The predicted c.i\strlbutnon is marked in red, and the ground truth’s degenerate
UberTLC uber_tlc_hourly 262 262 N H 4320 336 24 distribution is marked in blue. The CRPS is the (squared) area trapped between the two CDFs. Image by
Wikipedia ~ wiki2000_nips 2000 10000 N D 792 360 30 author.

https://towardsdatascience.com/crps-a-scoring-function-for-bayesian-machine-learning-models-dd55a7a337a8

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting 41/ 47



3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

(Predict) Probabilistic forecast (feat. Self-guidance)

(a) Standard Forecasting

Table 1: Forecasting results on eight benchmark datasets. The best and second best models have been shown as

bold and underlined, respectively.

Method Solar Electricity Traffic Exchange M4 UberTLC KDDCup Wikipedia
Seasonal Naive  0.51240.000 0.069+£0.000  0.22140.000  0.011£0.000  0.048£0.000  0.29910.000  0.561£0.000  0.41040.000
ARIMA 0.5454-0.006 - - 0.008+0.000  0.044+0.001  0.28440.001  0.54740.003 -

ETS 0.611+0.040 0.072+£0.004  0.4334+0.050  0.008+0.000  0.042+0.001  0.4224-0.001  0.753+£0.008  0.7154-0.002
Linear 0.569+0.021 0.0880.008 0.179£0.003  0.0114+0.001  0.039£0.001  0.360£0.023  0.513+0.011  1.624+1.114
DeepAR 0.389+0.001 0.054+0.000  0.09940.001  0.011£0.003  0.052£0.006  0.1614+0.002  0.414+0.027  0.23140.008
MQ-CNN 0.790+0.063 0.067£0.001 - 0.019£0.006  0.0461+0.003  0.436+0.020  0.516+0.012  0.2204-0.001
DeepState 0.37940.002 0.075+£0.004  0.146+0.018  0.0114+0.001  0.041+0.002  0.288+0.087 - 0.31840.019
Transformer 0.4194+0.008 0.076+0.018 0.102£0.002  0.0104+0.000  0.040+0.014  0.1924+0.004  0.41140.021  0.214+0.001
TFT 0.4174£0.023 0.086+0.008 0.134£0.007  0.0074+0.000  0.039+0.001  0.193+0.006  0.58140.053  0.229+£0.006
CsSDI 0.35240.005 0.054+0.000  0.159£0.002  0.0331+0.014  0.040+0.003  0.206+0.002  0.3184-0.002  0.289+0.017
TSDiff-Cond 0.338+0.014 0.050£0.002  0.094+0.003  0.013£0.002  0.039£0.006  0.17240.008  0.754+0.007  0.21840.010
TSDiff-MS 0.39140.003 0.062+0.001 0.116+0.001  0.018+0.003  0.04510.000  0.183£0.007  0.325+0.028  0.25740.001
TSDiff-Q 0.358+0.020 0.049£0.000  0.09840.002  0.011£0.001  0.036+0.001  0.17240.005  0.311£0.026  0.22140.001

Predict, Refine, Synthesize: Self-Guiding Diffusion Models for Probabilistic Time Series Forecasting

TSDiff-Cond: conditional model version
TSDiff-MS: Self-guidance of MSE
TSDiff-Q: Self-guidance of Quantile Loss
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

(Predict) Probabilistic forecast (feat. Self-guidance)

(b) Forecasting with missing values

Table 2: Forecasting with missing values results on six benchmark datasets.

Method Solar Electricity Traffic Exchange UberTLC KDDCup
s TSDiff-Cond  0.357+0.023 0.052+0.001 0.097+£0.003  0.0124+0.004  0.180+£0.015  0.75740.024
& TSDiff-Q 0.387+0.015 0.052+0.001 0.110+£0.004  0.013+0.000  0.183+0.002  0.39740.042
R TSDiff-Cond  0.37740.017 0.049-+0.001 0.094+0.005  0.00940.000  0.181+£0.009  0.69940.009
02._] TSDiff-Q 0.387+0.019 0.051+0.000 0.110£0.006  0.01140.001  0.182+0.004  0.4414-0.096
M TSDiff-Cond  0.376+0.036 0.065+0.003 0.123+0.023  0.0354+0.021  0.179+0.013  0.81940.033
E TSDiff-Q 0.435+0.113 0.068+0.009 0.139+0.013  0.02040.001  0.183+0.005  0.3444-0.012

Missingness: masking 50%

Three scenarios
- (1) random missing (RM)
- (2) blackout missing at the beginning of input (BM-B)
- (3) blackout missing at the end of input (BM-E)

TSDIff-Q performs competitively against task-specific conditional models!

— Robustness w.r.t missing values during inference
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

(Refine) Prediction refinement of base forecasters (feat. probability density learned by TSDiff)

Table 3: Refinement results on eight benchmark datasets. The best and second best settings have been shown as
bold and underlined, respectively. B ase: | n | tl a I fO recas t

Setting Solar Electricity Traffic Exchange M4 UberTLC KDDCup Wikipedia

2 Base 0512:£0.000  0.069+0.000 022140000  0.011£0.000  0.048£0.000  0.299+0.000  0.561£0.000  0.410::0.000 ( meth Od ) |_ M C VS. M |_

S LMC-MS  0480+0.009 005940004  0.1262£0.001  0.013+0.001 004040002  0.186£0.005  0.505+0.027  0.339+0.001

T LMC-Q  0480+0.007 005130001  0.13420.004  0.009:0.000  0.036::0.001  0.204£0.007  0.399:0.003  0357::0.001

§ ML-MS  0489:+£0007 00640006  0.130£0.002  0.015:0.002  0.046::0.003  0.20240.004  0.519:+£0.028  0.349::0.001 .

& ML 0.480:£0.007  0.050:0.001  0.135£0.004  0.009::0.000  0.036::0.001  0215£0.008  0.403£0.003  0.365::0.001 - L M C . La N g evin M on te Ca rl (@)
Base 0569:£0.021  0.088£0.008  0.179£0.003 00110001  0.039:+£0.001  0.360+0.023 05130011 16241114

5 LMC-MS 04940019 00590004  0.113:£0.001 001310001  0040::0.002  0.187+0.007 04580015  1.315+0.992 . . .

g LMCQ 051620020 00550003 011940002  0.009::0.000  0.0341:0.001 02280010  0346::0.010  1.3294:1.002 - .

S ML-MS  0503+0016  0.063+0.005  0.117£0.002  0.015+0.002  0045£0.003 02030007  0.472+0.015  132740.993 M L . M aximum I—I kel I h OOd
ML-Q 052320021  005640.003  0.121£0.003  0.010+£0.001  0.03240.001  0.240:£0010  0350£0.011  1.335£1.002
Base 03890.001  0.05420.000  0.099£0.001 00110003  0.05240.006  0.161:£0.002  0.414+0.027  0.231::0.008 :

% LMCMS  0398+0004  0059+0.004 011120001 001240001 004040002  0.184£0.005  0.469:£0.034 02270002 ( reg u I arize ) M S VS. Q

§ LMCQ 038850002 005340001 01010001  0.010::0.001  0.035:0.001 01610002  0401:£0021  0.22040.005

& ML-MS 040220009 0.064£0.006  0.115£0.002 001420001 00460003 0.198E£0.005 0.47740.034  0.23540.002
ML-Q 0.386::0.002  0.052:0.001  0.099:0.001  0.010:0.002  0.035::0.001  0.1602:0.002  0.401::0.021  0.221::0.006 M S . M S E

5 Base 04190008 00760018  0.1024£0.002  0.010:0.000  0.040::0.014  0.19220.004  0.4110.021  0214::0.001 '

E LMCMS 041520009 00590004 01110001 00130001  0.040£0.002  0.185+0005 04620014  0.22940.003

€ LMC-Q 041510008  0.058:0.003  0.10120.001  0.010::0.000  0.0381:0.006  0.177:£0.005  0.384::0.005  0.211::0.002 .

§ ML-MS  0418£0010 00630005 01150002 00140002 0.046£0.003 01980005 04700014  0.23820.003 - Q : Q ua nt| | e |OSS

& MLQ 0.41320.008  0.0592:0.005  0.09920.001  0.010:£0.000  0.0374:0.006  0.177:£0.005  0.384::0.006  0.210::0.002 :
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

(Synthesize) Prediction results of downstream forecasters (feat. synthetic samples generated by TSDiff)

Q) How to evaluate the quality of generated samples?

A) Several metrics have been proposed ....

Test CRPS of linear (ridge)

regression model trained on

But this paper focuses on “predictive metrics”

-> proposes Linear Predictive Score (LPS)
synthetic samples.
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3. Unconditional Time-series Diffusion Model

TSDiff (NeurlPS 2023)

4) Experiments

(Synthesize) Prediction results of downstream forecasters (feat. synthetic samples generated by TSDiff)

Table 4: Results of forecasters trained on synthetic samples from different generative models on eight benchmark
datasets. Best scores are shown in bold.

Generator Solar Electricity Traffic Exchange M4 UberTLC KDDCup Wikipedia

Real 0.56940.021 0.088+4-0.008 0.1794+0.003  0.011+£0.001 0.03940.001 0.3604+0.023  0.513+0.011 1.624+1.114

§ @ TimeVAE 0.93340.147 0.1284-0.005 0.236+0.010  0.024£0.004  0.074£0.003  0.3544-0.020 1.0204+0.179  0.64340.068

32 TimeGAN 1.140+0.583 0.2344-0.064 0.398+0.092  0.011+0.000  0.140+0.053  0.6654+0.104  0.713£0.009  0.421+0.023
[TSDiff 0.58110.032 0.06510.002 0.164+0.002  0.012£0.001 0.04510.007 _ 0.291£0.084 _ 0.48110.013  0.392F0.013 |

o Real 0.3894-0.001 0.0544-0.000 0.099+0.001 0.0114+0.003  0.052+0.006  0.161+£0.002  0.41440.027  0.23140.008

?3‘ TimeVAE 0.49340.012 0.0604-0.001 0.1554+0.006  0.009£0.000  0.039+£0.010  0.2784+0.009  0.621+0.003  0.440+0.012

é’ TimeGAN 0.97640.739 0.18340.036 0.419+0.122  0.008+0.001  0.121+£0.035  0.59440.125  0.690+0.091 0.32240.048

TSDiff 0.478 +0.007 0.058+-0.001 0.12940.003  0.017+0.009  0.042+0.024  0.191+0.018  0.378+0.012  0.222+0.005

Real 0.4194-0.008 0.07640.018 0.1024+0.002  0.010£0.000  0.040+0.014  0.1924+0.004  0.411£0.021 0.21440.001

o

§ TimeVAE 0.5204-0.030 0.0714:0.009 0.163+0.018  0.011+£0.001 0.03540.011 0.2914+0.008  0.71740.181 0.45140.017

=l TimeGAN 0.9724-0.687 0.1824-0.008 0.413+0.204  0.009£0.001  0.114+0.052  0.6851+0.448  0.632+0.016  0.314£0.045

TSDiff 0.4574-0.008 0.056+0.001 0.1431+0.020  0.030+0.021 0.030+0.008  0.225+0.055  0.356+0.030  0.239+0.010
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Even performs better than the

model trained with REAL data!
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4. Conclusion

- Diffusion model with TS has not been widely explored yet.
( Most of the work has been done in computer vision domain )

- All the previous works (except for TSDiff) uses “conditional” diffusion model
- “Unconditional” diffusion model is task-agnostic, imposing condition during inference
- Future work: develop unconditional TS diffusion model...

- with model architecture tailored for TS data

(i.e. Temporal dependency, Time series decomposition)
- with noise scheduling tailored for TS data

(i.e. exploring ACF(auto-correlation function) )
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