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. Preliminaries: Self-Supervised Learning

Contrastive Learning (CL)
define positive & negative pairs

Key concept
- make similar pair ( = positive pair ) close

- make dissimilar pair ( = negative pair ) far
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1. Preliminaries: Self-Supervised Learning

’il iz ’x:W
. 1 X € R™: model estimate
2. Masked Modeling (MM)
. zy 7p Zw
- step 1) randomly mask certain parts Transformer Encoder
- step 2) reconstruct the masked parts
[ Input encoding
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MLM (Masked Language Modeling) MIM (Masked Image Modeling) MTM (Masked Time-Series Modeling)
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3. CL+MIM

M (i, V17) = & S, ~log et/

i exp (viv] /T)+3,—cy - exp(vi-v; /7)
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e VV ":pool of negative features

e N :number of samples Contrastive Learning

‘c (2137;, M) — % Zf\il D (d (f (M:EZ))7 :U’L) Masked Modeling
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3. CL+MIM

- Simple approach : solve both tasks!

- Final Loss = Loss of CL + Loss of MIM
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RePre: Improving Self-Supervised Vision Transformer with Reconstructive Pre-training

Pixel Decoder

Online
Encoder Reconstruction
Feature : Loss
Decoder
Contrastive
Target Projection Loss
Encoder Head

3 —
Pixel-shifted View =

Contrastive Masked Autoencoders are Stronger Vision Learners

Mask, augment Gaussian noise Replace masked patches Reconstruct
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CAN: A Simple, Efficient and Scalable CMAE framework for learning Visual Representations
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2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining:

Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient Representations

Naively combining CL & MIM is far from success !
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2. (Paper 1) Layer Grafted Pretraining

Abstract

- Naive joint optimization of CL and MIM losses leads to conflicting gradient directions
( more severe as the layers go deeper )
- MIMvs CL
- MIM are suitable to LOWER layers
- CL are suitable to HIGHER layers

- Propose a simple way to combine CL & MIM : Layer Grafted Pre-training
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Q1) CL and MIM complementary to each other, how to combine?

- simple way : multiple task learning (MTL) & jointly optimize the two losses
-> such a vanilla combination FAILS to improve over either baseline

( often compromising the single loss’s performance )
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Q2) If the two losses conflict, how about placing them differently?

- Lower layers : learn better from the MIM loss
- in order to capture local spatial details
- Higher layers : benefit more from the CL loss

- in order to learn semantically-aware grouping and invariance

propose a simple MIM — CL Grafting idea to combine the bests of both worlds
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1. Conflicts with CL & MTM

( Simple Idea ) Multi-Task Learning (MTL) combination

- step 1) images are augmented twice for computing the CL loss
- step 2) image with minimal augmentation is utilized for computing MIM loss following MAE

( two losses share the same encoder )
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2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

Table 1: Illustration of preliminary study experiments’ performance on ViT-B/16. Linear, 1% and
Fine-tuning denote linear evaluation, 1% few-shot and fine-tuning performance, respectively. The
performance of MIM and CL are from MAE (He et al.,[2021) and MocoV3 (Chen et al., 2021), re-
spectively. MTL combination denotes the Muti-Task Learning (MTL) Combination of MIM and CL.
MTL combination is pretrained for 300 epochs. For step 1 of MIM—CL and CL—+MIM Grafting,
we directly adopt the pre-trained model of MAE and MoCo V3, respectively. Step 2 of MIM—CL

and CL—+MIM Grafting is trained for 100 epochs.

Method Linear 1% Fine-tuning
MIM (MAE) 68.0 51.1 83.6
CL (Moco V3) 76.7 63.4 83.2
MTL combination 68.4 47.6 81.0
CL—MIM Grafting 65.5 325 82.5
MIM—CL Grafting 74.5 56.5 83.6

- minor performance improvement of 0.4%
on linear evaluation compared to the MIM baseline

- still much lower that the CL baseline ( 76.7 > 68.4 )

- even inferior on both 1% few-shot and fine-tuning
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1. Conflicts with CL & MTM

MTL is the cause of the bad performance ! 025 1— — T |
0.10 +—1 1 i . ]
g o051 l H !
To verify it, design a gradient surgery experiment 0'00 % ----- -- %%_I_ n B % $
using cosine similarity between gradients of two tasks ~0.05 44—+ | A r—
—-0.10 4— . - - - 1 s
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N O AR R N N
CMIM CL (ZU) o VQLMIM(:L')T VGLCL(.’.C) Block Index
_ b Fi 1: The box plot of C different blocks for MTL bination of MIM and CL.
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The red dash line indicates the linear regression of median numbers.
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2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

MTL is the cause of the bad performance !

Findings

* (1) always exist negative values for Cymv,cr (),

Figure 1: The box plot of Cvm,cL(z) across different blocks for MTL combination of MIM and CL.
This is measured on training datasets when the network is trained to 100 epochs (total 300 epochs).
The red dash line indicates the linear regression of median numbers.

(= where the MIM and CL are optimized in opposite directions)

® (2) gradient direction varies across layers

(+ more severe as layers go deeper)
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2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

MTL is the cause of the bad performance !

Two losses' contradictory targets

- (1) MIM loss : requires that the reconstruction have the same brightness, color distribution, and
positions as the input image
-> the model needs to be sensitive to all these augmentations.

- (2) CL loss : designed to ensure that the model remains invariant regardless of different

augmentations
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2. (Paper 1) Layer Grafted Pretraining
2. Solving by Separating

If two losses conflicts ... how about placing them differently?
Recent empirical evidence suggests that CL and MIM may differ in...

1.  Key of MIM = Lower layer
- When only the pre-trained lower layers are retained (while the higher layers are reset to random initialization),
most of the gain is still preserved for downstream fine-tuning tasks. ( Wang et al. (2022c) )
2. Key of CL = HIGHER layer
- Ineffective and even unstable for training the projection layer ( = the earliest/lower layer of ViT )

- Fixing its weight to be random initialization can even yield significantly higher performance! ( Chen et al. (2021) )
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2. Solving by Separating

Propose a simple MIM—CL Grafting framework ( two steps )

- step 1) lower layers are first trained with MIM and then fixed

- step 2) higher layers continue to learn with CL

Method Linear 1% Fine-tuning
MIM (MAE) 68.0 al.1 83.6
CL (Moco V3) 76.7 63.4 83.2
MTL combination 68.4 47.6 81.0
CL—MIM Grafting 65.5 325 82.5
MIM—CL Grafting 74.5 56.5 83.6

Step 1

Step 2

MIM—> CL Grafting

I
I
MIM loss

|
|
CL loss |
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2. Solving by Separating

What if we reverse it? ( = CL—>MIM Grafting framework )

- Worsens! Huge gap between CL—-MIM and MIM—CL Grafting

-> confirms the preference of MIM/CL towards lower/higher layers

Method Linear 1% Fine-tuning
MIM (MAE) 68.0 al.1 83.6
CL (Moco V3) 76.7 63.4 83.2
MTI. combination 684 476 81.0
CL—MIM Grafting 65.5 325 82.5
“MIM—CL Gratting 4.5 56.5 33.0

CL— MIM Grafting

~ CLloss |

MIM loss
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3. Layer Grafted Pre-training

Smooth out the boundary of “MIM—CL grafting” to avoid a sudden change in the feature space.

MIM—> CL Grafting CL— MIM Grafting Layer Grafted Pre-training

-> rather than fixing the lower layers, 7 o

we assign them a small learning rate sep1 — H o> — D—»

v v %7

Step2 —— H —-)% S H H —>s JE— 4 L
S IR || S

Learning Rate Decay

MIM loss

=

CL loss
|
1

MIM loss

\
\
|
\

Figure 2: The pipelines of the MIM—CL, CL—+MIM Grafting, and Layer Grafted Pre-training. The
former two are employed for preliminary experiments. The latter one is the final adopt pipeline,
which is the ‘smooth out’ version of MIM—CL Grafting.
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4. Experiments

LR search Layer Grafted Pre-Training

- The preference for larger LR for higher layers = benefit by performing CL

Accuracy %
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3. (Paper 2) ConMIM

1. CL vs MIM

- Both attempt to learn discriminative visual representations via “dictionary look-up”
- Difference?
- CL : instance-level dictionary look-up

- MIM : patch-level dictionary look-up

] ————— Fm———————— patch-level
instance-level I 'y o
e \ 1 off-the-shelf ! static dictionary
dynamic dictionary H - R S
ey e : b tokenizer ! ___L__\
: : e R s—
I | m— masking | | —
> | '—
Lt " )  —
{— I'H vit ==
\ . 1
N 1
denoising :\:];
(a) conventional contrastive learning (b) conventional masked image modeling
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3. (Paper 2) ConMIM

1. CL vs MIM

Two factors lead to SOTA of MIM
- (1) More “fine-grained” supervision ( instance level -> patch-level )
- (2) Denoising auto-encoding mechanism

- encourages the capability of backbone network to capture “contextualized representations”

Lonim (@) = Ejent [~ logp (5 | £()5)].
= M : the set of masked patch indices
= 7 :corrupted image after randomly masking

= y;: positive key index in the patch-level dictionary

= p(- | -) : the probability that correctly identifies the recovered patch f(&); with a patch index of j.
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2. Image Tokenizers of MIM

efforts to design “patch-level” dictionaries ( = image tokenizers ) for MIM

- [BEIiT] tokenize high-dimensional images into discrete vision tokens by a discrete VAE
- [mc-BEiT] introduces eased and refined dictionaries with multiple choices.

- [PeCo] proposes to produce perceptual-aware keys in the patch-level dictionary

Still ..... these methods all require extra training stages

( even extra data for obtaining a proper image tokenizer )
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3. (Paper 2) ConMIM

2. Image Tokenizers of MIM

extra training needed to learn this tokenizer!

/

Visual Tokens Unused E_)L]ring Reconstructed
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[BEIT] tokenize high-dimensional images into discrete vision tokens by a discrete VAE
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3. (Paper 2) ConMIM

2. Image Tokenizers of MIM

efforts to design “patch-level” dictionaries ( = image tokenizers ) for MIM

- [BEIiT] tokenize high-dimensional images into discrete vision tokens by a discrete VAE
- [mc-BEiT] introduces eased and refined dictionaries with multiple choices.

- [PeCo] proposes to produce perceptual-aware keys in the patch-level dictionary

Still ..... these methods all require extra training stages

( even extra data for obtaining a proper image tokenizer )
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3. (Paper 2) ConMIM

2. Image Tokenizers of MIM

=]
©
S

target

- iBOT (Zhou et al., 2022) : a self-distillation task

-
Tokenizer-free MIM methods : cast MIM as .... EESEE = [ [ dm| o
[ 1] P [ 4 [ S
..-. —>.‘ encoder —>  |decoder —>....
- MAE (He et al., 2022) : a pixel-level reconstruction task ===== =====
— W
Y

rather than dictionary look-up

Masked Auto Encoder (MAE)

-> fail to achieve competitive results & unsatisfactorily on small-scale architectures
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3. ConMIM

proposes ConMIM, to perform MIM with denoising contrastive objectives

- Use CLin MIM! ( CL = good capability to structure the latent space for SSL )

- do not need pre-learned image tokenizers
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3. ConMIM

(a) Patch-level Dynamic Dictionary

build dynamic patch-level dictionaries
Procedure: ( during each training iteration ...)

e 1 :fedinto backbone to embed the patch feature representations
— serve as keys in the dynamic dictionary, i.e., { f(z); |fi1}
o 4 : patchindex
o K :dictionary size
(as well as the total number of patches within an image )
o ex) K=196 keys for a 224 x 224 image with a patch size of 16 x 16
® build separate dictionaries for each image

(= only operate patch-level dictionary look-up within each image )

x : fullimage

Z : corrupted image

asymmetric #1:
image perturbations

LR

NES
S, AN
< 1

&
&

masking
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model progress rates

Slowly Progressing

Vision Transformer

patch-level
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Vision Transformer
(e.g., ViT-Base)

denoising

14
recovered
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3. (Paper 2) ConMIM

3.

ConMIM

(b) Denoising Contrastive Loss

Procedure

[e]

% is fed into the backbone .... f(Z);,7 € M.

backbone : trained to denoise the corrupted image

masked patch recovery :

regularized by a patch-level dictionary look-up ( InfoNCE form)

exp((f(&),,s8[f(x);])/7)
Yy exp((£f(2);self(z)i])/7) |

only backpropagate the gradients of f(&)

= Econmim (m) = IE_7'6/\/1 - ].Og

x : fullimage

Z : corrupted image

asymmetric #1:
image perturbations

masking

{
1 2
..t Slowly Progressing

asymmetric #2:
model progress rates

Vision Transformer

Vision Transformer | .
(e.g., ViT-Base)

denoising

patch-level
dynamic dictionary

y
— 1
—

:]4
recovered

patch features

contrastive los

(.- backpropagating the gradients of f(x) may lead to information leakage )
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x : fullimage

Z : corrupted image

3. ConMIM
asymmetric #1: asymmetric #2:
image perturbations model progress rates patch-level
(c) Asymmetric Designs I:'Lg e i o
L —— ______; Slowly Progressing ‘E I:
‘b& .." "}k \  Vision Transformer ! _l'—'
’}@‘t// ENEAE e _I“
Patches ? . e 1CE .
; i contrastive losg
- small-scale inputs with less useful information TR I.d!.|l=l S S
% \\ - t
. . % Vision Transformer .
- highly redundant semantics —- i
. . - . . denoising recovered
masking patch features

-> need to make pre-training task more challenging!

MAE (He et al., 2022) : proposes to mask a large proportion of patches
ConMIM (proposed) : further introduce two asymmetric designs to enable a stronger denoising regularization
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3. ConMIM

(c) Asymmetric Designs

(1) Asymmetric image perturbations
o adopt different data augmentations for the x and &

( stronger augmentations for )

x : fullimage

Z : corrupted image

asymmetric #1:

image perturbation)

&

patch-level
dynamic dictionary

i
— 1
—
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3. ConMIM

instance-level
dynamic dictionary

_______

(a) conventional contrastive learning

Fm=-- pe===m———a- . patch-level
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i 11 tokenizer 'y

o GELILEEEEEE R ‘—
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(b) conventional masked image modeling

patch-level
dynamic dictionary
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R ) s—
1 7 ’ \——1

A AL I A = B/ N e =1
e 5 1
masking denoising | —;

(c) masked image modeling with denoising contrast

Figure 1: Conventional contrastive learning methods (e.g., MoCo (He et al., 2020), SimCLR (Chen
et al.,2020)) and masked image modeling methods (e.g., BEiT (Bao et al., 2022), PeCo (Dong et al.,
2021)) both perform the pretext task of vision dictionary look-up, where the superiority of the latter
ones lie in the patch-level denoising auto-encoding mechanism to enable fine-grained visual context
understandinlg of vision Transformers (Dosovitskiy et al., 2021). We introduce to cast masked image
modeling as denoising contrastive learning to avoid the extra training stages of image tokenizer,
rendering a flexible, simple and effective pre-training paradigm.
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3. (Paper 2) ConMIM AT

Algorithm 1 Pseudocode of ConMIM pre-trail m‘
PN 1
3. ConMIM KR

backbone encoder, e.g., vit-base model

Ly
(g
NP,

Vision Transformer !
(e.g., ViT-Base)

# f:
# t: temperature, \tau in the paper
# m: momentum, \alpha in the paper denoising recovered

PseudoCode

f slow.params = f.params # initialize
for (x, mask) in loader: # load a mini-batch x with N samples

# image preprocess with asymmetric perturbations

X = aug_basic(x) # share same basic aug for paired inputs

x_full = aug_strong(x)

x_corrupted = xx* (l-mask)+mask_token.expand_as (x) *mask # randomly mask 75% patches

# build patch-level dynamic dictionaries with asymmetric models
with torch.no_grad() :

keys = f_slow(x_full) # NxKxD, K is the number of patches
feats = f(x_corrupted) # NxKxD

# dictionary look-up with denoising contrastive loss (Eq. (3))

sim = bmm(feats.view(N,K,D), keys.view(N,D,K)).view(-1,K) # (NxK)=xK
labels = range (K) .repeat (N) # (NxK)

mask = mask.view(-1) # (NxK)

loss = CrossEntropyLoss(sim[mask]/t, labels[mask])

# update model

loss.backward()

update (f.params)

f _slow.params = (1-m)xf.params+m+f_slow.params

bmm: batch matrix multiplication
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4. Experiments

Models ImageNet Acc.
DeiT-B (training from scratch) 81.8
MoCo v3 (conventional contrastive learning) 83.2
ConMIM (Ours) 83.51
denoising patch-level contrast — vanilla instance-level contrast . 82.26 (-1.25%)
denoising patch-level contrast — vanilla patch-level contrast fail
Table 6: Ablation studies on the effect of denoising auto-encx@in mechanism.

use average local tokens to perform instance-level contrastive loss

Models ImageNet Acc. \
DeiT-B (training from scratch) 81.8
ConMIM (Ours) 83.51 . C L .

w/0 asymmetric image perturbations, use stronger one  83.41 (-0.10%) totally fails due to the trivial information leakage

w/0 asymmetric image perturbations, use basic one 83.35 (-0.16%)

w/ asymmetric image perturbations but switch 82.62 (-0.89%)

w/o asymmetric model progress rates 81.53 (-1.98%)

Table 8: Ablation studies on the effect of asymmetric designs.




