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1. Preliminaries: Self-Supervised Learning

1. Contrastive Learning (CL)
- define positive & negative pairs

- Key concept

- make similar pair ( = positive pair ) close

- make dissimilar pair ( = negative pair ) far



1. Preliminaries: Self-Supervised Learning

 2.    Masked Modeling (MM)

- step 1) randomly mask certain parts

- step 2) reconstruct the masked parts

MLM (Masked Language Modeling) MIM (Masked Image Modeling) MTM (Masked Time-Series Modeling)
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 3.    CL + MIM

Contrastive Learning

Masked Modeling



1. Preliminaries: Self-Supervised Learning

 3.    CL + MIM

- Simple approach : solve both tasks!

- Final Loss = Loss of CL + Loss of MIM

RePre: Improving Self-Supervised Vision Transformer with Reconstructive Pre-training

Contrastive Masked Auto 
Encoders are Strong 
Vision Learners

CAN: A Simple, Efficient and Scalable CMAE framework for learning Visual Representations

Contrastive Masked Autoencoders are Stronger Vision Learners
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2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining: 

Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient Representations

Naively combining CL & MIM is far from success !

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

Abstract

- Naive joint optimization of CL and MIM losses leads to conflicting gradient directions 

( more severe as the layers go deeper )

- MIM vs CL

- MIM are suitable to LOWER layers

- CL are suitable to HIGHER layers

- Propose a simple way to combine CL & MIM : Layer Grafted Pre-training

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



Q1) CL and MIM complementary to each other, how to combine?

- simple way : multiple task learning (MTL) & jointly optimize the two losses

-> such a vanilla combination FAILS to improve over either baseline

( often compromising the single loss’s performance )

2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

Q2) If the two losses conflict, how about placing them differently?  

- Lower layers : learn better from the MIM loss 

- in order to capture local spatial details

- Higher layers : benefit more from the CL loss 

- in order to learn semantically-aware grouping and invariance

propose a simple MIM → CL Grafting idea to combine the bests of both worlds

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

( Simple Idea ) Multi-Task Learning (MTL) combination

- step 1) images are augmented twice for computing the CL loss

- step 2)  image with minimal augmentation is  utilized for computing MIM loss following MAE

( two losses share the same encoder )

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

- minor performance improvement of 0.4% 
on linear evaluation compared to the MIM baseline 

- still much lower that the CL baseline ( 76.7 > 68.4 )

- even inferior on both 1% few-shot and fine-tuning

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

MTL is the cause of the bad performance !

To verify it, design a gradient surgery experiment 

using cosine similarity between gradients of two tasks

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations
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2. (Paper 1) Layer Grafted Pretraining

1. Conflicts with CL & MTM

MTL is the cause of the bad performance !

Two losses' contradictory targets

- (1) MIM loss : requires that the reconstruction have the same brightness, color distribution, and 

positions as the input image

-> the model needs to be sensitive to all these augmentations.

- (2) CL loss : designed to ensure that the model remains invariant regardless of different 

augmentations

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. (Paper 1) Layer Grafted Pretraining

2. Solving by Separating

If two losses conflicts … how about placing them differently?

Recent empirical evidence suggests that CL and MIM may differ in…

1. Key of MIM = Lower layer

- When only the pre-trained lower layers are retained (while the higher layers are reset to random initialization), 

most of the gain is still preserved for downstream fine-tuning tasks. ( Wang et al. (2022c) )

2. Key of CL = HIGHER layer

- Ineffective and even unstable for training the projection layer ( = the earliest/lower layer of ViT ) 

- Fixing its weight to be random initialization can even yield significantly higher performance! ( Chen et al. (2021) )

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



2. Solving by Separating

Propose a simple MIM→CL Grafting framework ( two steps )

- step 1) lower layers are first trained with MIM and then fixed

- step 2) higher layers continue to learn with CL

2. (Paper 1) Layer Grafted Pretraining
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2. Solving by Separating

What if we reverse it? ( = CL→MIM Grafting framework )

- Worsens! Huge gap between CL→MIM and MIM→CL Grafting 

-> confirms the preference of MIM/CL towards lower/higher layers

2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



3. Layer Grafted Pre-training

Smooth out the boundary of “MIM→CL grafting” to avoid a sudden change in the feature space.

-> rather than fixing the lower layers, 

we assign them a small learning rate

2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations



4. Experiments
LR search Layer Grafted Pre-Training

- The preference for larger LR for higher layers = benefit by performing CL

2. (Paper 1) Layer Grafted Pretraining

Layer Grafted Pretraining: Bridging Contrastive Learning and Masked Image Modeling for Label-Efficient 

Representations
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3. (Paper 2) ConMIM

 1.    CL vs MIM

- Both attempt to learn discriminative visual representations via “dictionary look-up”

- Difference?

- CL : instance-level dictionary look-up

- MIM : patch-level dictionary look-up

Masked Image Modeling with Denoising Contrast



3. (Paper 2) ConMIM

 1.    CL vs MIM

Two factors lead to SOTA of MIM 

- (1) More “fine-grained” supervision ( instance level -> patch-level )

- (2) Denoising auto-encoding mechanism

- encourages the capability of backbone network to capture “contextualized representations”

Masked Image Modeling with Denoising Contrast



 2.    Image Tokenizers of MIM

efforts to design “patch-level” dictionaries ( = image tokenizers ) for MIM

- [BEiT] tokenize high-dimensional images into discrete vision tokens by a discrete VAE

- [mc-BEiT] introduces eased and refined dictionaries with multiple choices.

- [PeCo] proposes to produce perceptual-aware keys in the patch-level dictionary

Still ..... these methods all require extra training stages 

( even extra data for obtaining a proper image tokenizer )

3. (Paper 2) ConMIM
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 2.    Image Tokenizers of MIM

[BEiT] tokenize high-dimensional images into discrete vision tokens by a discrete VAE

3. (Paper 2) ConMIM

extra training needed to learn this tokenizer!
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 2.    Image Tokenizers of MIM

Tokenizer-free MIM methods : cast MIM as  ....

- MAE (He et al., 2022) : a pixel-level reconstruction task

- iBOT (Zhou et al., 2022) : a self-distillation task

rather than dictionary look-up

-> fail to achieve competitive results &  unsatisfactorily on small-scale architectures

3. (Paper 2) ConMIM

Masked Auto Encoder (MAE)

Masked Image Modeling with Denoising Contrast



 3.    ConMIM

proposes ConMIM, to perform MIM with denoising contrastive objectives 

- Use CL in MIM !  ( CL = good capability to structure the latent space for SSL )

- do not need pre-learned image tokenizers

3. (Paper 2) ConMIM

Masked Image Modeling with Denoising Contrast



 3.    ConMIM

(a) Patch-level Dynamic Dictionary

build dynamic patch-level dictionaries

3. (Paper 2) ConMIM

Masked Image Modeling with Denoising Contrast



 3.    ConMIM

(b) Denoising Contrastive Loss

3. (Paper 2) ConMIM

Masked Image Modeling with Denoising Contrast



Patches ?

- small-scale inputs with less useful information

- highly redundant semantics

-> need to make pre-training task more challenging!

- MAE (He et al., 2022) : proposes to mask a large proportion of patches

- ConMIM (proposed) : further introduce two asymmetric designs to enable a stronger denoising regularization 

 3.    ConMIM

(c) Asymmetric Designs

3. (Paper 2) ConMIM
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 3.    ConMIM

(c) Asymmetric Designs
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 3.    ConMIM
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 3.    ConMIM

PseudoCode

3. (Paper 2) ConMIM
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 4.    Experiments

3. (Paper 2) ConMIM

Masked Image Modeling with Denoising Contrast

use average local tokens to perform instance-level contrastive loss

totally fails due to the trivial information leakage 


