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TabDDPM: Modelling Tabular Data with Diffusion Models

1. TabDDPM (ICML 2023)

( hittps://arxiv.org/pdf/2209.15421 )

DDPM for Tabular
Tabular data = Heterogeneous features => Challenging
Numeric & Categorical

o Numeric: Gaussian Quantile Transformation

o Categorical: Each categorical feature is handled separately
Model: (Reverse step) MLP


https://arxiv.org/pdf/2209.15421

TabDDPM: Modelling Tabular Data with Diffusion Models

1. TabDDPM (ICML 2023)

Figure 1. TabDDPM scheme for classification problems; ¢, y and £ denote a diffusion timestep, a class label, and logits, respectively
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TabDDPM: Modelling Tabular Data with Diffusion Models

1. TabDDPM (ICML 2023)

Table 4. The values of machine learning efficiency computed w.r.t. five weak classification/regression models. Negative
scores denote negative R2, which means that performance is worse than an optimal constant prediction.

AB (r2) AD (r1) BU (1) CA (r2) CAR (F1) CH (r1) DE (r1) DI (r1)
TVAE 0.238+.012 0.742+.001 0.779+.004 —13.0+1.51 0.693+.002 0.684+.003 0.643+.003 0.712+.010
CTABGAN - 0.737+.007 0.786+.008 - 0.684+.003 0.636+.010 0.614+.007 0.655+.015
CTABGAN+ 0.316+.024 0.730+.007 0.837+.006 —7.59+.645 0.708+.002 0.650+.008 0.648+.008 0.727+.023
SMOTE 0.400+.009 0.750+.004 0.842+.003 0.667+.006 0.693+.001 0.690+.003 0.649+.003 0.677+.013
TabDDPM 0.392:.009 0.758:.005 0.851:.003 0.695+.002 0.696+.000 0.693+.003 0.659+.003 0.675+.011
Real 0.423+.009 0.750+.006 0.845+.004 0.663+.002 0.683+.002 0.679+.003 0.648+.003 0.699+.012

FB (r2) GE (r1) HI (r1) HO (r2) IN (r2) KI (r2) MI (F1) WI (r1)
TVAE <0 0.372+.006 0.590+.004 0.174+.012 0.470+.024 0.666+.006 0.880+.002 0.497+.001
CTABGAN - 0.339+.009 0.539+.006 - - - 0.856+.003 0.656+.011
CTABGAN+ <0 0.373+.009 0.598+.004 0.222+.042 0.669+.018 0.197+.051 0.867+.002 0.653+.027
SMOTE 0.651+.002 0.478+.005 0.664+.003 0.394 +.006 0.709+.008 0.751+.005 0.860+.001 0.793+.004
TabDDPM 0.527+.005 0.462+.005 0.670+.002 0.426+.007 0.734+.007 0.611+.013 0.850+.004 0.7924+.004
Real 0.645+.005 0.431+.005 0.663+.002 0.415+.007 0.708+.007 0.768+.013 0.850+.004 0.684 +.004




STaSy: Score-based Tabular Data Synthesis (ICLR 2023)

2. STaSy (ICLR 2023)

( https://arxiv.org/pdf/2210.04018 )

—— Naive-STaSy
— STaSy

Frequency

e Score-based Tabular data Synthesis (STaSy)

Loss

e [1] Self-paced learning (SPL) Figure 1: Distributions of denoising
score matching loss in Shoppers

o In order to alleviate the training difficulty
o Curriculum learning to select training records in a meaningful order (easy -> hard)
o "Learnable" selection importance

e [2] Fine-tuning strategy

o Reverse SDE process: Probability flow (Song et al.,) -> Exact likelihood calculation

o Fine-tune based on the exact log-probability (low prob samples = harder samples)


https://arxiv.org/pdf/2210.04018

STaSy: Score-based Tabular Data Synthesis (ICLR 2023)

2. STaSy (ICLR 2023)

Algorithm 1: How to train STaSy
1 Initialize 0, v
/* Train SGM based on our SPL training strategy * /
2 for each mini-batch of records do
Update 0 after fixing v with Equation 7
Update v with Equation 9
Update « and 3 with the control method in Appendix D
/* Fine-tune the trained model using log-probability ki
6 7; + logp(x;)
7 F + {x;|log p(x;), where x; € D, is smaller than the average (or median) log-probability. }
s for each fine-tune epoch do

3
4
5

9 for each x; € F do 1, ifl; < Q(a),
10 Update 8 with Equation 6 . 0, ifl; > Q(B),
1 F +— {x;|logp(x;) < 73} V; = 4 L &
12 return 0 i — Q(P) , otherwise.

L Q(a) — Q(B)




CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis (ICML 2023)

3. CoDI (ICML 2023)

( https://arxiv.org/pdf/2304.12654 )

e Tabular diffusion model
e Difficulty in modeling discrete variables

e [1] Architecture

o Process continuous and discrete variables separately by two diffusion models
(but being conditioned on each other)
o Two models are co-evolved
e [2]CL

o To further bind the two diffusion models, introduce CL with negative sampling


https://arxiv.org/pdf/2304.12654

CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis (ICML 2023)

3.CoD

| (ICML 2023)
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CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis (ICML 2023)

3. CoDI (ICML 2023)
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Figure 4: How to define the negative conditions. We ran-
domly permute the continuous and discrete variable sets
while maintaining their internal pairs and therefore, the
inter-variable correlation does not make sense, i.e., they are
not appropriate counterparts to each other.

Figure 1: Preliminary experiment on a toy dataset. The
dataset contains 4 columns, which are two continuous (the
x-axis and y-axis) and two discrete (16 colors and 4 circles)
columns. (Left) is a scatter plot of real data, (Bottom) is
synthesized data by STaSy (Kim et al., 2022a), and (Right)
is synthesized data by our proposed method. Detailed infor-
mation and visualizations are in Appendix A.



CoDi: Co-evolving Contrastive Diffusion Models for Mixed-type Tabular Synthesis (ICML 2023)

3. CoDI (ICML 2023)

Algorithm 1 Training

Algorithm 2 Sampling

Initialize 0~ and 0p

repeat
x5 ~ q(x§), x§ ~ q(x),t ~U{1,...
Compute Lp;g. (f¢c) and Lp;ig,, (6p)
Make negative conditions x5 ~ and x§ ~

Generate positive samples x5 * and %5+
C

Generate negative samples X, and X,
Compute Lcr,, (0¢) and Ly, (6p)
Lc(0c) < Lpige (0c) + AcLoLc (8c)
Lp(0p) < Lpig, (0p) + ApLcry (0p)
Update 6¢ and 6p

until converged

%G ~ p(x%), %2 ~ p(xR)

for:=1T,...,1do

T}) A A A
’ X1~ poo (R4 %9, %))
Xi—1 ~ Pop (xz’—1|xi y X5 )
end for

&C =D
return x;', X;




Revisiting Pretraining Objectives for Tabular Deep Learning (ICLR 2023 reject)

4. Revisiting Pretraining Objectives ~ (arxiv 2023)

( https://arxiv.org/pdf/2207.03208 )

e Unlike ML, DL can additionally benefit from pretraining!
o Nonetheless, not entirely clear if pretraining provides consistent noticeable
improvements in tabular DL!
e Goal: Aim to identify the best practices to pretrain tabular DL models
e Findings:
o (1) Use the object target labels during the pretraining stage!

o (2) Properly performed pretraining significantly increases the performance!


https://arxiv.org/pdf/2207.03208

Revisiting Pretraining Objectives for Tabular Deep Learning (ICLR 2023 reject)
4. Revisiting Pretraining Objectives ~ (arxiv 2023)

e Experiments 1) Pretraining objectives

o (1) Contrastive is not superior
o (2) Pretraining is beneficial for the SoTA models
o (3) No universal solution between self-prediction objectives ( rec vs. mm )

e Experiments 2) Target-aware pretraining objectives

o (1) Supervised loss with augmentations is another strong baseline for MLP
o (2) Target-aware objectives demonstrate the best performance

e Summary: (Standard) pretraining + Target-aware pretraining is the best



Revisiting Pretraining Objectives for Tabular Deep Learning (ICLR 2023 reject)

4. Revisiting Pretraining Objectives ~ (arxiv 2023)

GE? CHT CA] HO| OT] HIT FB| AD{ WE| CO1 MI|
MLP

no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749
contrastive 0.672 0.855 0.455 3.056 0.469 0.813 5.697 0.910 1.881 0.960 0.748

rec 0.662 0.853 0.445 3.044 0.466 0.805 5.641 0.910 1.875 0.965 0.746
mask 0.691 0.857 0.454 3.113 0.472 0.814 5.681 0.912 1.883 0.964 0.748
MLP-PLR
no pretraining 0.668 0.858 0.469 3.008 0.483 0.809 5.608 0.926 1.890 0.969 0.746
rec 0.667 0.852 0.439 3.031 0.472 0.808 5.571 0.926 1.877 0.971 0.745
mask 0.685 0.863 0.434 3.007 0.477 0.818 5.586 0.927 1.911 0.970 0.748
MLP-T-LR
no pretraining 0.634 0.866 0.444 3.113 0.482 0.805 5.520 0.925 1.897 0.968 0.749
rec 0.652 0.857 0.424 3.109 0.472 0.808 5.363 0.924 1.861 0.969 0.746

mask 0.654 0.868 0.424 3.045 0.472 0.818 5.544 0.926 1.916 0.969 0.748




Revisiting Pretraining Objectives for Tabular Deep Learning (ICLR 2023 reject)

4. Revisiting Pretraining Objectives ~ (arxiv 2023)

GE? CHt CA| HO| OT| HIt FB| ADt WE| CO? MI| |Avg Rank

MLP
no pretraining 0.635 0.849 0.506 3.156 0.479 0.801 5.737 0.908 1.909 0.963 0.749 | 5.5+ 1.4
mask 0.691 0.857 0.454 3.113 0.472 0.814 5.681 0.912 1.883 0.964 0.748 3.8+ 1.4
rec 0.662 0.853 0.445 3.044 0.466 0.805 5.641 0.910 1.875 0.965 0.746 | 3.6 1.5
sup 0.693 0.856 0.441 3.077 0.459 0.814 5.689 0.914 1.883 0.968 0.748 | 3.0+ 1.0

mask + target 0.683 0.857 0.434 3.056 0.468 0.819 5.633 0.914 1.876 0.965 0.748|2.9 £+ 1.3
rec +target  0.659 0.853 0.454 3.044 0.463 0.806 5.636 0.909 1.884 0.965 0.745| 3.7 £ 1.9
mask +sup  0.693 0.857 0.436 3.099 0.458 0.817 5.685 0.915 1.873 0.967 0.748 | 2.7 +1.2
rec + sup 0.684 0.854 0.436 3.012 0.456 0.815 5.672 0.911 1.862 0.967 0.747|2.6 £ 1.5

MLP-PLR
no pretraining 0.668 0.858 0.469 3.008 0.483 0.809 5.608 0.926 1.890 0.969 0.746 | 3.5 £ 1.7
mask 0.685 0.863 0.434 3.007 0.477 0.818 5.586 0.927 1.911 0.970 0.748 | 2.8 £1.7
rec 0.667 0.852 0.439 3.031 0.472 0.808 5.571 0.926 1.877 0.971 0.745| 2.6 = 1.2
sup 0.710 0.859 0.433 3.136 0.479 0.811 5.521 0.924 1.873 0.971 0.748 | 2.5+ 1.2

mask + target 0.694 0.862 0.425 3.023 0.474 0.821 5.537 0.929 1.911 0.969 0.749 |2.5+1.9
rec + target  0.688 0.860 0.445 3.064 0.475 0.812 5.507 0.927 1.887 0.971 0.748 | 2.7+ 1.3
mask +sup 0.711 0.866 0.441 3.129 0.480 0.813 5.480 0.925 1.875 0.969 0.745|2.5+1.4
rec + sup 0.709 0.858 0.433 3.059 0.465 0.807 5.571 0.927 1.865 0.971 0.745|1.9+1.2

MLP-T-LR
no pretraining 0.634 0.866 0.444 3.113 0.482 0.805 5.520 0.925 1.897 0.968 0.749 | 3.9+ 1.7
mask 0.654 0.868 0.424 3.045 0.472 0.818 5.544 0.926 1.916 0.969 0.748 | 2.8 = 1.7
rec 0.652 0.857 0.424 3.109 0.472 0.808 5.363 0.924 1.861 0.969 0.746| 2.5+ 1.4
sup 0.682 0.860 0.430 3.135 0.471 0.807 5.525 0.927 1.893 0.971 0.747 2.8 £1.5

mask + target 0.649 0.865 0.421 3.058 0.474 0.820 5.644 0.929 1.924 0.969 0.749 | 2.8 +2.1
rec + target  0.668 0.864 0.440 3.113 0.473 0.806 5.493 0.927 1.862 0.969 0.746| 2.5+ 1.4
mask +sup  0.676 0.858 0.429 3.199 0.468 0.814 5.510 0.926 1.869 0.971 0.748 | 2.5 0.8
rec + sup 0.678 0.865 0.437 3.112 0.462 0.807 5.516 0.927 1.862 0.970 0.748 | 2.4 +1.2




TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023 (ICLR 2024)

5. TABR (ICLR 2024)

( https://arxiv.org/pdf/2307.14338 )

Non-DL algorithms based on GBDT: Strong baseline
TabR = Retrieval-based tabular DL model = FFN + kNN
Incremental approach:
o Step 0) The vanilla-attention-like baseline
o Step 1) Adding context labels
o Step 2) Improving the similarity module
o Step 3) Improving the value module
o Step4) TabR
Outperforms GBDT models on the recently proposed “GBDT-friendly” benchmark


https://arxiv.org/pdf/2307.14338

TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023 (ICLR 2024)

5. TABR (ICLR 2024)
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Figure 2: The generic retrieval-based architecture introduced in subsection 3.2 and used to build TabR.
First, a target object and its candidates for retrieval are encoded with the same encoder E. Then, the
retrieval module R enriches the target object’s representation by retrieving and processing relevant
objects from the candidates. Finally, predictor P makes a prediction. The bold path highlights the
structure of the feed-forward retrieval-free model before the addition of the retrieval module R.
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TabR: Tabular Deep Learning Meets Nearest Neighbors in 2023 (ICLR 2024)

5. TABR (ICLR 2024)

similarities Information flow weights values
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-
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Figure 4: Simplified illustration of the retrieval module R introduced in Figure 2 (the omitted details
are provided in the main text). For the target object’s representation z, the module takes the m nearest
neighbors among the candidates {&;} according to the similarity module S : (R¢,R%) — R and
aggregates their values produced by the value module V : (R¢, R4, Y) — R<.



Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent Space (ICLR 2024)

6. TabSyn (ICLR 2024)

( https://arxiv.org/pdf/2310.09656 )

e Synthesizes tabular data by leveraging a diffusion model within a VAE latent space
o (1) Diffusion = Latent diffusion model (LDM)
o (2) VAE = Tokenizer + Transformer encoder + Transformer decoder + Detokenizer
e Advantages
o (1) Generality: Broad spectrum of data types => Into a single unified space
o (2) Quality: Optimizing the distribution of latent embeddings

o (3) Speed: Much fewer number of reverse steps


https://arxiv.org/pdf/2310.09656

Mixed-Type Tabular Data Synthesis with Score-based Diffusion in Latent Space (ICLR 2024)

6. TabSyn (ICLR 2024)
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Figure 2: An overview of the proposed TABS YN. Each row data x is mapped to latent space z via a
column-wise tokenizer and an encoder. A diffusion process zyg — 27 is applied in the latent space.
Synthesis z — zj starts from the base distribution p(z7) and generates samples z( in latent space
through a reverse process. These samples are then mapped from latent 2z to data space  using a
decoder and a detokenizer.



TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling (ICLR 2025)

7. TABM (ICLR 2025)

( https://arxiv.org/pdf/2410.24210 )

e Designing substantially better MLP-based tabular archs
e TabM = Efficient ensembling (of MLPs)
o Produces multiple predictions per object
o Parameter-efficient deep “ensembles”.
o Three versions
m MLP + Packed-Ensemble
m MLP + BatchEnsemble
m MLP + MiniEnsemble


https://arxiv.org/pdf/2410.24210

TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling (ICLR 2025)

7. TABM (ICLR 2025)

e vs. Traditional deep ensemble
o MLPs are trained simultaneously & share most of their params

e Experiments:
o Large-scale evaluation of tabular DL architectures on public benchmarks
o Task performance and efficiency

e Stronger and more practical models (vs. to attention- and retrieval based archs)



TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling (ICLR 2025)

7. TABM (ICLR 2025)

——————

5Mea.nl --> Test

D Shared

D Not shared

kxm Lol
x{5p

OR xN

BatchEnsemble” MiniEnsemble

Figure 1: (Upper left) A high-level illustration of TabM. One TabM represents an ensemble of k¥ MLPs
processing k inputs in parallel. The remaining parts of the figure are three different parametrizations of
the £ MLP backbones. (Upper right) TabMpacieq consists of k fully independent MLPs. (Lower left)
TabM is obtained by injecting three non-shared adapters R, S, B in each of the N linear layers of
one MLP (* the initialization differs from Wen et al. (2020)). (Lower right) TabMp; is obtained
by keeping only the very first adapter R of TabM and removing the remaining 3/N — 1 adapters.
(Details) Input transformations such as one-hot-encoding or feature embeddings (Gorishniy et al.,
2022) are omitted for simplicity. Drop denotes dropout (Srivastava et al., 2014).



TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks (ICLR 2025)

8. TabReD (ICLR 2025)

( https://arxiv.org/pdf/2406.19380 )

e Real-world tabular data:
o Time-based distribution shifts
o Complex feature engineering pipelines
e Existing benchmarks lack:
o Timestamps for temporal splits
o Realistic feature construction
e TabReD benchmark:
o (1) 8 industry-grade tabular datasets / (2) Includes timestamps

o (3) Reflects real-world feature engineering / (4) Avoids data leakage


https://arxiv.org/pdf/2406.19380

TabReD: Analyzing Pitfalls and Filling the Gaps in Tabular Deep Learning Benchmarks (ICLR 2025)

8. TabReD (ICLR 2025)

Table 1: The landscape of existing tabular machine learning benchmarks compared to TabReD. We
report median dataset sizes, number of features, the number of datasets with various issues. The
“Time-splits” column is reported only for the datasets without issues. We see that the datasets semi-
automatically gathered from OpenML (Tabzilla and Grinsztajn et al. (2022)) contain more quality
issues. Furthermore, no benchmark besides TabReD focuses on temporal-shift based evaluation
and less than half of datasets in each benchmark have timestamp metadata needed for time-based
validation availability.

* — the original dataset, introduced in (Malinin et al., 2021) has the canonical OOD split, but the standard 11D

split commonly used contains time-based leakage.
= — the median full dataset size. In experiments, to reduce compute requirements, we use subsampled versions

of the TabReD datasets.
Dataset Sizes (Qso) Issues (#Issues / #Datasets) Time-split
Benchmark 3
#Samples #Features Data-Leakage %ﬁ:ﬁ::b(;; Non-Tabular Needed Possible Used

Grinsztajn et al. (2022) 16,679 13 7144 1/44 7144 22 5

Tabzilla (McElfresh et al., 2023) 3,087 23 3/36 6/36 12./36 12 0
WildTab (Kolesnikov, 2023) 546,543 10 1°/3 1/3 0/3 1 1 X
TableShift (Gardner et al., 2023) 840,582 23 0/15 0/15 0/15 15 8
Gorishniy et al. (2024) 57,909 20 1°/10 1/10 0/10 7 1
TabReD (ours) 7,163,150 261 X X X v v v




Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later (ICLR 2025)

9. ModernNCA (ICLR 2025)

( hittps://arxiv.org/pdf/2407.03257 )

e Can classical methods (e.g., kNN) can be revitalized with modern techniques?

e Revisit a differentiable version of kNN = Neighbourhood Components Analysis (NCA)
o Learn a linear projection to capture semantic similarities between instances
o Add modern DL on top

e NCA using SGD (w/o dimensionality reduction) = Decent performance!

e Analyzing the factors behind these improvements

o e.g., loss functions, prediction strategies, and deep architectures...


https://arxiv.org/pdf/2407.03257

Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later (ICLR 2025)

9. ModernNCA (ICLR 2025)

e (1) Learning objectives

o Classification: Soft-NN loss
I. Predicting the label of a target instance
ii. By computing a weighted average of its neighbors across the C class
o Regression: Weighted sum of scalar labels from the neighborhood
e (2) Prediction
o Traditional “hard” KNN approach (X)
o Adopt the soft-NN rule (O) => Applicable to both Cls & Reg
e (3)Arch

o NCA + non-linear layers




Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later (ICLR 2025)

9. ModernNCA (ICLR 2025)

e (4) Stochastic Neighborhood Sampling

o Training: Subset of the training set is randomly sampled for each mini-batch
o Inference: Searches for neighbors using the entire training set

e (5) Distance function

o Euclidean distance

Learning Objective. Assume the label y; is continuous in regression tasks and in one-hot form for
classification tasks. We modify Equation 3 as follows:
: exp (—dist” (¢(x:), ¢(;)))

Y; = _ Y . @)
(mj,Zyg%ED Z(wz,yz)ED,wl—#wi €xXp (_ dlSt2(¢(m’i)7 ¢(wl))) ’

This formulation ensures that similar instances (based on their distance in the embedding space
mapped by ¢) yield closer predictions. For classification, Equation 4 generalizes Equation 3, pre-




Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later (ICLR 2025)

9. ModernNCA (ICLR 2025)

Neighbourhood Component Analysis (NCA). NCA focuses on the classification task (Goldberger
et al., 2004). According to the 1NN rule, NCA defines the probability that x; locates in the
neighborhood of x; by

exp (—dist*(L "z, L x;))

Then, the posterior probability that an instance x; is classified as the class y; is:

Pr({; =vy; | ®;,D,L) = > Pr(x; € N(z:;D) | z;, D, L) . 3)

(2;,¥5)EDAY; =y

PI‘((I:J' € N(:l:l,'D) | Lisdds L) =

)

L € R**4 is a linear projection usually with d’ < d, which reduces the dimension of the raw input.
Therefore, the posterior that an instance x; belongs to the class y; depends on its similarity (measured
by the negative squared Euclidean distance in the space projected by L) between its neighbors from



Revisiting Nearest Neighbor for Tabular Data: A Deep Tabular Baseline Two Decades Later (ICLR 2025)

9. ModernNCA (ICLR 2025)

Neighbourhood Component Analysis (NCA). NCA focuses on the classification task (Goldberger
et al., 2004). According to the 1NN rule, NCA defines the probability that x; locates in the
neighborhood of x; by

exp (—dist*(L"z;, L z;))

PI‘((IZ' & N(mz,D) | 0 B B L) = - ; 2)
’ Z(mz,yz)ep,mz?éwi exXp (_ dlSt2(LTmi’ LTml))
Then, the posterior probability that an instance x; is classified as the class y; is:
Pr(§; =y; | ¢, D, L) = > Pr(x; € N(z:;D) | z;, D, L) . 3)

(®;,y5)EDAY; =y

L € R**4 is a linear projection usually with d’ < d, which reduces the dimension of the raw input.
Therefore, the posterior that an instance x; belongs to the class y; depends on its similarity (measured
by the negative squared Euclidean distance in the space projected by L) between its neighbors from



AnoLLM: Large Language Models for Tabular Anomaly Detection (ICLR 2025)

10. AnoLLM (ICLR 2025)

( https://openreview.net/pdf?id=7VKHfT5X2 )

e Leverage LLMs for unsupervised tabular AD

e Convert tabular -> standardized text format

e Adapt a pre-trained LLM with this serialized data

e Fine-tuning a pretrained LLM with serialized tabular data

(feat. language modelling loss)


https://openreview.net/pdf?id=7VkHffT5X2

AnoLLM: Large Language Models for Tabular Anomaly Detection (ICLR 2025)

10. AnoLLM (ICLR 2025)

e Assign anomaly scores based on the NLL
e Pros)
o Preserves data integrity & Streamlines the preprocessing required for tabular AD
o Effectively handle mixed-type data (Especially those containing textual features)
e During inference)
o Anomaly scores are determined by averaging the NLL across r random

permutations of the test data.



AnoLLM: Large Language Models for Tabular Anomaly Detection (ICLR 2025)

10. AnoLLM (ICLR 2025)

AnoLLM Training

transaction value is 0.2, user id is 1,
transaction location is San Jose, CA.

1 50.99 San Jose, CA

] 1340 JLLiat transaction location is Sunnyvale, CA,
1 25.43 Sunnyvale, CA transaction value is 0.1, user id is 1.
3
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Tast Data AnolLLM Inference /
Negative log-
1 32.53 San Jose, CA Permute — - — — likelihood
% user id is 1, transaction location is Delhi.. ]
r times

1 1599.00 Delhi, India

Figure 1: Overall framework of AnoLLM. During the preprocessing stage, numerical columns are
binned into groups, and each data row is transformed into a natural language sequence with a ran-
domly shuffled order of columns. In the training stage, a pretrained LLM is fine-tuned using the
preprocessed tabular data. During inference, anomaly scores are determined by averaging the nega-
tive log-likelihood across 7 random permutations of the test data.



Latent Score-based Reweighting for Robust Classification on Imbalanced Tabular Data (ICLR 2025)

11. Latent Score-based Reweighting (ICLR 2025)

( https://openreview.net/pdf?id=HSLClic1a7W )

e ML models = Underperform on specific subsets
o Due to inherent biases and spurious correlations in the training data!
e Proposal: Latent score-based reweighting framework
o Leverages score-based models to capture the joint data distribution p(x,y)
o Estimate sample density through the similarity of score vectors with neighbor
o ldentifies underrepresented regions and upweights samples accordingly!
e Results: Directly tackles inherent data imbalances
=> Enhancing robustness by ensuring a more uniform dataset representation

e Loss function: Weighted CE loss


https://openreview.net/pdf?id=HSLClc1a7W

Latent Score-based Reweighting for Robust Classification on Imbalanced Tabular Data (ICLR 2025)

11. Latent Score-based Reweighting (ICLR 2025)
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o exp(—SimDiff(z;) /7)
S exp(—SimDiff(z;) /1)’

where N is the number of all training samples and 7 denotes a temperature which controls the scale
of reweighting. Finally, we train an unbiased classification model 1) as:

L dlassification = E(zi,yi) [wz£(¢(zz)a yz)] ) (14)
where /¢ stands for cross entropy loss. When testing, we only use ¢z, . and 1) to make predictions.

(13)



TabDiff: A Mixed-Type Diffusion Model for Tabular Data Generation (ICLR 2025)

12. TabDiff (ICLR 2025)

( https://arxiv.org/pdf/2410.20626 )

e Generative models for tabular data: Challenging due to ...
o Heterogeneous data types
o Complex inter-correlations
o Intricate column-wise distributions
e Proposal: TabDiff
o Joint diffusion framework that models all mixed-type distributions of tabular

data in a single model


https://arxiv.org/pdf/2410.20626

TabDiff: A Mixed-Type Diffusion Model for Tabular Data Generation (ICLR 2025)

12. TabDiff (ICLR 2025)

( https://arxiv.org/pdf/2410.20626 )

e Key innovation: Joint continuous-time diffusion process
(for numerical and categorical)
o Feature-wise learnable diffusion processes to counter the high disparity of different
feature distributions.

o Parameterized by a transformer handling different input types
e Others:

o Mixed-type stochastic sampler

m To automatically correct the accumulated decoding error during sampling

o Classifier-free guidance for conditional missing column value imputation


https://arxiv.org/pdf/2410.20626
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12. TabDiff (ICLR 2025)
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Figure 1: A high-level overview of TABDIFF. TABDIFF operates by normalizing numerical columns
and converting categorical columns into one-hot vectors with an extra [MASK] class. Joint forward
diffusion processes are applied to all modalities with each column’s noise rate controlled by learnable
schedules. New samples are generated via reverse process, with the denoising network gradually
denoising x; into X and then applying the inverse transform to recover the original format.
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12. TabDiff (ICLR 2025)

Algorithm 1 Training

1:
2
3
4
S
6:
7.
8
9
10:

repeat

Sample xg ~ po(x)

Sample t ~ U(0,1)

Sample €yum ~ N (0, Inrnum)
X;lum — xl(l)um + o.num(t)enum
ay = exp(—o°*(t))
Sample Xt ~ q(x; X0, ct;)
g = [0, 25

Take gradient descent step on Vg , 1 L1aDirr

Eq. (6)

until converged

Algorithm 2 Sampling

1: Sample x3*™ ~ N (0, Infpum), X5 =m
2: fort=T1to1do

32ttt t+yt,w=1/T
> Numerical forward perturbation:
4:  Sample €™™ ~ N(0,I5/num)
50 XM ¢ XU 4 /omum(tt)2 — gmum(t)2emm
> Categorical forward perturbation:
6:  Sample x{3* ~ g (x53¢|x§?, 1 — o+ fory) Eq. (6)
> Concatenate:
(.
> Numerical backward ODE:
B dx™m = (xMm _ pmm(x,  +)) /gmm(Et)
9: X e xIP (o™t = 1) — o™ (tt))dx™"
> Categorical backward sampling:
10:  Sample x§') ~ po(x§2 [x72°, ug™ (x;+,t%))  Eq. (8)
11: end for

12: return x{"™, xg*




