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2. Skip-gram Model

Efficient Estimation of Word Representations in Vector Space ( T Mikolov et al. , 2013 )

(1) Brief review of word2vec models

• CBOW : predicting the “current word”, based on the context

• Skip-gram : predicting “words within a certain range” of the current word, given current word.
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(2) Training Skip-gram

• How? “Maximize the average log-probability”
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2. Skip-gram Model

(3) Problem of standard softmax

Proof

How to make it more efficient?

Efficient ways of updating the model :

1. Hierarchical Softmax

2. Negative Sampling
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3. Efficient Ways of updating the model

For more about two methods…

Word2vec Parameter Learning Explained 

( X. Rong, 2016 )

https://arxiv.org/abs/1411.2738

https://arxiv.org/abs/1411.2738
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3. Efficient Ways of updating the model

(1) Hierarchical Softmax Hierarchical probabilistic neural network language model (F. Morin and Y.Bengio, 2005)
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3. Efficient Ways of updating the model

(1) Hierarchical Softmax

Inner Unit ( total : V-1 )

Terminal node ( total : V-1 )

( each represents one vocabulary )

length of “root unit” to 

from “root unit” to word “w”:

:

Binary Tree Structure & Notation
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3. Efficient Ways of updating the model

(1) Hierarchical Softmax

Hierarchical Softmax ( vs Standard Softmax )

• NO vector representation of each word ( = terminal node )

( Instead, every inner node has its representation )
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3. Efficient Ways of updating the model

(1) Hierarchical Softmax

• Probability of output word, becoming          : 

https://www.researchgate.net/figure/Figure1-Hierarchical-Softmax-
CBOW-Model-Schematic-The-word-vector-matrix_fig1_329395807
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3. Efficient Ways of updating the model
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3. Efficient Ways of updating the model

(2) Negative Sampling

Context Word Word Is it a Target word?

Grape Juice 1

.. King 0

.. Earphone 0

.. Kindergarten 0

.. Pencil 0

Negative Samples (K=4)

Positive sample

(small data) K=5~20

(large data) K=2~5
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3. Efficient Ways of updating the model

(2) Negative Sampling

Maximize…
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3. Efficient Ways of updating the model

(2) Negative Sampling

Maximize…

Distinguish “target word”(=positive) from “draws from the noise 

distribution”(=negative), using logistic regression
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3. Efficient Ways of updating the model

(2) Negative Sampling

Updating Equation (1) hidden-output

( label : 1 if positive, 0 if negative )

C

C
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3. Efficient Ways of updating the model

(2) Negative Sampling

Updating Equation (1) hidden-output

( label : 1 if positive, 0 if negative )

C

C

Computationally Efficient!

No need to be applied to all words!

Only K+1 words ( 1 pos + K neg )
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3. Efficient Ways of updating the model

(2) Negative Sampling

Updating Equation (2) input-hidden

• CBOW : just use EH above

• Skip-gram : calculate all the EHs of context words
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4. Subsampling method

• Most frequent words : occur hundreds of millions of times

• Assign different probability of getting sampled for each word
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4. Subsampling method

• Most frequent words : occur hundreds of millions of times

• Assign different probability of getting sampled for each word

• More Frequently occurred, Less Probability of getting sampled

( Probability of getting dropped )
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5. Experiments

“Analogical Reasoning” Task

• Syntactic analogies ( ex. quick : quickly = slow : slowly )

• Semantic analogies ( ex. Korea : Seoul = Japan : Tokyo )
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6. Learning Phrases

Replacing with a unique phrase

• Lots of words are not a simple composition of the meaning of individual words 

( Apple Pencil != Apple Pencil )

• Instead of treating “Apple” and “Pencil” apart, treat it as unique token! “Apple Pencil”
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6. Learning Phrases

Replacing with a unique phrase

• Lots of words are not a simple composition of the meaning of individual words 

( Apple Pencil != Apple Pencil )

• Instead of treating “Apple” and “Pencil” apart, treat it as unique token! “Apple Pencil”

Algorithm

1) find words that appear frequently together ( & infrequently in other contexts )

( whose score below is above certain threshold )

2) Replace such words with unique token (one phrase)

Repeat 2x ~ 4x

( + decreasing threshold )

Discounting Coefficient



Seunghan Lee, Yonsei University

6. Learning Phrases

Experiment

Best Result : Hierarchical Softmax with Subsampling
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7. Additive Compositionality

Additive Compositionality

Possible to meaningfully combine words by an element-wise addition
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Summary

(1) Extension of Skip-gram Model ( can also be applied to CBOW )

(2) Improvement in quality & speed using…

- 1) Negative Sampling

- 2) Hierarchical Softmax

- 3) Subsampling

(3) Represent phrases with single token
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Thank You!

( + Any Questions? )


