[Paper review 32]

MADE : Masked Autoencoder for
Distribution Estimation

(Germain, et al. 2015)

[Contents]

1. Abstract

2. Introduction

3. Autoencoders

4. Distribution Estimation as Autoregression
5. Masked Autoencoders

1. Imposing autoregressive property
2. Deep-MADE
3. Order-agnostic training
4. Connectivity-agnostic training
6. Algorithm Summary

0. Overview

(by Coursera)

Autoregressive Flow

For some matrices, calculating a determinant is easy.
Ex) lower or upper triangular matrix

e the determinant is the product of the diagonal elements, of which there are D, \
(meaning the determinant calculation scales linearly.)

e Hence, to attain a linear scaling of the determinant in the number of dimensions, it is enough
of;
9z

(In other words, the component f; depends only on 21, ... 2;.)

to enforce that = Owhenever 3 > 7.\

Autoregressive models can be reinterpreted as normalising flows that fulfil this requirement.\
These are models that model the joint density p(x) as the product of conditionals

[L p(zi | x1:6-1)-

af://n0
af://n2
af://n3
af://n5
af://n266
af://n270

example
For example, the conditionals could be parameterised as Gaussians:

P(wi | X1:i—1) = N(l’z | Mi,eXP(Ui)Q),
where Hi = fp,. (Xlziq)
and 0 = fo, (X1:-1)-

Mean and standard deviations of each conditional distribution are "computed using
(parameterised) functions of all previous variables"

The above can alternatively be written as:
z; = pi(x1.i-1) + exp(oi(x1:i-1)) 2 i=1,...,D
where z; ~ N(0,1) is sampled from a unit Gaussian.

This last equation shows how the autoregressive model can be viewed as a transformation f from
the random variables z € R? to the datax € R”.

This is an example of an aqutoregressive process where x; depends only on the components of z
that are lower than or equal to ¢ but not any of the higher ones. The dependence on lower
dimensions of z happens indirectly through the x; dependence in the f, and f,,.

Implementation

Implementation

e Masked Autoregressive Flow (MAF)

o George Papamakarios, Theo Pavlakou, lain Murray (2017). Masked Autoregressive Flow
for Density Estimation. In Advances in Neural Information Processing Systems, 2017.
e Inverse Autoregressive Flow (IAF)

o Diederik Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, llya Sutskever, Max Welling
(2016). Improved Variational Inference with Inverse Autoregressive Flow. In Advances in
Neural Information Processing Systems, 2016.
e Real-NVP & NICE

o Laurent Dinh, Jascha Sohl-Dickstein, Samy Bengio (2016). Density estimation using Real
NVP.

o Laurent Dinh, David Krueger, Yoshua Bengio (2014). NICE: Non-linear Independent
Components Estimation.

1. Abstract

use NN to "estimate a distribution”

introduce simple modification for AutoEncoder(AE) NN

e key point: masks the AE parameters to respect "autoregressive constraints"

o each inputis reconstructed only from the previous inputs

af://n282
af://n299
af://n301
http://papers.nips.cc/paper/6828-masked-autoregressive-flow-for-density-estimation.pdf
http://papers.nips.cc/paper/6581-improved-variational-inference-with-inverse-autoregressive-flow.pdf
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1410.8516
af://n29

with "autoregressive constraints", the outputs are "conditional probabilities"

Can also train a single NN that can decompose the joint pdf in multiple different ordering

2. Introduction

T
Distribution estimation : estimating p(x) from a set of {x(},_,
Curse of dimensionality

e as the number of dimensions of input space x grows, the volume space exponentially
increases

e to solve, various models have been proposed

o ex) Autoregressive models

This paper focuses on Autoregressive models

e computing p(x) for test data is tractable
e but, computational cost is high!

(O(D) times more than simple NN point predictor)

Contribution

e simple way of adapting AE N, making faster than existing alternatives
e use MASK to the weighted connections of the standard AE, to convert it to a "distribution
estimator™"

Key point : use a MASKI

e mask which are designed in a way that output is autoregressive!

(=each input dim is reconstructed only from dim preceding it)

Result : MADE = Masked Autoencoder Distribution Estimator

e '"preserves the efficiency of a single pass through a regular AE"

3. Autoencoders

given a training set {x(* };
AE : learns a hidden representation h(z) of its input =

e encode) h(x) = g(b + Wx)
e decode) X = sigm(c + Vh(x))

loss function (= cross-entropy loss)

af://n43
af://n81

o Ux) =Y 7, —zalogZs — (1—zq)log(l — Z4)
¢ optimize w.r.t {W,V, b, c}, using SGD

Advantage

e deep AE (insert more hidden layres) : flexibility

Disadvantage

e representations that in learns can be trivial

(if hidden layer is as large as input can just "copy" the input dim)

(loss function is not proper!)

- $qgQ\mathbf{x})=\prod_{d} \widehat{x}_{d}A{x_{d}}\Teft(1-
\widehat{x}_{d}\right)A{1-x_{d}}$
- $\sum_{\mathbf{x}} g(\mathbf{x}) \neq 1%

4. Distribution Estimation as
Autoregression

would like to be able to write p(z) in a way that...

e could be computed based on the output of properly corrected AE

product rule

o p(x)=J[L,p(xa|x<d) wherex.g=[z1,...,24 1]

Let

e p(zqg=1|x%xq) =24,
L4 p(a:d =0 ’ X<d) =1 —id
— autoregressive property

(this provides a way to define AE that can be used for "distribution estimation")

Then, our loss function becomes

e before)

Ux) =30 —zglogZy — (1 — zq)log(l — Zq)
o after)

—logp(x) =) —logp(za |x <d)

M T

—zglogp(zqg =1 |xcq) — (1 —z4)logp(zq =0 | xq)

(x)

1

I g
~

af://n109

5. Masked Autoencoders

how to modify AE to satisfy autoregressive property?

e No computational path between z; and z4,...,zp
e by ZEROING connections

(element-wise multiply each matrix by a binary mask matrix)

with Mask

e encoder)h(x) =g (b+ (WoMWY)x)
e decoder)x = sigm(c + (Vo MV) h(x))
e itis left to the masks MW and MV to satisfy autoregressive property

5-1. Imposing autoregressive property

e 1) assign each unit (in hidden layer) an integer m (between 1and D — 1)

(m(k) = maximum number of input units to which it can be connected)

(m(k) # 1, m(k) # D)

e 2) [MASK] matrix masking the connections between "input & hidden units"

constraints on the maximum number of inputs to each hidden unit are encoded in it!
1 ifm(k) >d

MV =1, =
kd (k)=d {O otherwise

e 3) [MASK] matrix masking the connections between "hidden & output" units
1 ifd > m(k)
0 otherwise

MYy = lismpy = {
Notation & Meaning

e MY and MW : network's connectivity
e matrix product MV"W = MVMW : connectivity between the input and the output layer
° MZ’;}V : number of network paths between output unit £ and input unit z4.

with the above, we can show that the "autoregressive property" is made!

proof)
e need to show that M""W is strictly lower diagonal (MJ’;}V is0ifd <d)
VW K o K
¢ Md’,d =2k Mj,kMIXXi =2 ko1 Lasm@) Lm(k)>d

o Ifd <d,then there are no values for m(k)

af://n138
af://n156

V,.W
fo) .) =
-y =0

when constructing masks,

e only requires an assignment of m(k) to each hidden unit! SIMPLE!
e setm(k) by sampling from Uniform discrete dist'n (1 ~ D — 1), independently for each K
hidden units

5-2. Deep MADE

generalizes to deep NN (L > 1 hidden layers)
Notation

e W' first hidden layer matrix

e W2 :second hidden layer matrix

e K':number of hidden units in layer /

e ml!(k) : maximum number of connected inputs of the k'™ unit in the I'* layer

Mask

W (1 ifml(K) > mi (k)
: Mkl’k = L (K)zm=t (k) — {0 otherwise
1 ifd > ml(k)

o MY, =1lgpmi) =
dk d>m* (k) {0 otherwise

5-3. Order-agnostic training

interested in a modeling the conditionals, associated with "an arbitrary ordering of input's dim"
training an AR model on ALL ordering can be beneficial

— order-agnostic training

order-agnostic training

e can be achieved by "sampling an ordering" before each (stochastic/minibatch gradient)
update

e 2 advantages

o 1) missing values in some input vectors can be imputed efficiently
o 2)ensemble of AR models can be constructed on the fly (?7?)

ordering
e m’ = [m(1),...,m°(D)].

(mP(d) : position of the original d®* dimension of z in the product of conditionals)

af://n202
af://n223

e random ordering can be obtained by "randomly permuting" the ordered vector [1,..., D]

5-4. Connectivity-agnostic training

in addition to choosing an ordering (in 5-3),

e also have to choose each hidden unit's connectivity constraint, m' (k)

(= agnostic of the connectivity pattern generated by these constraints)

By resampling the connectivity of hidden units for every update,

— each hidden unit will have a constantly changing number of incoming inputs during training

6. Algorithm Summary

af://n248
af://n259

plz1|zra,23) plra) plzs|ze)

COXNN
OO

k‘w‘}

X< "’
ﬁ.:‘.&‘

ry T2 I3 Tr1 To I3

Autoencoder x Masks ————p MADE

Figure I. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
[I";--'IW1 MW, MY). In this example, the ordering of the input
Is changed from 1,2.3 to 3.1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k' unit of layer [depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(z2) p(xs|x2) p(x1|z2, 23). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

Algorithm 1 Computation of p(x) and learning gradients
for MADE with order and connectivity sampling. I is the
size of the input, L the number of hidden layers and K the
number of hidden units.

Input: training observation vector x
Output: p(x) and gradients of — log p(x) on parameters

Sampling m' vectors
m" « shuffle([1,..., D])
for [from | to L do
for k from 1 to K' do
m!(k) < Uniform([ming m!=1(%’),..., D—1])
end for
end for

Constructing masks for each layer
for [from | to L do
MW’ 1 i5mi—1
end for -
MY «— 10~ me

Computing p(x)
h'(x) + x
for [from 1 to L do
hi(x) « g(b! + (Wl o MW)hi~1(x))
end for
X + sigm(c + (V. MVY)h*(x))

p(x) + exp (Zle xqlogZy + (1—x4) lﬂg(l—fﬁd))

Computing gradients of — log p(x)
tmp < X — X
dc < tmp
6V + (tmph*(x)") o MV
tmp < (tmp (Vo MVY))’
for [from L to | do
tmp + tmp ® g'(b' + (W' ® MW)h!=1(x))
sb! « tmp
SW! + (tmp h'~*(x)") ® MW
tmp + (tmp ' (W' ® I‘u’I‘"F""T!])T
end for
return p(x),ébt, ..., 0b" WL ... WL §c, 0V

	[Paper review 32]
	MADE : Masked Autoencoder for Distribution Estimation
	(Germain, et al. 2015)

	[Contents]
	0. Overview
	Autoregressive Flow
	example

	Implementation

	Implementation
	1. Abstract
	2. Introduction
	3. Autoencoders
	4. Distribution Estimation as Autoregression
	5. Masked Autoencoders
	5-1. Imposing autoregressive property
	5-2. Deep MADE
	5-3. Order-agnostic training
	5-4. Connectivity-agnostic training
	6. Algorithm Summary

