[Paper review 42]

A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference

(Shridhar, et al., 2019)

[Contents]

- 1. Abstract
- 2. Introduction
 - 1. Problem Statement
 - 2. Current situation
 - 3. Our Hypothesis
 - 4. Our Contribution
- 3. Background
 - 1. Neural Network
 - 2. Probabilistic ML
 - 3. Uncertainties in Bayesian Learning
 - 4. BBB (Bayes by Backprop)
 - 5. Model weights pruning
- 4. Related work
 - 1. Bayesian Training
 - 2. Uncertainty Estimation
- 5. Our Concept
 - 1. Bayesian CNN with VI
 - 2. Uncertainty Estimation in CNN
 - 3. Model Pruning

1. Abstract

propose Bayesian CNN using VI

- introduce probability distribution over the weights
- model of BBB (Bayes by Backprop)

BBB

- variational approximation to true posterior
- two params : mean & var

Bayesian CNN

- achieves performances equivalent to frequentist inference
- obtain measurement for uncertainties & regularization

Finally, propose ways to prune the Bayesian architecture

(make more computational & time effective)

2. Introduction

- DNNs
- CNNs
- Various Regularization techniques (early stopping, weight deacy, L1, L2..)

2-1. Problem statement

DNN : over-confident decision

ightarrow introduce Bayesian learning to CNN, thus giving uncertainty estimation & regularization

2-2. Current situation

DNN is widely used in many domains (usually single point-estimates architecture)

Bayesian posterior Inference over NN, attractive for solving overfitting

BUT, **CNNs has naver been successful**... due to practical issues

- computationally expensive
- double the number of model params

2-3. Our Hypothesis

use BBB!

exact Bayesian inference : number of parameters is very large...

so, approximate with variational distn $q_{\theta}(\mathbf{w} \mid D)$

2-4. Our Contribution

- 1) BBB can be efficiently applied to CNNs
- 2) Richer representations and predictions from cheap model averaging
- 3) VI can be applied to various CNN arthictectures
- 4) Examine how to estimate "aleatoric" and "epistemic" uncertainties

- 5) Only doubles the number of params, but infinite ensemble! (using unbiased MC estimates of grads)
- 6) L1 norm for pruning

Summary : BBB is now applicable to FC, RNN, CNN !

3. Background

3-1. Neural Network

• skip

3-2. Probabilistic ML

VI

• skip

LRT

• Local reparameterization trick

Type of reparameterization, when the global uncertainty in the weights is translated into a form of "local uncertainty" which is independent across examples

3-3. Uncertainties in Bayesian Learning

2 types of uncertainties

- 1) Aleatoric : noise inherent in data... can not be reduced by further data collection
 - 1-1) Homoscedastic (uncertainty stays constant for different input)
 - 1-2) Heteroscedastic (uncertainty differs for different input)
- 2) Epistemic : casused by model ... can be reduced, given more data

Lots of works measures uncertainties by placing probabilities over....

- 1) model parameter (when dealing with "Epistemic uncertainty")
- 2) model output (when dealing with "Aleatoric uncertainty")

3-4. BBB (Bayes by Backprop)

VI method to learn posterior on the weights $w \sim q_{ heta}(w \mid \mathcal{D})$

Regularize the weights, by minimizing (negative) ELBO (or Variational Free energy)

optimal parameters :

$$egin{aligned} & heta^{opt} = rgmin_{ heta} \mathrm{KL}\left[q_{ heta}(w\mid\mathcal{D}) \| p(w\mid\mathcal{D})
ight] \ &= rgmin_{ heta} \mathrm{KL}\left[q_{ heta}(w\mid\mathcal{D}) \| p(w)
ight] - \mathbb{E}_{q(w\mid heta)}[\log p(\mathcal{D}\mid w)] + \log p(\mathcal{D}) \, . \end{aligned}$$

Variational Free energy

- negative ELBO
- 1st part) KL [q_θ(w | D)||p(w)] : dependent on prior called "complexity cost"
 2nd part) E_{q(w|θ)} [log p(D | w)] : dependent on data p(D | w) called "likelihood cost"

Use stochastic variational method

$$\mathcal{F}(\mathcal{D}, heta) pprox \sum_{i=1}^n \log q_ heta\left(w^{(i)} \mid \mathcal{D}
ight) - \log p\left(w^{(i)}
ight) - \log p\left(\mathcal{D} \mid w^{(i)}
ight).$$

• sample $w^{(i)}$ from $q_{ heta}(w \mid D)$

3-5. Model weights pruning

Model pruning

- reduces sparsity in VNN
- thus, **reduce the number of valued parameters** (without much loss in the accuracy)

Several ways to prune model

• 1) most popular : low contributing weights \rightarrow make 0

(=
$$L_0$$
 norm , where $L_0=\| heta\|_0=\sum_j\delta\left(heta_j
eq 0
ight)$... constant penalty to all non-zero weights)

• 2) alternative : L_1 norm, which this paper uses

(
$$\| heta\|_1 = \sum_j | heta_j|$$
 . L_1)

4. Related work

4-1. Bayesian Training

Applying Bayesian methods to NN

how to deal with intractable posterior $p(w \mid D)$ >

- 1) MAP schemes for NN
- 2) Variational methods, natural regularizer (Hinton and Van Camp, 1993)
- 3) Laplace approximation
- 4) HMC for training NN
- 5) VI for NN
- 6) Dropout & Gaussian Dropout

4-2. Uncertainty Estimation

has not been successful until 2015

Dropout as a Bayesian approximation: Insights and applications (Gal and Ghahramani, 2015)

- NN trained with dropout = approximate Bayesian model
- uncertainty can be obtained by computing the **variance on multiple predictions** with different **dropout masks**

5. Our concept

5-1. Bayesian CNN with VI

Local Reparameterization Trick for Convolutional Layers

apply LRT to CNNs

(do not sample from weights w, but sample from layer activations b)

variational posterior distn : $q_{ heta}\left(w_{ijhw}\mid\mathcal{D}
ight)=\mathcal{N}\left(\mu_{ijhw},lpha_{ijhw}\mu_{ijhw}^{2}
ight)$

LRT : $b_j = A_i * \mu_i + \epsilon_j \odot \sqrt{A_i^2 * \left(lpha_i \odot \mu_i^2
ight)}.$ where $\epsilon_j \sim \mathcal{N}(0,1), A_i$

- A_i : receptive field
- *: convolutional operation
- • : component-wise multiplication

Applying two Sequential Convolutional Operations (for mean & var)

(original CNN) single point estimate : **one** convolutional operations

(Bayesian CNN) single point estimate : two convolutional operations

output *b* is a function of...

- mean : μ_{ijwh}
- variance : $\alpha_{ijhw}\mu_{ijhw}^2$

Two convolutional operations

- step 1) treat b as an output of CNN as frequentists & just optimize interpret this single point estimate as mean (μ_{ijwh})
- step 2) learn variance $\alpha_{ijhw}\mu_{ijhw}^2$

(have learned mean in step1, so only need to learn $lpha_{ijhw}$)

Summary

- in the first convolutional operation, learn MAP of variational posterior distn $q_{\theta}(w \mid D)$
- in the second convolutional operation, observe how much values for weights w deviate from this MAP
- TIP
 - to ensure non-zero variance & to enhance accuarcy...

learn ${
m log} lpha_{ijhw}$ and use Softplus activation function

5-2. Uncertainty Estimation in CNN

Predictive distribution :

 $p_\mathcal{D}\left(y^* \mid x^*
ight) = \int p_w\left(y^* \mid x^*
ight) p_\mathcal{D}(w) dw.$

BBB

- $q_{ heta}(w \mid \mathcal{D}) \sim \mathcal{N}\left(w \mid \mu, \sigma^2
 ight)$ where $heta = \{\mu, \sigma\}$ are learned
- for classification...

$$egin{aligned} p_\mathcal{D}\left(y^*\mid x^*
ight) &= \int \operatorname{Cat}(y^*\mid f_w\left(x^*
ight))\mathcal{N}\left(w\mid \mu,\sigma^2
ight)dw\ &= \int \prod_{c=1}^C f(x^*_c\mid w)^{y^*_c}rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(w-\mu)^2}{2\sigma^2}}dw \end{aligned}.$$

No closed-form (no conjugacy between categorial & Gaussian)

 \therefore construct an unbiased estimator of the expectation, by sampling from $q_{ heta}(w \mid D)$

$$egin{aligned} \mathbb{E}_q\left[p_\mathcal{D}\left(y^* \mid x^*
ight)
ight] &= \int q_ heta(w \mid \mathcal{D})p_w(y \mid x)dw \ &pprox rac{1}{T}\sum_{t=1}^T p_{w_t}\left(y^* \mid x^*
ight) \end{aligned}$$

(T : pre-defined number of samples)

Predictive variance : $\operatorname{Var}_q(p\left(y^* \mid x^*\right)) = \mathbb{E}_q\left[yy^T\right] - \mathbb{E}_q[y]\mathbb{E}_q[y]^T.$

can be decomposed into (1) aleatoric and (2) epistemic uncertainty

$$\operatorname{Var}_{q}(p\left(y^{*} \mid x^{*}\right)) = \underbrace{\frac{1}{T} \sum_{t=1}^{T} \operatorname{diag}(\hat{p}_{t}) - \hat{p}_{t} \hat{p}_{t}^{T}}_{\operatorname{aleatoric}} + \underbrace{\frac{1}{T} \sum_{t=1}^{T} \left(\hat{p}_{t} - \overline{p}\right) \left(\hat{p}_{t} - \overline{p}\right)^{T}}_{\operatorname{epistemic}}.$$

• where $ar{p} = rac{1}{T}\sum_{t=1}^{T} \hat{p}_t$ and $\hat{p}_t = ext{Softmax}(f_{w_t}\left(x^*
ight)).$

Since we can split into two parts as above...

we can see whether the quality of data is low (high ALEATORIC uncertainty)

or model itself is the cause of poor performance (high EPISTEMIC uncertainty)

5-3. Model Pruning

reduction in the model weights parameters!

- method 1) since parameter is doubled (for mean & var), reduce the number of filter into half
- method 2) L_1 norm
 - as most of the components will become close to 0
 non-zero components capture the most important features
 - make threshold! below that, make weight=0