3. Convex Functions

3-1. Basic Properties & Examples

a) Convex Function

\(f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y), \text { with } 0 \leq \theta \leq 1, \text { for all } x, y \in \text { dom } f\).

figure2


b) Stricty Convex

위 식에서 “등호가 제거”되는 경우


c) Strongly Convex

\(f-\frac{m}{2} \mid \mid x \mid \mid _{2}^{2} \text {, with } m>0\) 가 convex일 경우, \(f\) 는 strongly convex

strongly convex \(\rightarrow\) strictly convex \(\rightarrow\) convex


d) Concave Function

\(-f\) 가 convex function이면, \(f\) 는 CONCAVE function


[ 추가 ]

  • affine 함수 ( \(f(x) = a^T x + b\) )는 convex 이면서 concave


e) EXAMPLES of Convex Functions

  • Univariate Function
    • Exponential Function : \(e^{ax}\)
    • Power Function : \(x^a\) in \(\mathbb{R}_{+}\) , where \(a \geq 1\) or \(a \neq 0\)
  • Affine Function : \(a^Tx +b\)
  • Quadratic Function :
    • \(f(x) = \frac{1}{2}x^tPx + q^T x +r\).
    • \(\nabla f(x)=P x+q\).
    • \(\nabla^{2} f(x)=P\).
    • \(P\)가 posidive semi-definite일 경우, \(f\)는 convex
  • Least Square Loss :
    • \(f(x) = \mid \mid Ax-b \mid\mid_2 ^2\).
    • \(A^TA\)는 항상 positive semi-definite이므로
  • Norm
  • Max Function
    • max of convex \(\rightarrow\) also convex


f) FIRST-order characterization

\(\text { f is convex } \Longleftrightarrow \text { dom } f \text { is convex, and } f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \text { for all } x, y \in \text { dom } f\).

  • 위 식의 우측 항 : 1차 Taylor Expansion


figure2


g) SECOND-order characterization

convex

  • \(f\) is convex \(\Longleftrightarrow \nabla^{2} f(x) \succeq 0\) for all \(x \in \operatorname{dom} f, \operatorname{dom} f\) : convex


strictly convex

  • if \(\nabla^{2} f(x) \succ 0\) for all \(x \in \operatorname{dom} f\), then \(f\) is strictly convex


h) Jensen’s Inequality

\(f\)가 convex일 경우….

\(f\left(t x_{1}+(1-t) x_{2}\right) \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right), \text { for } 0 \leq t \leq 1\).

figure2


3-2. Operations that preserve convexity

  • Nonnegative linear combination
  • Composition (Affine/General/Vector)
  • Pointwise maximum and supremum
  • Minimization function
  • Perspective function


a) Nonnegative linear combination

\(f_i\)가 convex면..다음도 convex다

  • (1) \(\alpha f_i\) ( where \(\alpha \geq 0\) )
  • (2) \(f_1 + f_2\)
  • (3)\(\alpha_1 f_1 + \cdots \alpha_n f_n\) ( where \(\alpha_i \geq 0\) )


b) Composition (Affine/General/Vector)

(1) Affine Composition

  • \(f_i\)가 convex면, \(f(Ax + b)\)도 convex


(2) General Composition

  • \(f(x) = h(g(x))\) 라고 하면,

    • \(g\) : convex, \(h\):convex, \(h\)는 non-decreasing
    • \(g\) : concave, \(h\) : convex, \(h\)는 non-increasing

    일 경우, \(f\)는 convex

  • [proof] \(f^{\prime \prime}(x)=h^{\prime \prime}(g(x)) g^{\prime}(x)^{2}+h^{\prime}(g(x)) g^{\prime \prime}(x)\) 사용해서


(3) Vector Copmosition

  • (setting) \(g : R^n \rightarrow R^k\), \(h : R^k \rightarrow R\)
  • \(f(x) = h(g(x)) = h(g_1(x), … ,g_k(x))\).
    • \(g\)가 convex, \(h\)가 convex & \(h\)가 각 인수에 대해 non-decerasing일 경우, convex
    • \(g\)가 convex, \(h\)가 concave & \(h\)가 각 인수에 대해 non-increasing일 경우, concave


c) Pointwise maximum and supremum

(1) Pointwise Maximum

  • \(f_{1}, f_{2} \text { are convex functions } \Rightarrow f(x)=\max \left\{f_{1}(x), f_{2}(x)\right\}, \operatorname{dom} f=\operatorname{dom} f_{1} \cap \text { dom } f_{2} \text { is convex }\).


(2) Pointwise Supremum

  • \(f(x,y)\)가 \(y \in A\) 에 대하여 \(x\)에 볼록하다면, \(g(x) = \text{sup}_{y\in A} f(x,y)\) 는 convex 이다.


d) Minimization function

\(f\)가 \((x,y)\)에서 convex이면, \(g(x) = \text{inf}_{y \in C} f(x,y)\) 도 convex!


3-3. Conjugate Function

  • pass


3-4. Quasiconvex Function

Quasiconvex ( = unimodal )

  • \(f: R^{n} \rightarrow R \text { is quasiconvex if dom } f \text { and } S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \leq \alpha\} \text { for } \alpha \in R \text { are convex. }\).


Quasiconcave

  • \(f\)가 quasiconvex이면, \(-f\)는 quasiconcave
  • \(f: R^{n} \rightarrow R \text { is quasiconcave if dom } f \text { and } S_{\alpha}=\{x \in \operatorname{dom} f \mid f(x) \geq \alpha\} \text { for } \alpha \in R\).


figure2


3-5. Log-concave & Log-convex Function

Log Concave

  • (1) 모든 \(x \in \operatorname{dom} f\) 에 대해서 \(f(x)>0\) 이고,
  • (2) \(\log f\) 가 concave라면
  • \(f: R^{n} \rightarrow R\) 는 LOG CONCAVE하다


Alternative

  • (1) \(f\) 는 log concave하다
  • (2) \(f(\theta x+(1-\theta) y) \geq f(x)^{\theta} f(y)^{1-\theta}\) for \(0 \leq \theta \leq 1 .\)


Log Convex

  • (1) 모든 \(x \in \operatorname{dom} f\) 에 대해서 \(f(x)>0\) 이고,
  • (2) \(\log f\) 가 convex라면
  • \(f: R^{n} \rightarrow R\) 는 LOG CONVEX하다


Alternative

  • (1) \(f\) 는 log concave하다
  • (2) \(\frac{1}{f}\) 는 log convex하다


Quasi convex/convcave

log함수는 “단조” 증가함수이기 때문에,

  • log-concvex는 quasi convex하고,
  • log-concave는 quasi concave하다


Examples

Log Concave

  • [Affine Function]
    • \(f(x)=a^{T} x+b\) on \(\left\{x \mid a^{T} x+b>0\right\}\)
  • [Powers]
    • \(f(x)=x^{a}\) 는 \(R_{++}\)에서, \(a \geq 0\) 일 때
  • [Exponentials]
    • \(f(x)=e^{a x}\).
  • [CDF of Normal distn]
    • \(\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u\).


Log Convex

  • [Gamma function]
    • \(\Gamma(x)=\int_{0}^{\infty} u^{x-1} e^{-u} d u\) , where \(x \geq 1\)
  • [Determinant]
    • \(\operatorname{det} X\) , in \(S_{++}^{n}\)
  • [Exponentials]
    • \(f(x)=e^{a x}\).