Representational Continuity for Unsupervised Continual Learning (ICLR 2022)

https://arxiv.org/pdf/2110.06976

Madaan, Divyam, et al. "Representational continuity for unsupervised continual learning." ICLR 2022


Abstract

대부분의 Continual learning: Supervised 세팅

$\rightarrow$ This paper: Unsupervised 세팅 … UCL (Unsupervised Continual Learning)


figure2


1. Lifelong Unsupervised Mixup (LUMP)

figure2

한 줄 요약: Mixup을 통한 data augmentation 활용

  • (1) 현재 task
  • (2) 과거 task


$\mathcal{L}^{\text{Mixup}}(\tilde{x}, \tilde{y}) = \mathrm{CE}(h_\psi(f_\Theta(\tilde{x})), \tilde{y})$.

  • $\tilde{x} = \lambda \cdot x_i + (1 - \lambda) \cdot x_j$.
  • $\tilde{y} = \lambda \cdot y_i + (1 - \lambda) \cdot y_j$.


2. Experiments

위 방법으로 pretrain이후, KNN classifier로 evaluation

figure2

Categories: ,

Updated: