( 참고 : 패스트 캠퍼스 , 한번에 끝내는 컴퓨터비전 초격차 패키지 )

Data Augmentation (1)

Categories of Data Augmentation

  • (1) Rule-based
  • (2) GAN-based
  • (3) AutoML-based


(1) Rule-based

(1-1) Color Transformation

  • Gaussian Blur, Motion Blur
  • Brightness Jitter, Contrast Jitter, Saturation Jitter
  • ISO Noise
  • JPEG compression


(1-2) Spatial Transformation

  • Flip, Rotation, Crop, Affine …


figure2


(1-3) ETC

  • a) Data Mixing / Erasing
  • b) PatchSuffle Regulaization
  • c) Sample Pairing
  • d) Mixup
  • e) Mosaic Augmentation ( Cropping and Patching )
  • f) Multiple Way of Mixing
  • g) Manifold Mixup
  • h) Random Erasing / Cutout
  • i) Hide-And-Seek for Weakly-Supervised Localization
  • j) CutMix
  • k) AugMix
  • l) SmoothMix


a) Data Mixing / Erasing

  • train by N-label prediction task


b) PatchSuffle Regulaization

  • shuffle pixels inside window
  • cons) need hyperparameter \(N\) ( = window size )

figure2


c) Sample Pairing

  • mix 2 images pixel-wise
  • training : by \(N\)-class multi-label prediction

figure2


d) Mixup

  • mix 2 images, with linear interpolation

figure2

figure2


e) Mosaic Augmentation ( Cropping and Patching )

  • gather multiple patches from multiple images

  • solve N-label classification task

figure2


f) Multiple Way of Mixing

  • mix 2 images pixel-wise
  • propose 8-ways of mixing

figure2


g) Manifold Mixup

  • Mix up in the hidden representation space!
  • more natural/smooth boundary

figure2


h) Random Erasing / Cutout

  • erase randomly ( black / white / random … )

  • not only “random erasing + random cropping”,

    but also “image/object-aware erasing”

  • used in object detection & person re-identification

figure2


i) Hide-And-Seek for Weakly-Supervised Localization

  • gather multiple patches from multiple images

  • task : object localization

    ( = finding bounding box )

figure2


j) CutMix

  • cropping + patching
  • task : classification, weakly-supervised object localization

figure2


k) AugMix

  • mix augmentations!
  • with different weight per augmentation methods!

figure2


l) SmoothMix

  • similar to CutMix, but when patching, smooth the boundary!

figure2

Categories:

Updated: