(1) pθ(x0)=∫pθ(x0:T)dx1:T.
(2) logpθ(x0)=log∫pθ(x0:T)dx1:T.
(3) logpθ(x0)=log∫q(x1:T∣x0)pθ(x0:T)q(x1:T∣x0)dx1:T.
(4) logpθ(x0)≥Eq[logpθ(x0:T)q(x1:T∣x0)] = ELBO
(5) L=Eq[−logpθ(x0:T)q(x1:T∣x0)].
전개하기!
(5) L=Eq[−logpθ(x0:T)q(x1:T∣x0)].
- Forward: q(x1:T∣x0)=∏Tt=1q(xt∣xt−1)
- Reverse: pθ(x0−T)=p(xT)∏Tt=1pθ(xt−1∣xt).
(위에서 Eq는 생략)
(6) logp(xT)∏Tt=1pθ(xt−1∣xt)∏Tt=1q(xt∣xt−1).
(7) logp(xT)+∑Tt=1logpθ(xt−1∣xt)−∑Tt=1logq(xt∣xt−1).
(8) logp(xT)+∑t≥1logpθ(xt−1∣xt)q(xt∣xt−1)
그러면 아래 식이 이해가 갈 것!
L=Eq[−logpθ(x0:T)q(x1:T∣x0)]=Eq[−logp(xT)−∑t≥1logpθ(xt−1∣xt)q(xt∣xt−1)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt∣xt−1)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt∣xt−1,x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt,xt−1,x0)q(xt−1,x0)⋅q(xt,x0)q(xt,x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt−1∣xt,x0)⋅q(xt,x0)q(xt−1,x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt−1∣xt,x0)⋅q(xt−1∣x0)q(xt∣x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt−1∣xt,x0)−∑t>1logq(xt−1∣x0)q(xt∣x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)−∑t>1logpθ(xt−1∣xt)q(xt−1∣xt,x0)−logq(x1∣x0)q(x2∣x0)−logq(x2∣x0)q(x3∣x0)−…−logq(xT−1∣x0)q(xT∣x0)−logpθ(x0∣x1)q(x1∣x0)]=Eq[−logp(xT)q(xT∣x0)−∑t>1logpθ(xt−1∣xt)q(xt−1∣xt,x0)−logpθ(x0∣x1)]=Eq[DKL(q(xT∣x0)‖p(xT))+∑t>1DKL(q(xt−1∣xt,x0)‖pθ(xt−1∣xt))−logpθ(x0∣x1)].