(1) pθ(x0)=pθ(x0:T)dx1:T.


(2) logpθ(x0)=logpθ(x0:T)dx1:T.


(3) logpθ(x0)=logq(x1:Tx0)pθ(x0:T)q(x1:Tx0)dx1:T.


(4) logpθ(x0)Eq[logpθ(x0:T)q(x1:Tx0)] = ELBO


(5) L=Eq[logpθ(x0:T)q(x1:Tx0)].


전개하기!

(5) L=Eq[logpθ(x0:T)q(x1:Tx0)].

  • Forward: q(x1:Tx0)=Tt=1q(xtxt1)
  • Reverse: pθ(x0T)=p(xT)Tt=1pθ(xt1xt).


(위에서 Eq는 생략)

(6) logp(xT)Tt=1pθ(xt1xt)Tt=1q(xtxt1).

(7) logp(xT)+Tt=1logpθ(xt1xt)Tt=1logq(xtxt1).

(8) logp(xT)+t1logpθ(xt1xt)q(xtxt1)


그러면 아래 식이 이해가 갈 것!

L=Eq[logpθ(x0:T)q(x1:Tx0)]=Eq[logp(xT)t1logpθ(xt1xt)q(xtxt1)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xtxt1)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xtxt1,x0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xt,xt1,x0)q(xt1,x0)q(xt,x0)q(xt,x0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xt1xt,x0)q(xt,x0)q(xt1,x0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xt1xt,x0)q(xt1x0)q(xtx0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xt1xt,x0)t>1logq(xt1x0)q(xtx0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)t>1logpθ(xt1xt)q(xt1xt,x0)logq(x1x0)q(x2x0)logq(x2x0)q(x3x0)logq(xT1x0)q(xTx0)logpθ(x0x1)q(x1x0)]=Eq[logp(xT)q(xTx0)t>1logpθ(xt1xt)q(xt1xt,x0)logpθ(x0x1)]=Eq[DKL(q(xTx0)p(xT))+t>1DKL(q(xt1xt,x0)pθ(xt1xt))logpθ(x0x1)].

Categories:

Updated: