(위키북스의 ‘케라스로 구현하는 고급 딥러닝 알고리즘’을 참고하여 작성하였습니다)
3. WGAN 구현하기
- DCGAN과의 차이점 : Loss Function을 베서슈타인 손실 함수로 사용한다는 점
- 그 외의 원리는 전부 동일하다
(1) Generator
- input : noise vector와, 만들어 낼 image의 크기
- output : (fake) image를 만드는 generator
layer의 구성 :
- 1) Batch Normalization
- 2) Activation Function ( ReLU & Sigmoid )
- 3) Conv2DTranspose ( Deconvolution을 해주는 layer )
def Generator(inputs, img_size):
# (1) image크기 조정
img_resize = img_size//4
# (2) parameter
kernel_s = 5
filters = [64,64,32,1]
# (3) input
x = Dense(img_resize * img_resize * filters[0])(inputs)
x = Reshape((img_resize,img_resize,filters[0]))(x)
for f in filters:
if f > filters[-2]: # first 2 layers : stride=2, last 2 layers : stride=1
stride = 2
else :
stride =1
x = BatchNormalization()(x) # (1) BN
x = Activation('relu')(x) # (2) ReLU
x = Conv2DTranspose(filters=f,kernel_size=kernel_s,strides=stride,padding='same')(x) # (3) Deconvolution
x = Acivation('Sigmoid')(x) # (4) Sigmoid
G = Model(inputs,x,name='generator')
return G
(2) Discriminator
- input : image
- output : 0~1 사이의 값 (0:fake ~ 1:real)
def Discriminator(inputs):
# (1) parameter
kernel_s = 5
filters = [32,64,128,256]
x = inputs
for f in filters:
if f == filters[-1]: # first 3 filters : stride=2, last layer : stride=1
stride = 1
else :
stride = 2
x = ReLU(x) # (1) ReLU
x = Conv2D(filters=f, kernel_size=kernel_s, strides=stride,padding='same')(x) # (2) Convolutional Layer
x = Flatten()(x) # (3) Flatten
x = Dense(1)(x) # (4) Dense
x = Activation('sigmoid')(x) # (5) Sogmoid
D = Model(inputs,x,name='discriminator')
return D
(3) Implement GAN with Generator & Discriminator
def build_GAN():
(x_train,_),(_,_) = mnist.load_data() # only need image ( no label )
# 1. Reshape Image
img_size = x_train.shape[1] # (= 28)
x_train = np.reshape(x_train, [-1,img_size,img_size,1]) # into 28,28,1
x_train = x_train.astype('float32')/255
# 2. parameter
model_name = 'WGAN'
dim = 100
n_critic = 5 # Discriminator가 5회 훈련되는 동안, Generator는 1회 훈련
clip_val = 0.01 # Discriminator의 weight를 제한
batch_size = 64
train_steps = 10000
lr = 2e-4
input_shape = (img_size,img_size,1)
# 3-1. Discriminator
inputs = Input(shape=input_shape, name='D_input')
D = Discriminator(inputs, activation='linear')
D.compile(loss=wasserstein_loss, optimizer=RMSprop(lr=lr),metrics=['accuracy']) # 베서슈타인 손실 함수 사용!
D.summary()
# 3-2. Generator
inputs2 = Input(shape=(dim,), name='G_input')
G = Generator(inputs2, img_size)
G.summary()
# 4. Adversarial Update
D.trainable = False
GAN = Model(inputs2, D(G(inputs2)),name=model_name)
GAN.compile(loss=wasserstein_loss,optimizer=RMSprop(lr=lr))
GAN.summary()
# 5. Training
models = (G,D,GAN)
params = (dim,batch_size,n_critic,clip_val,train_steps,model_name)
train(models,x_train,params)
(4) Train
def WGAN_train(models,x_train,params):
G,D,GAN = models
(dim,batch_size,n_critic,clip_val,train_steps,model_name) = params
save_point = 500
# sample data ( 확인용 )
noise_vec = np.random.uniform(-1,1,size=[16,dim])
train_size = x_train.shape[0]
label_real = np.nes((batch_size,1))
####################[ Discriminator ]###################
# 1번의 train_step
for i in range(train_steps):
# n_critic번의 Discriminator 훈련
loss = 0
acc = 0
for _ in range(n_critic):
# 1) real image
randoms = np.random.randint(0,train_size,size=batch_size) # select random images
image_real = x_train[randoms]
# 2) fake image
noise = np.random.uniform(-1,1,size=[batch_size,latent_size])
image_fake = G.predict(noise)
# 기존의 방법 : real & fake image를 결합했었음
# 새로운 방법 : real로 이루어진 batch & fake로 이루어진 batch -> 교대로 훈련
# x = np.concatenate((image_real,image_fake))
# y = np.ones([2*batch_size,1])
# y[batch_size:,:] = 0
# 3) train
real_loss, real_acc = D.train_on_batch(image_real,label_real) # 진짜 image 학습
fake_loss, fake_acc = D.train_on_batch(image_fake,label_real) # 가짜 image 학습
loss += 0.5*(real_loss + fake_loss)
acc += 0.5*(real_acc + fake_acc)
for layer in D.layers:
W = layer.get_weights()
W = [np.clip(w, -clip_val, clip_val) for w in W]
layer.set_weights(W)
loss /= n_critic
acc /= n_critic
temp = "%d : [Discriminator loss : %f, accuracy : $f]" % (i,loss,acc)
####################[ Generator ]###################
# 1) train
loss, acc = GAN.train_on_batch(noise_vec,label_real)
temp = "%d : [Generator loss : %4, accuracy : $f]" % (i,loss,acc)
print(temp)
# 2) show results
if (i+1) % save_point ==0:
if (i+1) == train_steps:
show = True
else :
show = False
plot_images(G,noise_input = noise_vec,show=show,
step=(i+1),model_name=model_name)
G.save(model_name + ".h5")