Transformer 구현
( 참고 : “딥러닝을 이용한 자연어 처리 입문” (https://wikidocs.net/book/2155) )
구현 순서
- Positional Encoding
- Attention Function
- Multi-head Attention
- Masking
- Masking 1) 최대 문장길이 못미치는 것 padding한 부분
- Masking 2) Cheating 방지용
- Encoder
- encoder layer
- encoder
- Decoder
- decoder layer
- decoder
- Transformer
.
1.Positional Encoding
.
\(\begin{array}{l}P E*_{(p o s, 2 i)}=\sin \left(p o s / 10000^{\left(2 i / d_*{\text {model }}\right)}\right) \\P E*_{(p o s, 2 i+1)}=\cos \left(p o s / 10000^{\left(2 i / d_*{\text {model }}\right)}\right)\end{array}\).
class PositionalEncoding(tf.keras.layers.Layer):
def __init__(self, pos, d_model):
super(PositionalEncoding, self).__init__()
self.pos_encoding = self.positional_encoding(pos, d_model)
def angles(self, pos, i, d_model):
angles = 1 / tf.pow(10000, (2 * (i // 2)) / tf.cast(d_model, tf.float32))
return pos * angles
def positional_encoding(self, pos, d_model):
angle_rads = self.angles(
position=tf.range(pos, dtype=tf.float32)[:, tf.newaxis],
i=tf.range(d_model, dtype=tf.float32)[tf.newaxis, :],
d_model=d_model)
angle_rads = np.zeros(angle_rads.shape)
angle_rads[:, 0::2] = tf.math.sin(angle_rads[:, 0::2])
angle_rads[:, 1::2] = tf.math.cos(angle_rads[:, 1::2])
pos_encoding = tf.constant(angle_rads)
pos_encoding = pos_encoding[tf.newaxis, ...]
print('Finished Positional Encoding! shape : ',pos_encoding.shape)
return tf.cast(pos_encoding, tf.float32)
def call(self, x):
return x + self.pos_encoding[:, :tf.shape(x)[1], :]
2. Attention Function
.
.
def attention_func(Q, K, V, mask):
attention_score = tf.matmul(Q, K, transpose_b=True)
d_k = tf.cast(tf.shape(K)[-1], tf.float32)
attention_logits = attention_score / tf.math.sqrt(depth)
if mask is not None:
logits += (mask * -1e9)
attention_weights = tf.nn.softmax(attention_logits, axis=-1)
output = tf.matmul(attention_weights, V)
return output, attention_weights
3. Multi-head Attention
.
step 1) $W_Q$, $W_K$, $W_V$에 해당하는 $d_{model}$ 크기의 Dense layer에 태우고
step 2) 지정된 head 수( $\text{num}_{heads}$)만큼 나누고
step 3) (scaled dot-product) Attention
step 4) 나눠졌던 head들 concatenate하고
step 5) $W_O$에 해당하는 Dense layer에 태우기!
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, name="multi_head_attention"):
super(MultiHeadAttention, self).__init__(name=name)
self.num_heads = num_heads
self.d_model = d_model
assert d_model % self.num_heads == 0
self.depth = d_model // self.num_heads
self.Q_layer = tf.keras.layers.Dense(units=d_model)
self.K_layer = tf.keras.layers.Dense(units=d_model)
self.V_layer = tf.keras.layers.Dense(units=d_model)
self.dense = tf.keras.layers.Dense(units=d_model)
def split_heads(self, inputs, batch_size):
inputs = tf.reshape(
inputs, shape=(batch_size, -1, self.num_heads, self.depth))
return tf.transpose(inputs, perm=[0, 2, 1, 3])
def call(self, inputs):
Q, K, V, mask = inputs['Q'], inputs['K'], inputs['V'], inputs['mask']
batch_size = tf.shape(Q)[0]
# step 1)
Q = self.Q_layer(Q)
K = self.K_layer(K)
V = self.V_layer(V)
# step 2)
Q = self.split_heads(Q, batch_size)
K = self.split_heads(K, batch_size)
V = self.split_heads(V, batch_size)
# step 3)
scaled_attention, _ = attention_func(Q, K, V, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
# step 4)
concat_attention = tf.reshape(scaled_attention,
(batch_size, -1, self.d_model))
# step 5)
outputs = self.dense(concat_attention)
return outputs
4. Masking
Masking
- Masking 1) 최대 문장길이 못미치는 것 padding한 부분
- Masking 2) Cheating 방지용
4-1. Masking 1
.
# 0인 부분에 mask 씌우기
def masking1(x):
mask = tf.cast(tf.math.equal(x, 0), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
4-2. Masking 2
.
def masing2(x):
mask1 = masking1(x)
seq_len = tf.shape(x)[1]
mask2 = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
return tf.maximum(mask2, mask1)
5. Encoder
Encoder
- encoder layer
- encoder
.
5-1. Encoder Layer
def encoder_layer(d_ff, d_model, num_heads, dropout, name="encoder_layer"):
inputs = tf.keras.Input(shape=(None, d_model), name="inputs")
# Layer (1)
mask1 = tf.keras.Input(shape=(1, 1, None), name="padding_mask")
attention = MultiHeadAttention(
d_model, num_heads, name="attention")({
'Q': inputs, 'K': inputs, 'V': inputs,'mask': mask1})
attention = tf.keras.layers.Dropout(rate=dropout)(attention)
attention = tf.keras.layers.LayerNormalization(epsilon=1e-6)(inputs + attention)
# Layer (2)
outputs = tf.keras.layers.Dense(units=d_ff, activation='relu')(attention)
outputs = tf.keras.layers.Dense(units=d_model)(outputs)
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention + outputs)
return tf.keras.Model(inputs=[inputs, mask1], outputs=outputs, name=name)
5-2. Encoder
def encoder(vocab_size, num_layers, d_ff,
d_model, num_heads, dropout,
name="encoder"):
inputs = tf.keras.Input(shape=(None,), name="inputs")
# Layer (0) ( encoder에 들어가기 이전)
mask1 = tf.keras.Input(shape=(1, 1, None), name="padding_mask")
embeddings = tf.keras.layers.Embedding(vocab_size, d_model)(inputs)
embeddings *= tf.math.sqrt(tf.cast(d_model, tf.float32))
embeddings = PE(vocab_size, d_model)(embeddings)
outputs = tf.keras.layers.Dropout(rate=dropout)(embeddings)
# ( Layer (1) ~ Layer(2) ) x num_layers(회)
for i in range(num_layers):
outputs = encoder_layer(d_ff=d_ff, d_model=d_model, num_heads=num_heads,
dropout=dropout, name="encoder_layer_{}".format(i),
)([outputs, mask1])
return tf.keras.Model(inputs=[inputs, mask1], outputs=outputs, name=name)
6. Decoder
Decoder
- decoder layer
- decoder
6-1. Decoder Layer
def decoder_layer(d_ff, d_model, num_heads, dropout, name="decoder_layer"):
inputs = tf.keras.Input(shape=(None, d_model), name="inputs")
enc_outputs = tf.keras.Input(shape=(None, d_model), name="encoder_outputs")
mask1 = tf.keras.Input(shape=(1, 1, None), name='padding_mask')
mask2 = tf.keras.Input(shape=(1, None, None), name="look_ahead_mask")
# Multi-Head self Attention
attention1 = MultiHeadAttention(d_model, num_heads, name="attention_1")(inputs={
'Q': inputs, 'K': inputs, 'V': inputs, 'mask': mask2})
attention1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention1 + inputs)
# Decoder-Encoder Attention
attention2 = MultiHeadAttention(d_model, num_heads, name="attention_2")(inputs={
'Q': attention1, 'K': enc_outputs, 'V': enc_outputs,'mask': mask1 })
attention2 = tf.keras.layers.Dropout(rate=dropout)(attention2)
attention2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)(attention2 + attention1)
# Position-wide FFNN
outputs = tf.keras.layers.Dense(units=dff, activation='relu')(attention2)
outputs = tf.keras.layers.Dense(units=d_model)(outputs)
outputs = tf.keras.layers.Dropout(rate=dropout)(outputs)
outputs = tf.keras.layers.LayerNormalization(epsilon=1e-6)(outputs + attention2)
return tf.keras.Model(
inputs=[inputs, enc_outputs, mask2, mask1],
outputs=outputs,
name=name)
6-2. Decoder
def decoder(vocab_size, num_layers, d_ff,d_model, num_heads, dropout,name='decoder'):
inputs = tf.keras.Input(shape=(None,), name='inputs')
enc_outputs = tf.keras.Input(shape=(None, d_model), name='encoder_outputs')
mask1 = tf.keras.Input(shape=(1, 1, None), name='padding_mask')
mask2 = tf.keras.Input(shape=(1, None, None), name='look_ahead_mask')
# Layer (0)
embeddings = tf.keras.layers.Embedding(vocab_size, d_model)(inputs)
embeddings *= tf.math.sqrt(tf.cast(d_model, tf.float32))
embeddings = PE(vocab_size, d_model)(embeddings)
outputs = tf.keras.layers.Dropout(rate=dropout)(embeddings)
# ( Layer (1) ~ Layer(2) ) x num_layers(회)
for i in range(num_layers):
outputs = decoder_layer(d_ff=d_ff, d_model=d_model, num_heads=num_heads,
dropout=dropout, name='decoder_layer_{}'.format(i),
)(inputs=[outputs, enc_outputs, mask2, mask1])
return tf.keras.Model(
inputs=[inputs, enc_outputs, mask2, mask1],
outputs=outputs,
name=name)
7. Transformer
def transformer(vocab_size, num_layers, d_ff,d_model, num_heads, dropout,name="transformer"):
# Encoder 입력
inputs = tf.keras.Input(shape=(None,), name="inputs")
# Decoder 입력
dec_inputs = tf.keras.Input(shape=(None,), name="dec_inputs")
# Encoder의 mask
enc_mask1 = tf.keras.layers.Lambda(
masking1, output_shape=(1, 1, None),
name='enc_padding_mask')(inputs)
# Decoder의 mask 1 ( 최대 길이 못 미치는 padding mask )
dec_mask1 = tf.keras.layers.Lambda(
masking1, output_shape=(1, 1, None),
name='dec_padding_mask')(inputs)
# Decoder의 mask 2 ( cheating 방지 mask )
dec_mask2 = tf.keras.layers.Lambda(
masking2, output_shape=(1, None, None),
name='look_ahead_mask')(dec_inputs)
# Encoder 출력
enc_outputs = encoder(vocab_size=vocab_size, num_layers=num_layers, d_ff=d_ff,
d_model=d_model, num_heads=num_heads, dropout=dropout,
)(inputs=[inputs, enc_mask1]) # 인코더의 입력은 입력 문장과 패딩 마스크
# Decoder 출력
dec_outputs = decoder(vocab_size=vocab_size, num_layers=num_layers, d_ff=d_ff,
d_model=d_model, num_heads=num_heads, dropout=dropout,
)(inputs=[dec_inputs, enc_outputs, dec_mask2, dec_mask1])
# 최종 출력
outputs = tf.keras.layers.Dense(units=vocab_size, name="outputs")(dec_outputs)
return tf.keras.Model(inputs=[inputs, dec_inputs], outputs=outputs, name=name)