3. Vanilla GNN

  • introduction of GNN

  • limitations of GNN

    ( in representation capability & training efficiency )


3-1. Introduction

target of GNN

  • learn state embedding \(\mathbf{h}_{v} \in \mathbb{R}^{s}\)

    ( encodes information of neighbors )

  • state embeding is used to produce an output \(\mathbf{o}_{v}\)

    ( ex. predicted node label )


Vanilla GNN

  • deals with UNdirected, HOMOgeneous graphs
  • features
    • node features \(\mathbf{x}_{v}\)
    • edge features ( optional )


Notation

  • set of EDGES : \(c o[v]\)
  • set of NEIGHBORS : \(n e[v]\)


3-2. Model

given input features ( of nodes & edges )…

update the node state, according to input neighborhood


Vector

Notation

  • \(f\) : local transition function
  • \(g\) : local output function


Model

  • \(\mathbf{h}_{v}=f\left(\mathbf{x}_{v}, \mathbf{x}_{c o[v]}, \mathbf{h}_{n e[v]}, \mathbf{x}_{n e[v]}\right)\).
  • \(\mathbf{o}_{v}=g\left(\mathbf{h}_{v}, \mathbf{x}_{v}\right)\).


Matrix

Notation

  • \(\mathbf{H}\) : states
  • \(\mathbf{O}\) : output
  • \(\mathbf{X}\) : features ( edge & nodes )
  • \(\mathbf{X}_{N}\) : features ( nodes )


Model

  • \(\mathbf{H} =F(\mathbf{H}, \mathbf{X})\).
  • \(\mathbf{O} =G\left(\mathbf{H}, \mathbf{X}_{N}\right)\).


iterative Scheme

\(\mathbf{H}^{t+1}=F\left(\mathbf{H}^{t}, \mathbf{X}\right)\).

  • converges exponentially fast, for any initival value \(\mathbf{H}(0)\)


Learning

with the target information ( label : \(t_v\) )

  • \(\text { loss }=\sum_{i=1}^{p}\left(\mathbf{t}_{i}-\mathbf{o}_{i}\right)\).


3-3. Limitations

limitations of GNN

  1. computationally inefficient to update the hidden states of nodes iteratively

    \(\rightarrow\) needs \(T\) steps of computation, to approximate the fixed point

  2. same parameters in the iteration

  3. some informative features on edges may not be efficiently used

    ( ex. edges in KG (Knowledge Graph) )

  4. if \(T\) Is large…. unsuitable to use fixed points


Several variants are proposed!

  • ex) GGNN (Gated GNN) : to solve limitation (1)
  • Ex) R-GCN (Relational GCN) : to deal with directed graph


Categories:

Updated: