T-GCN : A Temporal GCN for Traffic Prediction

0. Abstract

to capture SPATIAL & TEMPORAL dependence simultaneously,

\(\rightarrow\) propose T-GCN

  • combination of (1) GCN + (2) GRU


1. Methodology

(1) Problem Definition

Notation

  • unweighted graph : \(G=(V, E)\)
    • road nodes : \(V=\left\{v_{1}, v_{2}, \cdots, v_{N}\right\}, \mathrm{N}\)
  • adjacency matrix : \(A \in R^{N \times N}\)
  • feature matrix : \(X^{N \times P}\)
    • \(P\) : length of historical TS ( = number of node attributes )
    • \(X_{t} \in R^{N \times 1}\) : speed of every road, at time \(t\)


Goal : \(\left[X_{t+1}, \cdots, X_{t+T}\right]=f\left(G ;\left(X_{t-n}, \cdots, X_{t-1}, X_{t}\right)\right)\)

  • backcast size : \(n\)
  • forecast size : \(T\)


(2) Overview

figure2

매 time step마다의 input size : \(N \times 1\)


(3) Methodology

a) SPATIAL : GCN

figure2


CNN vs GCN

  • CNN : only on Euclidean space
  • GCN : ok on non-Euclidean space


GCN

  • constructs a filter in Fourier Domain
  • use GCN to learn spatial features
  • \(f(X, A)=\sigma\left(\widehat{A} \operatorname{Relu}\left(\widehat{A} X W_{0}\right) W_{1}\right)\).
    • \(\widehat{A}=\widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D}{ }^{-\frac{1}{2}}\).
      • \(\widetilde{A}=A+I_{N}\).
      • \(\widetilde{D}=\sum_{j} \widetilde{A}_{i j}\).


b) TEMPORAL : GRU

figure2


c) T-GCN

figure2

Categories: ,

Updated: