Shepherd; A Critic for Language Model Generation

Wang, Tianlu, et al. "Shepherd: A critic for language model generation." arXiv preprint arXiv:2308.04592 (2023).

( https://arxiv.org/pdf/2308.04592 )

참고:

  • https://aipapersacademy.com/shepherd-a-critic-for-language-model-generation/


Contents

  1. Refining LLM’s Output
  2. Shepherd Model
    1. Community Feedback
    2. Human-Annotated Feedback
  3. Experiments


1. Refining LLM’s Output

Motivation: LLM이 잘못된 정보를 말하면, refine할 수 있어야!

(i.e, new method to critique and refine models output )

figure2


Example)

figure2


2. Shepherd Model

Shepherd Model은 어떠한 식으로 refine/critique를 하는가?

  • Model: LLaMa-7B

  • 두 종류의 데이터셋에 대해 fine-tune

    • (1) Community Feedback
    • (2) Human-Annotated Feedback


(1) Community Feedback

figure2


Details

  • Q&A data source
  • 아래의 tuple을 구축한다 (Q,F,A)
    • (Q) original question
    • (A) top-level answer/comment
    • (F) replies to the answer
  • 유효한 tuple만을 남기기 위한 필터링
    • 정답 & 오답 모두 의미있다!
      • 정답 \(\rightarrow\) offer improvement
      • 오답 \(\rightarrow\) highlight inaccuracies
    • Step 1) Filter by keywords
      • e.g., agree, indeed, wrong 등등
    • Step 2) Filter by score
      • 게시판에 달린 \(\uparrow\), 좋아요 수 등으로
    • Step 3) Filter for diversity
      • 1개의 포스트에 대해 1개의 샘플만!
    • Step 4) Remove offensive content
    • Step 5) Remove out of format samples
      • e.g., Feedback이 추가적인 질문을 요구한다면


(2) Human-Annotated Feedback

figure2

figure2


3. Experiments

Evaluator: 내놓은 답들 중, 어느 답이 더 좋은지 평가하는 모델

(초록: Shepherd, 노랑:Alpaca)

figure2

figure2

Categories: ,

Updated: