[ Recommender System ]

17. Training Deep AutoEncoder for Collaborative Filtering

( 참고 : Fastcampus 추천시스템 강의 )

paper : Training Deep AutoEncoder for Collaborative Filtering ( Kuchaiev and Ginsburg, 2017 )

( https://arxiv.org/abs/1708.01715 )


Abstract

  • Deep 할 수록 generalization 성능 \(\uparrow\) ( 6 layer사용 & end-to-end )
  • Negative parts를 포함한 non-linear activation function 중요!

  • Regularization ( ex. dropout )을 사용하여 overfitting 방지

1. Model

figure2

Loss Function : \(M M S E=\frac{m_{i} *\left(r_{i}-y_{i}\right)^{2}}{\sum_{i=0}^{i=n} m_{i}}\)

  • MMSE = Rating이 “있는” 것만을 loss 고려 + MSE
  • \(m_i=0\) if rating=0, o.w = 1
  • \(y_i\) = predictied rating

Dense re-feeding ( 다음의 순서로 진행 )

  • (sparse한) \(x\) & \(f(x)\) 로 loss 계산………….first forward pass
  • back prop
  • \(f(x)\)로 \(f(f(x))\)를 구함 ( 둘 다 dense matrix ) ……….. second forward pass
  • back prop

Categories:

Updated: