C-Mamba: Channel Correlation Enhanced State Space Models for Multivariate Time Series Forecasting


Contents

  1. Abstract
  2. Introduction
  3. Preliminray
    1. MTS forecasting
    2. Mamba
  4. Methodology
    1. Channel Mixup
    2. C-Mamba Block
  5. Experiments


0. Abstract

Limitations of previous models

  • Linear: limit in capacities
  • Attention: quadratic complexity
  • CNN: restricted receptive field


CI strategy: ignoring their correlations!!

CD strategy: considering inter-channel relationships

  • Via self-attention mechanism, linear combination, or convolution …

    \(\rightarrow\) high computational costs


C-Mamba

  • (1) SSM that captures (2) cross-channel dependencies ,

    while maintaining (3) linear complexity (4)without losing the global receptive field

  • Components

    • (1) Channel mixup
      • two channels are mixed to enhance the training sets
    • (2) Channel attention enhanced patch-wise Mamba encoder
      • leverages the ability of the SSM
      • capture cross-time dependencies and models correlations between channels by mining their weight relationships.


1. Introduction

Cross-channel dependencies are also vital for MTSF!

Ex) two variables over time in the ETT

Observations:

  • (1) Two variables exhibit strong temporal characteristics similarity

  • (2) Show a strong proportional relationship

    • MULL (Middle UseLess Load) = 1/2 x HULL (High UseLess Load)

      \(\rightarrow\) Necessity of modeling cross-channel dependencies from proportional relationships

figure2


C-Mamba

  • To better capture cross-time and cross-channel dependencies

  • Channel enhanced SSM

  • Problem & Solution [1]

    • Problem) Oversmoothing caused by the CD

    • Solution) Channel mixup strategy

      • inspired by mixup data augmentation

      • fuses two channels via a linear combination for training

        ( = generate virtual channel )

      • Generate virtual channel integrate characteristics from different channels while retaining their shared cross-time dependencies, which is expected to improve the generalizability of models.

  • Problem & Solution [2]

    • Problem) Capturing both cross-time and cross-channel dependencies
    • Solution) Channel attention enhanced patch-wise Mamba encoder
      • a) Cross-time dependencies: via Mamba ( + Patching )
        • Patch-wise Mamba module
      • b) Cross-channel dependencies: via channel attention
        • Lightweight mechanism that considers various relationships between channels
          • (1) weighted summation relationships & (2) proportional relationships


2. Preliminary

(1) MTS forecasting

Notation

  • \(\mathbf{X}=\left\{\mathbf{x}_1, \ldots, \mathbf{x}_L\right\} \in \mathbb{R}^{L \times V}\) ,
    • \(\mathbf{X}_{t,:}\) : value of all channels at time step \(t\),
    • \(\mathbf{X}_{:, v}\) as the entire sequence of the channel indexed by \(v\)
  • \(\mathbf{Y}=\left\{\mathbf{x}_{L+1}, \ldots, \mathbf{x}_{L+T}\right\} \in \mathbb{R}^{T \times V}\).


(2) Mamba

Notation

  • Input \(\mathbf{x}(t) \in \mathbb{R}\),
  • Output \(\mathbf{y}(t) \in \mathbb{R}\),
  • Hidden state \(\mathbf{h}(t) \in \mathbb{R}^N\)


\(\begin{aligned} \mathbf{h}^{\prime}(t) & =\mathbf{A h}(t)+\mathbf{B x}(t), \\ \mathbf{y}(t) & =\mathbf{C h}(t), \end{aligned}\).

  • \(\mathbf{A} \in \mathbb{R}^{N \times N}\) : state transition matrix,
  • \(\mathbf{B} \in \mathbb{R}^{N \times 1}\) and \(\mathbf{C} \in \mathbb{R}^{1 \times N}\) : projection matrices


Multivariate TS

  • \(\mathbf{x}(t) \in \mathbb{R}^V\) and \(\mathbf{y}(t) \in \mathbb{R}^V\),
  • \(\mathbf{A} \in \mathbb{R}^{V \times N \times N}, \mathbf{B} \in \mathbb{R}^{V \times N}\), \(\mathbf{C} \in \mathbb{R}^{V \times N}\).
    • \(\mathbf{A}\) can be compressed to \(V \times N\)


Discreticize

\(\begin{aligned} \overline{\mathbf{A}} & =\exp (\Delta \mathbf{A}) \\ \overline{\mathbf{B}} & =(\Delta \mathbf{A})^{-1}(\exp (\Delta \mathbf{A})-\mathbf{I}) \Delta \mathbf{B} \\ \mathbf{h}_t & =\overline{\mathbf{A}} \mathbf{h}_{t-1}+\overline{\mathbf{B}} \mathbf{x}_t \\ \mathbf{y}_t & =\mathbf{C h}_t \end{aligned}\).

  • where \(\Delta \in \mathbb{R}^V\) is the sampling time interval


Global convolution

\(\begin{aligned} & \overline{\mathbf{K}}=\left(\mathbf{C} \overline{\mathbf{B}}, \mathbf{C A B}, \ldots, \mathbf{C} \overline{\mathbf{A}}^{L-1} \overline{\mathbf{B}}\right) \\ & \mathbf{Y}=\mathbf{X} * \overline{\mathbf{K}}, \end{aligned}\).

  • where \(L\) is the length of the sequence.


Selective scan mechanism

Selective scan strategy ( Data-dependent mechanism )

  • \(\mathbf{B} \in \mathbb{R}^{L \times V \times N}, \mathbf{C} \in \mathbb{R}^{L \times V \times N}\),
  • \(\Delta \in \mathbb{R}^{L \times V}\) : derived from the input \(\mathbf{X} \in \mathbb{R}^{L \times V}\).


3. Methodology

figure2


Before training

  • Channel mixup module: Mixes MTS in channel dim

Model

  • C-Mamba block
    • Vanilla Mamba module
    • Channel attention module
  • Exploits both cross-time and cross-channel dependencies.
  • Patch-wise sequences


(1) Channel Mixup

Mixup

\(\begin{aligned} & \tilde{x}=\lambda x_i+(1-\lambda) x_j \\ & \tilde{y}=\lambda y_i+(1-\lambda) y_j \end{aligned}\).

  • where \((\tilde{x}, \tilde{y})\) is the synthesized virtual sample, and \(\lambda \in[0,1]\).


Channel Mixup

\(\begin{aligned} & \mathbf{X}^{\prime}=\mathbf{X}_{:, i}+\lambda \mathbf{X}_{:, j}, i, j=0, \ldots, V-1 \\ & \mathbf{Y}^{\prime}=\mathbf{Y}_{:, i}+\lambda \mathbf{Y}_{:, j}, i, j=0, \ldots, V-1 \end{aligned}\).

  • where \(\mathbf{X}^{\prime} \in \mathbb{R}^{L \times 1}\) and \(\mathbf{Y}^{\prime} \in \mathbb{R}^{T \times 1}\) are hybrid channels
  • where randperm \((V)\) generates a randomly arranged array of \(0 \sim V-1\)
  • \(\lambda \sim N\left(0, \sigma^2\right)\) is the linear combination coefficient


Normal distribution with a mean of 0

\(\rightarrow\) Ensuring that the overall characteristics of each channel remain unchanged.


figure2


(2) C-Mamba Block

Consists of two key components:

  • (1) Patch-wise Mamba module
  • (2) Channel attention module

\(\rightarrow\) Capture cross-time and cross-channel dependencies respectively!


a) PatchMamba

Patching

  • Each univariate TS \(\mathbf{X}_{: v} \in \mathbb{R}^L\),
  • \(\hat{\mathbf{X}}_{: v}=\operatorname{Patching}\left(\mathbf{X}_{: v}\right) \in \mathbb{R}^{N \times P}\).


b) Channel Attention

Structure of the channel attention module.


Notation:

  • \(\mathbf{H}_l \in \mathbb{R}^{V \times N \times D}\): Embedding after the \(l^{t h}\) PatchMamba module

  • \(\operatorname{Att}_l=\operatorname{sigmoid}\left(\operatorname{MLP}\left(\operatorname{MaxPool}\left(\mathbf{H}_l\right)\right)+\operatorname{MLP}\left(\operatorname{AvgPool}\left(\mathbf{H}_l\right)\right)\right)\).

    • AvgPool and MaxPool : applied to the last two dimensions
  • \(\operatorname{Att}_l=\operatorname{sigmoid}\left(\mathbf{W}_1\left(\operatorname{Gelu}\left(\mathbf{W}_0 \mathbf{F}_{\text {max }}^l\right)\right)+\mathbf{W}_1\left(\operatorname{Gelu}\left(\mathbf{W}_0 \mathbf{F}_{\text {avg }}^l\right)\right)\right)\).

    • \(\mathbf{F}_{\text {max }}^l \in \mathbb{R}^{V \times 1 \times 1}\) and \(\mathbf{F}_{\text {avg }}^l \in \mathbb{R}^{V \times 1 \times 1}\) ,

    • \(\mathbf{W}_0 \in \mathbb{R}^{V / r \times V}\) and \(\mathbf{W}_1 \in \mathbb{R}^{V \times V / r}\),

      • \(r\): controlling the parameter complexity, denotes the reduction ratio.

        ( = Essential for time series with hundreds of channels, tune it in \(\{2,4,8\}\). )

  • \(\operatorname{Att}_l \in \mathbb{R}^{V \times 1 \times 1}\):

\(\mathbf{C A}_l=\operatorname{Att}_l \odot \mathbf{H}_l .\) : output of the channel attention module


c) Overall Pipeline

(Instance normalization to mitigate the distribution shifts)

  • \(\mathbf{X}^{\prime}, \mathbf{Y}^{\prime}=\operatorname{Mixup}(\mathbf{X}, \mathbf{Y})\).

  • \(\mathbf{X}_{\text {norm }}^{\prime}=\operatorname{InstanceNorm}\left(\mathbf{X}^{\prime}\right)\).

  • \(\hat{\mathbf{X}} =\operatorname{Patching}\left(\mathbf{X}_{\text {norm }}^{\prime}\right)\).

  • \(\mathbf{Z}_0 =\hat{\mathbf{X}} \mathbf{W}_p+\mathbf{W}_{\text {pos }}\).

    • learnable position encoding \(\mathbf{W}_{\text {pos }}\).

    • where \(\hat{\mathbf{X}} \in \mathbb{R}^{V \times N \times P}, \mathbf{W}_p \in \mathbb{R}^{P \times D}, \mathbf{W}_{\text {pos }} \in \mathbb{R}^{N \times D}\), and \(\mathbf{Z}_0 \in \mathbb{R}^{V \times N \times D}\)

[C-mamba encoder .. k blocks]

  • \(\begin{aligned} \mathbf{H}_l & =\operatorname{PatchMamba}\left(\mathbf{Z}_{l-1}\right), \\ \mathbf{Z}_l & =\operatorname{Att}_l\left(\mathbf{H}_l\right) \odot \mathbf{H}_l+\mathbf{Z}_{l-1} \end{aligned}\).

  • \(\hat{\mathbf{Y}}_p=\operatorname{Flatten}\left(\operatorname{Silu}\left(\operatorname{RMS}\left(\mathbf{Z}_k\right)\right)\right) \mathbf{W}_{p r o j}\).

    • linear projection layer: \(\mathbf{W}_{p r o j} \in \mathbf{R}^{(N * D) \times T}\)
    • \(\hat{\mathbf{Y}}_p \in \mathbb{R}^{V \times T}\).


4. Experiments

figure2

figure2

figure2

figure2

Categories: ,

Updated: