DTMamba : Dual Twin Mamba for Time Series Forecasting


Contents

  1. Introduction
  2. Proposed Method
    1. Problem Statement
    2. Normalization
    3. CI & Reverse CI
    4. Twin Mamba
  3. Experiments


1. Introduction

DTMamba (Dual Twin Mamba)

[Procedure]

  • RevIN
    • CI layer
      • TMamba blocks (\(\times 2\))
      • Projection layer
    • revese CI
  • reverse RevIN


2. Proposed Method

figure2

Three layers

  • (1) CI layer
  • (2) TMamba block
    • embedding
    • FC layer
    • dropout
    • pair of twin Mambas
  • (3) Projection layer


(1) Problem Statement

Multivariate TS

\(X=\left\{x_1, \ldots, x_L\right\}\).

  • \(X_i \in \mathbb{R}^N\) consists of \(N\) dimensions \(\left\{x_i^1, \ldots, x_i^N\right\}\)


TS forecasting

  • \(X=\left\{x_1, \ldots, x_T\right\} \in\) \(\mathbb{R}^{T \times N}\),
  • \(\hat{X}=\left\{\hat{x}_{T+1}, \ldots, \hat{x}_{T+S}\right\} \in \mathbb{R}^{S \times N}\) ,


(2) Normalization

\(X^0=\left\{x_1^0, \ldots, x_T^0\right\} \in \mathbb{R}^{T \times N}\), via \(X^0=\operatorname{RevIN}(X)\).


(3) CI & Reverse CI

(B,T,N) \(\rightarrow\) (BxN, 1, T)


(4) Twin Mamba

figure2


a) Embedding Layes

Embed the \(X^I\) into \(X^E:(B \times\) \(N, 1, n i)\).


DTMamba

  • consists of two TMamba Block in total


Embedding layer

  • Embed the TS into \(\mathrm{n} 1\) and \(\mathrm{n} 2\) dimension
    • Embedding 1 & Embedding 2


b) Residual

  • To prevent overfitting
  • FC layer to change the dimension of the residual


c) Dropout

\(X^E\) \(\rightarrow\) \(X^D:(B \times N, 1, n i)\).


d) MAMBAs

TMamba Block = Two parallel Mamba.

  • Multi-level feature learning can be achieved.

  • Mamba (1)
    • learn low-level temporal features
  • Mamba (2)
    • learn high-level temporal patterns


e) Projection Layer

\(R^1\) and \(R^2\)

  • Representation learned by the two pairs of TMamba Block


Step 1) Addition operation

  • \(X^A:(B \times N, 1, n 2) \leftarrow X^I+R^1+R^2\).

Step 2) Prediction ( next length \(S\) )

  • Use a linear layer
  • Get \(X^P:(B \times N, 1, S)\),

Step 3) Reverse CI ( = reshape )

  • \(\hat{X}:(B, S, N)\).


3. Experiments

figure2

figure2

figure2

Categories: ,

Updated: