Probabilistic Forecasting of Sensory Data with GAN ; ForGAN (2019, 32)

Contents

  1. Abstract
  2. Introduction
    1. Mean Regression Forecast
    2. Probabilistic Forecast
  3. Methodology
    1. CGAN
    2. Probabilistic Forecast with CGAN


0. Abstract

ForGAN

  • one-step ahead
  • probabilistic forecasting
  • with GAN


1. Introduction

Goal : acquire \(\rho\left(x_{t+1} \mid\left\{x_{t}, \ldots, x_{0}\right\}\right)\)

\(\mu\left(\rho\left(x_{t+1} \mid c\right)\right)\) most accurately. There is a broad range of

(1) Mean Regression Forecast

predict \(\mu\left(\rho\left(x_{t+1} \mid c\right)\right)\)

  • do not include fluctuations around the mean
  • unreliable & mis leading


Example :

figure2


(2) Probabilistic Forecast

quantify the variance in a prediction

2 common approaches

  • 1) conditional quantile regression
    • asymmetric piecewise linear scoring function ( \(\alpha\) quantile )
  • 2) conditional expectile regression
    • asymmetric piecewise quadratic scoring function

OR, collection of point forecasts!

  • ex) Dropout ( Gal et al )


2. Methodology

(a) CGAN

\(\begin{aligned} \min _{G} \max _{D} V(D, G)=& \mathbb{E}_{x \sim \rho_{\text {data }}(x)}[\log D(x \mid y)]+ \mathbb{E}_{z \sim \rho_{z}(z)}[\log (1-D(G(z \mid y)))] . \end{aligned}\).


(b) Probabilistic Forecasting with CGAN

\(\rho\left(x_{t+1} \mid c\right)\).

  • model the probability distribution of one step ahead value \(x_{t+1}\) ,
  • given the historical data \(c=\left\{x_{0}, . ., x_{t}\right\}\)


use CGAN to model \(\rho\left(x_{t+1} \mid c\right)\)

  • discriminator takes \(x_{t+1}\) & determine 1/0

\(\begin{aligned} \min _{G} \max _{D} V(D, G)=& \mathbb{E}_{x_{t+1} \sim \rho_{\text {data }}\left(x_{t+1}\right)}\left[\log D\left(x_{t+1} \mid c\right)\right]+ \mathbb{E}_{z \sim \rho_{z}(z)}[\log (1-D(G(z \mid c)))] \end{aligned}\).


figure2


Tags:

Categories:

Updated: