Maximum Classifier Discrepancy for Unsupervised Domain Adaptation ( 2017, 949 )

Contents

  1. Abstract


0. Abstract

2 problems in (previous) DA methods

  • 1) domain classifier only tries to distinguish S&T,

    and does not consider “task-specific” decision boundaries between classes

  • 2) these methods aim to completely match the feature distn between domains,

    which is difficult due to each domain’s characteristics


Proposal

  • align distributions of S&T by utilizing the “task specific decision boundaries”

  • maximize the “discrepancy” between 2 classifier’s outputs

    to detect target samples that are far from the support of the source


1. Introduction

  • each domains’ samples : have different characteristics

  • propose a method for UDA (Unsupervised DA)


Lots of UDA algorithsm…

  • 1) do not consider “the category of the samples”
  • 2) in adversarial manner
    • domain classifier ( = discriminator ) & feature generator

\(\rightarrow\) fail to extract “discriminative features”


To overcome these problems…

\(\rightarrow\) propose to “align distributions of features from S & T”,

by using the “classifier’s output for T”


figure2


Proposal : 2 types of players…

  • 1) task-specific classifier : do both a) & b)

    • a) try to classify source sample correctly
    • b) trained to detect target samples far from support
  • 2) feature generator

    • tries to fool classifier

      ( = generate T features “near the support” , while considering classifier’s output for T )


2. Method

(1) Overall Idea

Dataset

  • [source] \(\left\{X_{s}, Y_{s}\right\}\)
  • [target]\(X_{t}\)


Model

  • feature generator : \(G\)

  • classifier : \(F_1\) & \(F_2\)

    • classify them to \(K\) classes

      ( output a \(K\)-dim vector of logits )

    • output : \(p_{1}(\mathbf{y} \mid \mathbf{x}), p_{2}(\mathbf{y} \mid \mathbf{x})\)


Goal : align source & target features,

  • by utilizing the task-specific classifiers as a discriminator,
  • in order to consider the “relationship between class boundaries & target samples”

\(\rightarrow\) have to detect target samples FAR from the support of the source


propose to utilize the disagreement of 2 classifiers, on the prediction for target samples

( assume 2 classifiers classify well on source domain )

  • discrepancy : \(d\left(p_{1}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right), p_{2}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right)\right)\).
    • generator : MINIMIZE
    • classifier : MAXIMIZE


(2) Discrepancy Loss

define it as “difference between 2 classifier’s probabilistic output”

  • \(d\left(p_{1}, p_{2}\right)=\frac{1}{K} \sum_{k=1}^{K}\mid p_{1_{k}}-p_{2_{k}}\mid\).
    • \(p_{1k}\) : probability output of \(p_q\) for class \(k\)


(3) Training Steps

figure2

Need to train…

  • 1) Two task-specific classifiers…. maximize \(d\left(p_{1}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right), p_{2}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right)\right)\)
  • 2) One generator ….. minimize \(d\left(p_{1}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right), p_{2}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right)\right)\)


Step 1) train both

minimize softmax CE loss :

  • \(\min _{G, F_{1}, F_{2}} \mathcal{L}\left(X_{s}, Y_{s}\right)\),

    where \(\mathcal{L}\left(X_{s}, Y_{s}\right)=-\mathbb{E}_{\left(\mathbf{x}_{\mathbf{s}}, y_{s}\right) \sim\left(X_{s}, Y_{s}\right)} \sum_{k=1}^{K} \mathbb{1}_{\left[k=y_{s}\right]} \log p\left(\mathbf{y} \mid \mathbf{x}_{s}\right)\).


Step 2) train \(F_1\) &\(F_2\)

have to maximize discrepancy

  • \(\min _{F_{1}, F_{2}} \mathcal{L}\left(X_{s}, Y_{s}\right)-\mathcal{L}_{\mathrm{adv}}\left(X_{t}\right)\),

    where \(\begin{gathered} \mathcal{L}_{\mathrm{adv}}\left(X_{t}\right)=\mathbb{E}_{\mathbf{x}_{\mathbf{t}} \sim X_{t}}\left[d\left(p_{1}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right), p_{2}\left(\mathbf{y} \mid \mathbf{x}_{\mathbf{t}}\right)\right)\right] \end{gathered}\)


Step 3) train \(G\)

have to minimize discrepancy

  • \(\min _{G} \mathcal{L}_{\mathrm{adv}}\left(X_{t}\right)\).