[Paper Review] 18. Closed-Form Factorization of Latent Semantics in GANs
Contents
- Abstract
- Introduction
- SeFa
- Preliminaries
- Unsupervised Semantic Factorization
0. Abstract
interpretable dimensions in GAN
to identify such latent dimensions for image editing….
-
previous methods :
- 1) annotate a collection of synthesized samples
- 2) train linear classifiers in latent space
BUT…. require clear definition of target attribute & manual annotations!
This paper…
-
examine INTERNAL representation learned by GANS
\(\rightarrow\) reveal the underlying variation factors in an unsupervised manner
-
propose a closed-form factorization for latent semantic discovery
- by directly decomposing the pre-trained weights
2. SeFa
SeFa
- closed-form method
- to discover the latent interpretable directions in GANS
- can identify semantically meaningful directions in latent space efficiently, by decomposing model weights
(1) Preliminaries
a) Generation Mechanism of GANs
image generation : \(\mathbf{I}=G(\mathbf{z})\)
\(G(\cdot)\) : generator
-
projects the starting latent space to the final image space “step by step”
-
can be formulated as affine transformation
-
\(G_{1}(\mathbf{z}) \triangleq \mathbf{y}=\mathbf{A z}+\mathbf{b}\).
( = first transformation step )
b) Manipulation Model in GAN Latent Space
Latent Space of GANs
- encode rich semantic knowledge
Semantics
-
can be further applied to image editing
-
use a certain direction \(\mathbf{n} \in \mathbb{R}^{d}\) in the latent space, to represent certain semantic concept
-
after identifying semantically meaningful direction…
manipulation : \(\operatorname{edit}(G(\mathbf{z}))=G\left(\mathbf{z}^{\prime}\right)=G(\mathbf{z}+\alpha \mathbf{n})\)
(2) Unsupervised Semantic Factorization
Goal : reveal EXPLANATORY factors from latent space of GANs
Ex) First projection step
-
manipulation model can be simplified as…
\(\mathbf{y}^{\prime} \triangleq G_{1}\left(\mathbf{z}^{\prime}\right) =G_{1}(\mathbf{z}+\alpha \mathbf{n}) =\mathbf{A z}+\mathbf{b}+\alpha \mathbf{A n}=\mathbf{y}+\alpha \mathbf{A} \mathbf{n}\).
- instance independent
-
weight parameter \(\mathbf{A}\) should contain knowledge of image variation
\(\rightarrow\) \(\therefore\) aim to discover important latent directions, by DECOMPOSING \(\mathbf{A}\)
Propose an UNSUPERVISED approach for semantic factorization
( = independent of data sampling & model training )
-
by solving \(\mathbf{n}^{*}=\underset{\left\{\mathbf{n} \in \mathbb{R}^{d}: \mathbf{n}^{T} \mathbf{n}=1\right\}}{\arg \max } \mid \mid \mathbf{A n} \mid \mid _{2}^{2}\)
-
aims to find the direction that cause LARGE variations after projection of \(\mathbf{A}\)
-
ex) if some direction \(\mathbf{n}^{\prime}\) is projected to a zero-norm vector ( \(\mathbf{A n}^{\prime}=\mathbf{0}\) )…
\(\rightarrow\) \(\mathbf{y}^{\prime}=\mathbf{y}\) ( unchanged! )
-
-
Finding \(k\) most important directions \(\left\{\mathbf{n}_{1}, \mathbf{n}_{2}, \cdots, \mathbf{n}_{k}\right\}\)
-
\(k=1\) : \(\mathbf{n}^{*}=\underset{\left\{\mathbf{n} \in \mathbb{R}^{d}: \mathbf{n}^{T} \mathbf{n}=1\right\}}{\arg \max } \mid \mid \mathbf{A n} \mid \mid _{2}^{2}\)
-
\(k=k\) : \(\mathbf{N}^{*}=\underset{\{\mathbf{N} \in \mathbb{R}^{d \times k}: \mathbf{n}_{i}^{T} \mathbf{n}_{i}=1 \forall i=1, \cdots, k\}}{\arg \max } \sum_{i=1}^{k} \mid \mid \mathbf{A} \mathbf{n}_{i} \mid \mid _{2}^{2}\)
-
solution : \(2 \mathbf{A}^{T} \mathbf{A n}_{i}-2 \lambda_{i} \mathbf{n}_{i}=0\)
-
All possible solutions : eigenvectors of \(\mathbf{A}^{T} \mathbf{A}\)
-
to get maximum objective value & make \(\left\{\mathbf{n}_{i}\right\}_{i=1}^{k}\) distinguishable…
choose columns of \(\mathbf{N}\) as eigenvectors of \(\mathbf{A}^{T} \mathbf{A}\) associated with the \(k\) largest eigenvalues
-
-