Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Contents
- Abstract
 - Introduction
 - Problem Setting and Notation
 - Robust Imitative Planning (RIP)
    
- Bayesian Imitative Model
 - Detecting Distribution Shifts
 - Planning Under Epistemic Uncertainty
 
 - Benchmarking Robustness to Novelty
 
0. Abstract
key point: 자율주행 (AD)에서, detection & adaptation to O.O.D하기
이 논문에서는 RIP(Robust Imitative Planning) 방법을 제안
- 
    
epistemic uncertainty-aware planning method
 - detect & recover from distribution shifts
 - reduce overconfident & catastrophic extrapolations in OOD sceneces
 
1. Introduction
domain : Autonomous driving (AD, 자율주행)
주요 문제 :
- reliability of ML models degrades radically, when exposed to NOVEL settings
 - 여기서 novel setting이란, 학습때는 보지 못했던 , OOD의 test 데이터
 
Contribution
- Epistemic uncertainty aware planning
    
- RIP를 제안함 ( for detecting & recovering from distribution shifts )
 - deep ensemble을 사용하여 epistemic uncertainty에 대한 측정 가능
 
 - Uncertainty-driven online adaptation
    
- online method인 AdaRIP (Adaptive RIP)를 제안
 - efficiently query the expert for feedback
 - real-world에 적용 가능
 
 - Autonomous car novel-scene benchmark
 
2. Problem Setting and Notation
“sequential” decision making 상황
4가지 가정
- 
    
[가정 1] Expert demonstration
- 
        
dataset \(\mathcal{D}=\left\{\left(\mathrm{x}^{i}, \mathrm{y}^{i}\right)\right\}_{i=1}^{N}\)에 대한 access 가능
 - 
        
\(x\) : 장면 (scence)
 - 
        
\(y\) : time-profiled expert trajectories (i.e., plans)
( 이 trajectories 는 expert policy에서 sample된다 … \(\mathbf{y} \sim \pi_{\text {expert }}(\cdot \mid \mathbf{x})\) )
 - 
        
목표 : unknown expert policy \(\pi_{\text {expert }}\)를 근사하기!
 
 - 
        
 - 
    
[가정 2] Inverse Dynamics
 - 
    
[가정 3] Global planner
- global navigation system에 access 가능
 
 - 
    
[가정 4] Perfect localization
 
3. Robust Imitative Planning (RIP)
아래의 3가지를 갖춘 imitation learning method를 추구한다
- 1) provides distribution over expert plans
 - 2) quantifies epistemic uncertainty to allow detection of OOD
 - 3) enables robustness to distribution shift with an explicit mechanism for recovery
 
3-1) Bayesian Imitative Model
- context-conditioned density estimation을 수행
 - probabilistic imitative model \(q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})\)를 사용 ( MLE 통해 학습 )
    
- \(\boldsymbol{\theta}_{\mathrm{MLE}}=\underset{\boldsymbol{\theta}}{\arg \max } \mathbb{E}_{(\mathrm{x}, \mathbf{y}) \sim \mathcal{D}}[\log q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})]\).
 
 - [ prior ] \(p(\boldsymbol{\theta})\)
    
- induce distribution over density models \(q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})\)
 
 - [ posterior ] \(p(\boldsymbol{\theta} \mid \mathcal{D})\)
 
Practical Implementation
Autoregressive Neural Density Estimator (2018)를 사용한다

\(\begin{aligned} q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta}) &=\prod_{t=1}^{T} p\left(s_{t} \mid \mathbf{y}_{<t}, \mathbf{x} ; \boldsymbol{\theta}\right) \\ &=\prod_{t=1}^{T} \mathcal{N}\left(s_{t} ; \mu\left(\mathbf{y}_{<t}, \mathbf{x} ; \boldsymbol{\theta}\right), \Sigma\left(\mathbf{y}_{<t}, \mathbf{x} ; \boldsymbol{\theta}\right)\right) \end{aligned}\).
- 
    
\(\mu(\cdot ; \boldsymbol{\theta})\) & \(\Sigma(\cdot ; \boldsymbol{\theta})\) : RNN
 - 
    
Normal은 unimodal하긴 하지만, autoregression 통해 Multi-modal 가능
( mixture of density networks, normalizing flow 등을 통해서도 가능 )
 - 
    
exact inference는 intractable하다! 따라서 ensemble하여 approximation
 
3-2) Detecting Distribution Shifts
log likelihood of plan \(\log q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})\) 통해서 paln의 quality 측정
구체적으로, 위의 Variance를 사용!
\[u(\mathbf{y}) \triangleq \operatorname{Var}_{p(\boldsymbol{\theta} \mid \mathcal{D})}[\log q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})]\]- 
    
disagreement of the qualities of a plan, under model coming from the posterior \(p(\boldsymbol{\theta} \mid \mathcal{D})\)
 - 
    
In-distribution의 경우 low variance
 - 
    
OOD scene에서는 high variance
 
3-3) Planning Under Epistemic Uncertainty
planning to goal location \(\mathcal{G}\) , under epistemic uncertainty ( = posterior \(p(\boldsymbol{\theta} \mid \mathcal{D})\) )

- \(p(\boldsymbol{\theta} \mid \mathcal{D})\) : uncertainty about TRUE EXPERT MODEL
 
(a) Worst Case Model (RIP-WCM)
가장 최악의 상황의 model :
- \(s_{\mathrm{RIP}-\mathrm{WCM}} \triangleq \underset{\mathrm{y}}{\arg \max } \min _{\theta \in \operatorname{supp}(p(\theta \mid \mathcal{D}))} \log q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta})\).
 
(b) Model Averaging (RIP-MA)
weighted average! 여기서 weight는 model’s contribution , according to posterior probability
- \(s_{\mathrm{RIP}-\mathrm{MA}} \triangleq \underset{\mathbf{y}}{\arg \max } \int p(\theta \mid \mathcal{D}) \log q(\mathbf{y} \mid \mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \theta\).
 
알고리즘 요약

4. Benchmarking Robustness to Novelty
생략